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Abstract

We present a real-time experimental study of the rodlike growth patterns formed
during directional solidification in a non-faceted transparent eutectic alloy, succinonitrile-
(d)camphor. Slightly convex isotherms were used to slowly increase the pattern
spacing � from an appropriate starting value to the threshold spacing for the rod
elimination or rod splitting instabilities allowing a quantitative determination of
these thresholds as a function of the solidification rate V . We show that the thresh-
old spacing for rod splitting obeys the general � ⇠ V�1/2 scaling law of eutectic
growth whereas the threshold spacing for rod elimination deviates from this law
at low V , exhibiting the same overstability e↵ect as that previously reported for
lamellar eutectic patterns. We demonstrate that topological defects (walls between
hexagon domains) play an important role in rod splitting processes. We also de-
scribe a spatially incoherent mode of oscillation that we observed in disordered
rodlike patterns.

Key words: Eutectic solidification, directional solidification, solidification
microstructures

1. Introduction

Nonfaceted eutectic growth is one of the oldest known experimental exam-
ple of 2D pattern-forming out-of-equilibrium system [1, 2, 3]. It shares the same
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translational and rotational symmetry as, for instance, Rayleigh�Benard convec-
tion experiments and, like the latter, is multistable [4]. At given control parame-
ters, it can settle in space-periodic stationary patterns either lamellar (periodic in
one direction) or rodlike (consisting of 2D periodic arrays). The spacing and ori-
entation of these patterns are not sharply selected but are boundary condition- and
history-dependent. Various ”defective” patterns, ranging from space-periodic pat-
terns traversed by a few topological defects to fully disordered patterns, can also
be more or less stationary. The selection processes between these di↵erent types
of growth patterns as a function of boundary conditions and solidification history
have not yet been fully elucidated. The investigation of such processes mostly
relies on real-time observations of well-controlled systems over su�ciently long
period of times. Because eutectic patterns are by their nature immersed in a so-
lidifying melt, and, moreover, usually have spacing values (�) in the micrometer
range, their in-situ study has long been limited to quasi 1D systems (leading, in-
cidentally, to an almost complete elucidation of the dynamics of such systems
[5, 6]). It is only a few years ago that an experimental method of observing in-
situ 2D eutectic patterns in transparent alloys was proposed [7]. This method was
applied to lamellar eutectic patterns, revealing that the stability of such patterns is
limited by a zigzag bifurcation followed by lamella disruption and branching on
the large-� side [8], in agreement with the results of phase-field numerical stud-
ies [9]. It was also found that a necessary condition for lamellar patterns to form
was the use of a solidification setup with a slight misalignment of the direction
of growth and the axis of the thermal gradient. Without this additional ingre-
dient, called ”thermal bias”, the eutectic growth patterns remained indefinitely
labyrinthic [10].

The same method of in-situ observation is currently being used to study the
dynamics of rodlike eutectic patterns. The experiments are performed in the trans-
parent alloy succinonitrile-(d)camphor (SCN-DC), which is known to be a non-
faceted rodlike eutectic [11, 12]. The question of the long-term growth regime
of this system was addressed in a previous report, which pointed out the crucial
role played by ”imperfections” of the experimental setup in the selection of this
regime [13]. More specifically, it was shown that a slight forward curvature of
the isotherms drove the rodlike pattern towards an operating point close to its
large-� stability limit, which corresponds to a rod splitting instability. During this
study, we used the same mild external forcing to study quantitatively the thresh-
old spacings for both the rod splitting and the rod elimination instabilities, the
latter corresponding to the small-� stability limit of the growth patterns. Although
curved isotherms are a common feature in bulk directional solidification, it is only
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relatively recently that their e↵ects on growth patterns have begun to be studied in
detail [14, 15, 16]. Before presenting our findings about the instability threshold
spacings, we shall therefore sum up our previous conclusions about the e↵ects of
convex isotherms on the dynamics of rodlike eutectic patterns.

2. Experimental Methods

The eutectic point of the SCN-DC alloy is at TE = 38.3oC and CE=13.9
mol%DC [11]. The eutectic plateau connects an almost pure-SCN body centered
cubic phase and an almost pure-DC hexagonal phase. Thereafter, these phases
are called SCN and DC, respectively. The alloys we used were within less than
±0.1mol% of CE. A solid at this concentration has a DC volume fraction of about
0.23 and grows from the melt by forming a rodlike eutectic pattern, with rods of
the DC phase embedded in a SCN matrix [12]. Directional-solidification experi-
ments were conducted as follows. The alloy is put in cartridges made of two 300
mm-thick glass plates separated by plastic spacers delimiting an empty space of
cross section 6⇥ 0.4mm2. A device acting as grain selector is placed near one end
of the cartridges allowing one to grow single, or at least large, eutectic grains. A
filled cartridge is placed between a cold oven and a hot oven adjusted to give a
thermal gradient of 8± 1 Kmm�1 in the region of interest. Solidification is carried
out by pulling the sample towards the cold end of the gradient at a constant rate
V . Let z be the direction opposite to that of the pulling, y the direction perpendic-
ular to the sample plane and x the direction perpendicular to y and z. In theory, z
coincides with the axis of the thermal gradient and the isotherms are planes per-
pendicular to z. In practice, the isotherms are generally slightly curved and tilted
with respect to z.

During the pulling, the average position of the solid-liquid interface remains
locked onto an isotherm close to TE and is observed with an optical microscope.
We use a dark-field method based on the fact that the three (SCN, DC, liquid)
phases of interest have di↵erent refractive indices. This method can be briefly
described as follows (For details, see [7]). The solid-liquid interface is observed
from the outside of the crucible through the liquid under oblique view. The angle
between the y axis and the direction of observation is of about 40o. The solid is
illuminated obliquely and slightly from below. The light rays that travel along
a DC rod are refracted by the curved interface (”DC cap”) between this rod and
the liquid to form a caustic at a short distance above the interface. The images
collected essentially consist of arrays of bright spots, each of which represents the
caustic associated to a DC cap (Fig. 1). The as-received images are processed
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for subtracting background and stretched in the y direction in order to correct
for the contraction due to the inclination of the direction of observation. The
resolution limit of this method is of about 3µm. It is well known that the order of
magnitude of the spacing of a eutectic pattern is given by the Jackson-Hunt scaling
law � ⇠ �JH =

p
KJHV�1/2, where KJH is a material constant [3]. In near-eutectic

SCN-DC, KJH = 10.2 ± 1.5 µm3s�1 [12]. During this study, the V-range used was
of 0.018 to 0.25µms�1, corresponding roughly to a �-range of 5 to 30µm.

Following common practice, we shall present the measurements of threshold
spacings in terms of the dimensionless (”reduced”) spacing ⇤ = �/�JH. When il-
lustrating local instability processes, we shall make use of Voronoi diagrams with
a gray scale ranging from white to black as the number of sides of the Voronoi
cells ranges from 4 to 8. With this representation, hexagon domains appear as
medium-grey areas, while domain walls mostly consist of strings of penta (light-
grey )-hepta (dark-grey) pairs of cells (Fig. 2). We define the local spacing �(t)
of a particular DC cap in a rodlike pattern as the average of the distances between
this DC cap and its nearest neighbors at time t, as determined by the Voronoi
construction. A number of other local parameters, such as the distances and an-
gular orientations of the di↵erent nearest neighbors, are of course needed for a
complete geometrical description of a rod splitting or rod elimination event in an
irregular environment. Empirically, however, we found that a single parameter,
namely, �(t), was su�cient for a study of the dynamics of these events under the
conditions of our experiments [17]. We therefore limit ourselves to this parameter
thereafter. We define the mean spacing �̄(t) as the average of the local spacings of
all the DC rods observed at time t. The experimental uncertainty on each individ-
ual measurement of �(t) was of about ±1.5µm. For an essentially hexagonal (more
exactly, triangular) arrangement of the rods, �̄ ⇡

h
A�1N(t) sin ⇡/3

i�1/2
, where A is

the area of the observation window and N(t) is the number of rods in this window.
Since N(t) > 300 in our experiments, the uncertainty on �̄ was negligible.

3. Directional solidification with convex isotherms

In our experiments, the TE-isotherms were flat in the x direction, but slightly
convex (bulging into the liquid) in the y direction due to the di↵erences in ther-
mal conductivities of the various materials of which the samples were composed
[13, 17]. The corresponding radius of curvature R was measured to range be-
tween 2.5 and 5mm in the di↵erent samples used. Due to the fact that DC rods
(i.e. the trajectories of the DC caps) remain approximately perpendicular to the
envelope of the growth front during solidification, the growth patterns, whatever
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their intrinsic dynamics, were continually stretched in the y direction at a rate V/R.
Consequently, when the pattern was quiescent (i.e. as long as no rod creation or
rod elimination events took place, except of course at the sample walls), the mean
spacing increased over time according to

�̄(t) = �̄oet/⌧, (1)

where ⌧ = 2R/V and �̄o is a constant. As R was much larger than all the charac-
teristic distances of the growth patterns, ⌧ was long compared to the characteristic
times of the processes of interest.

Let �s(V) and �c(V) be the threshold spacings for the rod splitting and rod
elimination instabilities, respectively. These quantities are not uniquely defined
when the rodlike pattern is disordered (see below) but we may neglect this fact
for the moment. Let us consider a long-duration solidification run at constant
V starting from �̄o < �c. Such a run can be divided into four stages (Fig. 3a).
During Stage I, rod elimination is active and �̄ increases rapidly. Observations
showed that, during this stage, the growth pattern is very disordered and the width
of the �-distribution is large. Rod elimination stops completely when the lower
tail of this distribution is above �c.

During Stage II, the pattern is quiescent and �̄ rises exponentially, as explained
above. Simultaneously, the degree of order of the pattern increases. After a su�-
ciently long solidification time, the growth pattern becomes organized in hexagon
domains close to either of two particular orientations, namely, the H-orientation,
which has a nearest-neighbor direction parallel to the sample walls, and the V-
orientation, which has a nearest-neighbor direction perpendicular to the sample
walls (Fig. 2). The formation process of such structures will not be considered
here. We simply note that they are certainly linked to wall and thermal-bias ef-
fects, as are also the structures perpendicular to samples walls in lamellar eutectics
[10]. Near the end of Stage II, the hexagon domains were about 10� in size and
were separated from each other by almost ideally thin walls. The hexagons were
then substantially elongated (by about 20%) in the y direction. This is the highest
degree of order that was observed during this study.

Stage III corresponds to the gradual increase of the rod splitting frequency
from zero to the value (R�1V per rod) at which it balances out the stretching e↵ect
due to convex isotherms. Finally, Stage IV corresponds to a statistically steady,
indefinitely long, growth regime, in which the rod splitting frequency and the
mean spacing remain constant, or, more exactly, fluctuate about constant values.
In fact, during Stage IV, the whole histogram of local spacings averaged on rela-
tively short time scales and, in particular, its mean value < ⇤̄ > are constant and
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history-independent (Fig. 4). Experiments performed at di↵erent solidification
rates yielded < ⇤̄ >= 1.03 ± 0.04, indicating that < ⇤̄ > obeys the � ⇠ V�1/2

scaling law. Finally, we note that, during Stages III and IV, the growth pattern re-
tains a structure in V- and H- domains in spite of the recurring rod-splitting events.
However, the size of the domains is smaller and the domain walls are more di↵use
than in Stage II. Examples are given below.

4. The rod splitting instability

The solidification rate programs we used during this study are sketched in Fig.
3b. After a long transient in a quiescent state at constant V , we observed rod split-
ting events to occur either inside hexagon domains or in domain walls. Voronoi
analyses of intra-domain rod splitting processes are shown in Figure 5. The most
noteworthy facts are as follows. We noted no important di↵erence in rod splitting
processes between V- and H-domains. In both cases, the rod splitting events oc-
curred in quick succession at neighboring sites, which suggests the existence of
a cooperative mechanism (cascade) with a propagation rate on the same order of
magnitude as V . The value of ⇤ when the splitting occurred was of 1.15±0.02
and the deformation of the hexagons in the y direction was of about 25%. The
direction of splitting (i.e. the direction of the vector between the two daugh-
ter branches resulting from the splitting of a rod) was that of the most elongated
nearest-neighbor direction. After the passage of a rod splitting cascade, the hexag-
onal ordering of the domains was restored at a smaller spacing (⇡1.11). To sum
up, the intra-domain rod splitting process is the closest approximation we could
observe to an instability in a perfect hexagonal rodlike pattern. The observations
suggest that a hexagonal rodlike pattern, when subjected to unidirectional defor-
mation, becomes unstable against rod splitting for a deformation slightly less than
25%, or, in terms of local spacing, at ⇤hd

s (hd: hexagon domain) slightly smaller
than 1.15.

Rod splitting processes located in domain walls are shown in Figure 6. The
most characteristic feature of such processes is that they only a↵ected rods with
particularly large ⇤-values. These rods were always located inside domain walls
and were mostly, but not exclusively, represented by heptacoordinated cells in the
Voronoi constructions. In the examples under consideration, the average spacing
inside the hexagon domains was of about 1.05, and was thus clearly smaller than
⇤hd

s , whereas the local spacing of the rods that were about to split was substantially
larger than 1.1 (see below). It should also be noted that the sequencing of splitting
events did not suggest that a cooperative mechanism was at play. In other words,
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the di↵erent rod splitting events seemed to occur independently from each other,
supporting the view of a strictly localized mode of splitting. This mode of splitting
was largely predominant in Stage IV. Broadly speaking, its localized character
explains the persistence of a multidomain structure with a small grain-size and
di↵use walls during this stage.

Figure 7a shows the time evolution of the local spacing of a rod during a
splitting process. The measured data clearly deviated from a ⇤(t) = ⇤oet/⌧ law
after a time point at which ⇤ ⇡ 1.14. Thus ⇤s was smaller or equal to that
value. No theory of morphological instabilities in disordered hexagonal patterns
being available, we fitted various elementary models of instability processes to the
data points in order to obtain a lower bound for ⇤s. In brief, we concluded that
⇤s = 1.2 ± 0.1.

During the transients leading up to the rod splitting events, we observed a
gradual ovalization of the optical images of the rods, which was undoubtedly due
to an elongation of the DC rods that were about to split (Figs. 6b and 7b). This
rod elongation process coincided in time with the transitory deviation of the local
spacing from a et/⌧ law, and stopped immediately after the splitting had occurred
and is therefore clearly part of the instability process itself. It has no obvious link
with the stationary rod elongations that exist in stable non-equilateral hexagonal
patterns [18].

5. The rod elimination instability

The initial condition �̄o < �c was implemented by applying a downward V-
jump (See Section 3). Rod elimination started at a fast rate almost immediately
after the V-jump and led to fully disordered growth patterns through a process
that could not be resolved with our method of observation. Observable isolated
rod elimination events continued to occur in this disordered state for some time
(Fig. 8). These events were not accompanied by any detectable rearrangement of
the pattern beyond the nearest neighbors of the eliminated rod. In particular, we
did not observe any analogue of the phase-di↵usion dynamics that is, in theory,
the precursor to rod elimination in regular hexagon patterns [19]. Figure 9 shows
a ⇤̄(t)-curve measured after a downward V- jump together with the best-fit expo-
nential curve to the data points of Stage II. The spacing value ⇤̄c (0.78 ± 0.03, in
this example) at the time when the data points stop to deviate significantly from
the exponential curve gives us a reasonable (over)estimate of the average local
value of the rod elimination threshold spacing in disordered states.

7



Figure 10 displays ⇤̄c-values measured at di↵erent values of V . It is striking
that ⇤̄c, contrary to ⇤s, does not follow the � ⇠ V�1/2 scaling law, but decreases
rapidly as V decreases. A similar e↵ect was recently demonstrated, both exper-
imentally and numerically, for lamellar eutectic patterns [20, 21] and was called
”overstability” in reference to the fact that ⇤c = 1 within the usual normal-growth
approximation [22]. A complete theory of the overstability e↵ect is still lacking,
but it was argued that ⇤c should obey the following semi-empirical formula:

1 � 1
⇤2

c
+ B

G⇤c

KrV
= 0 , (2)

where G is the thermal gradient, Kr is a material constant and B is an adjustable
constant on the order of 0.1. In near-eutectic SCN-DC, Kr = 0.028Ksµm�2

[12]. Least-squares fitting of Eq. (2) onto experimental and numerical data for
various lamellar eutectic alloys yielded values of B ranging from 0.067 to 0.15
[21, 12, 23]. As shown in Fig. 10, Eq. (2) with B = 0.075 ± 0.03 (including
the uncertainties on the values of G and Kr) fits the experimental data for the rod
elimination threshold reasonably well. This value of B falls in the range of values
found for lamellar patterns, indicating that the overstability e↵ect has the same
physical origin in disordered rodlike patterns as in regular lamellar eutectic pat-
terns. In other words, the overstability e↵ect seems to be essentially insensitive to
the geometrical particulars of the patterns. It is therefore reasonable to argue that
the results shown in Fig. 10 should apply, at least semi-quantitatively, to regular
rodlike patterns as well.

6. Oscillations of disordered rodlike patterns

Two kinds of spatially coherent modes of oscillation have recently been re-
ported in hexagonal patterns. One was a ”sublattice” (or period-tripling) oscilla-
tion, found in hexagonal cellular solidification patterns of dilute alloys [24, 25];
the other was a ”row” oscillation, occurring in a hexagonal liquid column array
[26]. A variety of other coherent modes of oscillation are in theory possible in
hexagonal patterns, but have not yet been observed experimental or numerically
[27]. We looked for, but did not find any spatially coherent mode of oscillation
in rodlike patterns during this study. There are several possible reasons for this,
among which an insu�cient size of the hexagon domains in our system. Sur-
prisingly, however, we observed a spatially incoherent mode of oscillation which
lasted for the duration of Stage IV in two independent experiments performed at
V = 0.018µms�1, which was the lowest V-value we used. The two experiments
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gave similar results. We limit ourselves here to a brief characterization of this
mode of oscillation.

A snapshot and a local space-time diagram of a disordered oscillatory rodlike
pattern are shown in Fig. 11. It can be seen that the oscillation manifested itself
mostly through an essentially periodic, although somewhat irregular, variation in
brightness of the image of each DC rod. A closer analysis showed that this was ac-
companied by a small-amplitude periodic displacement of the images, indicating
that the variation in brightness was in fact mostly due to a variation in the angle
with z of the rods. A rod-by-rod Fourier analysis of the oscillation revealed that
the time period T varied slightly from rod to rod. It ranged from 19 to 23.5min,
and was thus close to the value of < �̄ > /V (⇡ 22min). This is most probably
meaningful given that the time period of the 1�O oscillations of lamellar eutec-
tic patterns obeys a T ⇠ �/V scaling law (See Fig. 30 of Ref. [6]). There was
no obvious spatial correlation between the di↵erences in period, phase or ampli-
tude of the oscillations of the di↵erent rods. There has been no previous report
of phenomena related to these spatially incoherent oscillations, as far as we know,
except perhaps for the transient oscillation localized on penta-hepta pairs that was
noted by Pirat and Gil in imperfect hexagonal liquid column array [26].

7. Conclusion

The main conclusions of this study are summed up in Fig. 12. First, the
threshold spacing for rod splitting obeys a � ⇠ V�1/2 scaling law and is clearly
above the Jackson-Hunt scaling length (which corresponds to ⇤ = 1). Second, the
threshold spacing for rod elimination exhibits a large deviation from the � ⇠ V�1/2

scaling law at low V (overstability) in conformity with Eq. (2). The best-fit value
of the empirical constant appearing in this equation (B = 0.075) is comparable
to those previously found in lamellar eutectic patterns. Third, the steady-state
value of the mean spacing during the last stage of directional solidification with
convex isotherms is significantly smaller than �s. This is consistent with the fact
that, in this stage, rod splitting is localized in domain walls and, more precisely,
only a↵ects those rods, which have a much larger local spacing than average.
Fourth, fully disordered rodlike patterns exhibit, under conditions which remain
to be clarified, a spatially incoherent mode of oscillation, whose time period T
probably obeys a T ⇠ �/V scaling law.

It should be kept in mind that these results were established in multidomain
rodlike eutectic patterns, for which no theory of morphological instabilities is
available yet. As mentioned above, there are reasons to believe that the thresh-
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old spacings for rod splitting and rod elimination in perfect hexagonal rodlike
patterns are not very di↵erent from those presented here, but this is not certain.
It now seems possible, and would indeed be very interesting, to study this ques-
tion, and, more generally, explore the dynamics of multidomain rodlike patterns,
by phase-field simulations [18]. Future experimental studies should undertake to
grow single-domain rodlike eutectic patterns using thicker samples and appropri-
ate solidification rate programs [13, 28, 29].
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List of figure captions

Figure 1: Top view of a rodlike eutectic pattern during directional solidification of a near-eutectic
SCN-DC alloy. V = 0.035µms�1. The bright spots are the optical images of the DC rods. The
upper and lower edges of the field of view correspond to the inner faces of the crucible. Vertical
dimension of the snapshot: 400 µm. Insert: Schematic 3D drawing.

Figure 2: Schematic Voronoi representation of a multidomain rodlike eutectic pattern. H and V
refer to the orientations of the hexagon domains. (See the text).

Figure 3: (a) Definition of the successive stages of a long-duration solidification run at constant
V . �̄: mean spacing. �c: rod elimination threshold. �s: rod splitting threshold. Dash line:
�̄(t) = �̄oet/⌧. (b) Solidification rate programs for the study the rod splitting (1) and rod elimination
(2) instabilities. Hatched area: range without rod splitting or elimination.
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Figure 4: Histogram of local spacings averaged over a short period of time (⇡ 0.02⌧) during the
last stage of a long-duration solidification run [13, 17]. < ⇤̄ >: mean value. ⇤s: rod splitting
threshold (this study).

Figure 5: Intra-domain rod splitting processes. From left to right: Voronoi diagrams of two mi-
crographs taken immediately before and after the process, respectively. The rod splitting events
have been labeled alphabetically in chronological order. (a) V-domain. V = 0.11µms�1. Time
interval between snapshots: 2min. Horizontal dimension of a snapshot: 55µm. (b) H-domain. V
= 0.053µms�1. Time interval between snapshots: 98min. Horizontal dimension of a snapshot:
140µm.

Figure 6: Rod splitting process located in domain walls. V = 0.035µms�1. (a) Same representation
as in Fig. 5. Time interval between snapshots: 66min. Horizontal dimension of a snapshot:
150µm. (b) Successive snapshots of a single rod splitting process. From left to right: t = 0, 14, 21,
28min. Horizontal dimension of a snapshot: 65µm.

Figure 7: (a) Time evolution of the local spacing of a DC rod during a rod splitting process. V
= 0.035µms�1. Symbols: measured values. Continuous line: ⇤ = ⇤oet/⌧ (⇤o = 1.096; ⌧ =
2.4 ⇥ 103min). ⇤s: Largest possible value for the rod splitting threshold. (b) Time evolution of
the ovalization (aspect ratio minus 1) of the optical image of the DC rod. The nonzero (⇡ 0.5)
baseline is due a residual misalignment of the optical system.

Figure 8: Successive snapshots of an isolated rod elimination event following a V-jump from 0.042
to 0.028µms�1. From left to right: t = 0, 50, 100min. Horizontal dimension of a snapshot: 50µm.

Figure 9: Mean spacing as a function of time after a V-jump from 0.071 to 0.042 µms�1 applied at
t = 0. Symbols: measured values. Continuous line: ⇤ = ⇤oet/⌧ (⇤o = 0.768, ⌧ = 3.3 ⇥ 103min).
⇤̄c: rod elimination threshold.
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Figure 10: Rod elimination threshold spacing as a function of solidification rate. Symbols: mea-
sured values. Continuous line: Eq. (2) with B = 0.075.

Figure 11: (a) Snapshot of a disordered oscillating rodlike pattern. V = 0.018µms�1. Horizontal
dimension: 440µ. (b) Time evolution of the intensity distribution along a 180 µm-long, 1pixel-
thick area. The rods that are apparently created (eliminated) are in fact entering (leaving) the
selected area.

Figure 12: Morphology diagram of multidomain rodlike eutectic patterns in near-eutectic SCN-
DC alloys. Hatched area: range without rod creation or elimination. Square symbols: oscillatory
patterns. < ⇤̄ >: mean spacing at long times in the presence of convex isotherms.
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