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Due to their strong surface energy anisotropy, subboundaries generally do not intersect solid-melt interfaces at right angles. As a consequence, subboundary surface grooves move laterally during solidification, and thereby interact, in alloys, with the solute concentration gradients created in the liquid. We discuss the consequences of this e↵ect during thin directional solidification at speeds (V ) lower than the cellular-instability threshold Vc of the system. We show that the lateral drift of the subboundary grooves slows down (or equivalently the tilt angle of the subboundaries relative to the growth direction decreases) as V increases and vanishes as V approaches Vc.

Résumé

La trajectoire des sillons de sous-joints de grains en solidification directionnelle d'alliages dilués. Du fait de leur forte anisotropie capillaire, les sous-joints de grains ne coupent généralement pas les interfaces solide-liquide à angle droit. En consquence, les sillons de surface des sous-joints se déplacent latéralement en cours de solidification, et ainsi, dans les alliages, entrent en interaction avec les gradients de concentration de soluté créés dans le liquide. Nous discutons les conséquences de cet e↵et en solidification directionnelle d 0 échantillons minces à des vitesses de solidification (V ) inférieures au seuil d 0 instabilité cellulaire Vc du système. Nous montrons que la dérive latérale des sillons des sous-joints se ralentit (ou, ce qui revient au même, l'angle d'inclinaison des sous-joints par rapport à la direction de croissance diminue) lorsque V augmente et s'annule lorsque V atteint Vc.

Introduction

In directional solidification, i.e., when solidification is performed at an imposed speed V under a fixed unidirectional thermal gradient, the solid-melt interface of a non-faceted dilute binary alloy undergoes a morphological transition at a threshold value Vc of V : the solid-melt interface is planar (it follows an isotherm) at V < Vc, and exhibits a cellular (periodically modulated) shape at V > Vc. The physical factors at play are the solute concentration gradient ahead of the interface, the applied thermal gradient G and the solid-liquid surface energy sl . The destabilizing e↵ect exerted on the interface by the solute concentration gradient increases as V increases and exceeds the stabilizing e↵ects of the other two factors when V exceeds Vc [START_REF] Tiller | The e↵ect of growth conditions upon the solidification of a binary alloy[END_REF][START_REF] Mullins | Stability of a planar interface during solidification of a dilute binary alloy[END_REF]. Coriell and Sekerka studied the influence, on this morphological transition, of isotropic grain boundaries intersecting the solid-melt interface using linearized equations for the solidification. They showed that, after a transient, grain boundary surface grooves take on a steady profile in the form of a damped sinusoid, the amplitude of which increases as V increases and diverges as V approaches Vc [START_REF] Coriell | Morphological stability near a grain boundary groove in a solid-liquid interface during solidification of a binary alloy[END_REF].

At the melting points of alloys, high-angle grain boundaries (GBs) generally are wetted by a thin liquid film and have little surface energy anisotropy. By contrast, low-angle grain boundaries, or subboundaries (SBs) remain dry and keep, near the solid-melt interface, the high surface energy anisotropy that they have at lower temperature [START_REF] Bottin-Rousseau | Formation of grain subboundaries during directional solidification below the cellular-bifurcation threshold[END_REF]. Therefore, when local equilibrium is reached, SBs do not intersect the solid-melt interfaces at right angle. We study here some consequences of this fact on the behavior of SBs during the solidification of dilute alloys. Let us first consider a thin (two-dimensional) directional-solidification system at rest (V = 0). We take the x axis parallel to the isotherms, the z axis parallel to the growth direction, the origin of x at the abscissa of the surface-SB junction J and the origin of z at the isotherm that corresponds to the unperturbed planar solid-liquid interface (Fig. 1). We call the tilt angle of the SB with respect to z, the surface energy of the SB and sl the surface energy of the solid-liquid interface. We assume the orientation dependence of to be strong and that of sl to be negligible. We denote the entities related to the right-hand (x 0) side and the left-hand (x  0) side of the system by the indices "R" and "L", respectively. The condition of local equilibrium at J is given by the Young-Herring equation

sl (tL + tR) + = 0 . (1) 
In this equation, tL and tR are the unit tangent vectors to the R and L flanks of the groove, respectively, and is the surface tension force or " vector" of the SB defined by

= t + d d n , (2) 
where t and n are the unit vectors tangent and normal to the SB, respectively [START_REF] Ho↵mann | A vector thermodynamics for anisotropic surfaces[END_REF]. At rest, the solute concentration in the liquid is uniform. The condition that the surface is continuous in J imposes that the shape of the groove has mirror symmetry with respect to the z axis. Thus takes a value a (where "a" stands for "at rest") such that is parallel to z. This angle generally is a large one owing to the strong surface energy anisotropy of SBs. Incidentally, it should be stressed that the profile of the surface groove in this "symmetrical configuration" is given by the standard formulae for a meniscus [START_REF] Landau | Statistical physics[END_REF]: the anisotropy of the SB does not come into play, except in so far as it alters the Young angle of the surface at J. During solidification of a pure substance, would remain equal to a independently of V . In this note, we show that, during directional solidification of a dilute alloy, deviates from a, breaking the symmetry of the groove. Most importantly, tends to zero as V approaches Vc irrespective of the strength of the anisotropy of the SB.
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. Symmetrical surface groove of a subboundary (SB) with a strong surface energy anisotropy at rest in a unidirectional thermal gradient. For the symbols, see the text.

The cellular instability

The most basic model of thin directional solidification neglects the di↵usion of solute in the solid, the rejection of latent heat by the growing solid and the kinetic di↵erence in thermodynamic potentials between liquid and solid at the interface. The temperature distribution is assumed to be ⇥ = ⇥ liq + Gz (⇥ liq : liquidus temperature). The "thermal length" l th = ⇥/D ( ⇥: solid-liquid thermal gap; D: di↵usion coe cient of the solute in the liquid) is taken as a unit of length and l 2 th /D as a unit of time. V and sl are represented by the dimensionless control parameters µ = l th V /D and do = l 1 th ⇥ 1 S 1 v sl ( Sv: entropy of fusion per unit volume), respectively. The unknowns are the profile of the solid-melt interface, denoted by z = ⇣(x), and a reduced concentration field u(x, z) defined such that u(x, z = 0) = 1 and u(x, z = +1) = 0 in the planar steady state of the system. The equations for the solidification in the absence of grain boundary are three in number. They include the di↵usion equation at z > ⇣ (@xx + @zz + µ@z) u = @tu ,

and two equations at z = ⇣, namely, the mass conservation equation

ru.n = [K + (1 K) u] (µ+ @t⇣)z.n , (4) 
and the Gibbs-Thomson equation

⇣ = 1 u + do , ( 5 
)
where  is the curvature of the interface and K is the partition coe cient. These equations admit a planar stationary solution denoted by a superscript "0", which reads 8 <

:

⇣ 0 = 0 , u 0 = exp ( µz) . (6) 
The linear stability analysis of this solution was famously performed by Mullins and Sekerka [START_REF] Mullins | Stability of a planar interface during solidification of a dilute binary alloy[END_REF] and was studied in greater detail by several authors afterwards [START_REF] Wollkind | A nonlinear stability analysis of the freezing of a dilute binary alloy[END_REF][START_REF] Caroli | On the emergence of one-dimensional front instabilities in directional solidification and fusion of binary mixtures[END_REF]. We give an outline of this analysis. A perturbed solution of the form ⇣ 0 + Re ( ⇣), u 0 + Re ( u), where

:

⇣ = Z exp (ikx + !t) , u = U exp ( qz) exp (ikx + !t) , (7) 
is plugged into the equations for the solidification. The constant Z is the amplitude of the surface deformation and U is the amplitude of the perturbation to the concentration field. As the system under consideration is infinite in the x and z directions, the wavevector k must be real, entailing that ! and q are real, and q must be positive. We may assume k to be positive without loss of generality. Eq. ( 3) leads to

! = q 2 µq + k 2 . ( 8 
)
After linearization with respect to the perturbation, Eqs. ( 4) and ( 5) lead to a homogeneous linear system for Z and U , which reads 8 < :

`! + Kµ 2 ´Z [q (1 K) µ] U = 0 `µ 1 dok 2 ´Z U = 0 . (9) 
The characteristic equation for System ( 9) is

! = [q (1 K) µ] `µ 1 dok 2 ´ Kµ 2 . ( 10 
)
The concentration-to-deformation amplitude ratio is given by

M = U/Z = [q (1 K) µ] 1 `! + Kµ 2 ´. ( 11 
)
The problem is now solved, at least implicitly. An elementary calculation leads from Eqs. ( 8) and ( 10) to an algebraic equations for q as a function of k (more precisely, k 2 ) and µ, and then to the function !(k, µ). The planar solution is stable against those modes, for which ! < 0 and unstable against those, for which ! > 0. The neutral (! = 0) modes, denoted by a subscript "n", are solutions of the system of equations 8 < :

q 2 n µqn + k 2 n = 0 , [qn (1 K) µ] `µ 1 dok 2 n ´ Kµ 2 = 0 . (12) 
The calculations show that neutral modes are represented by a closed curve in the (µ, k) plane. Planar solutions are stable against any perturbation outside that "neutral curve", and unstable against some set of perturbations inside it. Let (µc, kc) be the lower critical point of the neutral curve. µc is the cellular-instability threshold of the system, and kc the wavevector of the critical mode. When do << 1, as is generally the case in the experiments,

kc ⇡ (K/2) 1/3 d 1/3 o and µc ⇡ 1 + 3 (K/2) 2/3 d 1/3
o . The speed at which µ = 1 is called the "constitutional supercooling" speed. It is the speed above which the solute concentration gradient overcomes the stabilizing e↵ects of G, but not yet those of sl .

Isotropic grain boundary surface grooves

We wish to calculate ⇣(x) and u(x, z) below the cellular threshold for a stationary solid-melt interface intersected by a grain boundary at x = 0 (Fig. 2). As the emergence of the grain boundary generates a slope discontinuity of the interface, ⇣(x) and u(x, z) must be sought in the form of piecewise-defined (R or L) functions. Let us first consider an isotropic GB. This problem was dealt with by Coriell and Sekerka [START_REF] Coriell | Morphological stability near a grain boundary groove in a solid-liquid interface during solidification of a binary alloy[END_REF], as already mentioned, but we use here a more straightforward approach consisting of replacing the equations for the solidification by the linearized Eqs. ( 8) to ( 12) from the outset. Naturally, the exact solution could be found numerically using, for instance, a boundary-integral method [START_REF] Langer | Studies in the theory of interfacial stability[END_REF]. However, our approach is likely to yield a good approximation of the exact solution in the limit of small p, i.e. for shallow surface grooves. Moreover, it can be used as a method for constructing trial functions for the numerical calculations. When µ < µc, the perturbation due to the GB grove must vanish at large x. Therefore, the wavevector in (7) must be complex, as well as the amplitudes. To be more explicit, the R-side of the interface profile should be written as

Re ( ⇣R) = exp ( kix) [Zr cos (krx) Zi sin (kix)] (13) 
with ki > 0, where the subscripts "r" and "i" designate real and imaginary parts, respectively. On the L-side, we have ⇣L(x) = ⇣R( x), or equivalently, kL = kR. The calculation of ⇣(x) and u(x, z) at fixed µ can be performed in two stages. Firstly, qn and kn are calculated using Eqs. [START_REF] Akamatsu | A theory of thin lamellar eutectic growth with anisotropic interphase boundaries[END_REF]. Note that a solution with ki > 0 always exists since only k 2 appears in the equations. Secondly, the amplitudes Zn and Un are calculated using Eq. ( 11) and the boundary conditions at x = 0. Figure 3 shows kn(µ) calculated with values of K and do corresponding to the model transparent alloy CBr4-C2Cl6 at a concentration of 0.15mol%C2Cl6 under a thermal gradient of 10 Kmm 1 [START_REF] Mergy | Quantitative determination of the physical parameters relevant to the thin-film directional solidification of the CBr4-Cr2Clr6 eutectic alloy[END_REF].

As could be expected, kn equals the (real) critical wavevector kc at µ = µc, and tends to ka = id 1/2 o (i.e. the purely imaginary wavevector of surface grooves at rest) as µ ! 0. The evolution of Z and M with µ also deserves attention (right panel of Fig. 3). Note, in particular, that Re(Mn) and Im(Mn) increase very slowly as µ varies from 0 to a value of about 1. Above this value, Re(Mn) increases almost linearly while Im(Mn) goes through a maximum to fall back to zero as µ ! µc. This crossover is linked to the crossing of the constitutional-supercooling threshold. The boundary conditions at x = 0+ include the Young-Herring condition, which reads

kiZr krZi = p , (14) 
or, in a compact form, Im (knZn) = p , (15) where p (which is independent of µ and positive) is derived from Eq. ( 1) with = z. Other equations are provided by the continuity conditions. In fact, as the continuity of ⇣ and u is already assured by symmetry, it only remains to meet the condition of continuity on @u/@x, which reads Im (knMnZn) = 0 .

(16)

The solution of the system formed by Eqs. ( 15) and ( 16) is

Zn = p M ⇤ n knMni , (17) 
where M ⇤ n is the complex conjugate of Mn. By expanding Eqs. [START_REF] Akamatsu | A theory of thin lamellar eutectic growth with anisotropic interphase boundaries[END_REF] in powers of µ = µ µc, it can be shown that ki ⇠ | µ| 1/2 and Mi ⇠ | µ| 1/2 while Mn tends to a real value as µ ! 0. Thus Eq. ( 17) predicts that Zr diverges like | µ| 1/2 as µ ! µc. Simultaneously, kiZr and krZi both tend to constant values, allowing Eq. ( 14) to be fulfilled until µ = µc. This means that, if the existence of a GB groove greatly a↵ects the nature of the transient leading to the cellular instability, it leaves unchanged the value of the instability threshold, as previously noted by Coriell and Sekerka [START_REF] Coriell | Morphological stability near a grain boundary groove in a solid-liquid interface during solidification of a binary alloy[END_REF].

Anisotropic subboundary surface grooves

When the grain boundary that intersects the interface has a strong surface energy anisotropy, the mirror symmetry between the two sides of the surface groove is broken, and the groove travels along the surface (right panel of Fig. 2). We must therefore look for solutions to the equations for the solidification, which travel as a whole at a constant velocity V T , where T = tan , along the x axis. By making the change of variable x ! x µT t in Eq. ( 7), it can be seen that travelling modes (designated by a subscript "t" if useful) correspond to ! = ikµT . Plotting this relation into Eqs. ( 8) and ( 10) leads to 8 < :

q 2 t µqt + k 2 t = iktµT , [qt (1 K) µ] `µ 1 dok 2 t ´ Kµ 2 = iktµT, (18) 
which replaces the neutral-mode equations [START_REF] Akamatsu | A theory of thin lamellar eutectic growth with anisotropic interphase boundaries[END_REF]. The rhs terms break the mirror symmetry and entail that ktL 6 = ktR and qtL 6 = qtR. The calculations show that a R L pair of solutions with kRi > 0 and kLi < 0 exists at any value of µ below µc for su ciently low values of T . Once kD and kL are known, the amplitudes can be determined using the Young-Herring equation and the continuity conditions at x = 0, as explained above. However, Ut is related to Zt by Ut = MtZt, where Mt = [qt (1 K) µ] 1 `iµktT + Kµ 2 ´. There are thus only four independent unknowns, for instance, the real and imaginary parts of ZR and ZL. On the other hand, the Young-Herring equation now yields two independent equations (for the R-and L-flanks of the groove, respectively), which, added to three continuity conditions, bring to five the number of conditions at x = 0. Therefore, the problem has no solution except perhaps for a particular value of T , which, if it exists, depends on µ. This is the central conclusion of this report. At this point, it should be noted that, as qR 6 = qL, the continuity between uR and uL can only be ensured at z = ⇣, but not at z > ⇣ along the x = 0 line. This imperfection is inherent in the linearized theory. While its quantitative consequences are unknown, its is clear that it cannot a↵ect the fact that the lateral drift velocity is uniquely determined at given control parameters, which is a general property symmetry-broken one-dimensional out-of-equilibrium patterns [START_REF] Coullet | Parity-breaking transitions of modulated patterns in hydrodynamics systems[END_REF][START_REF] Akamatsu | A theory of thin lamellar eutectic growth with anisotropic interphase boundaries[END_REF][START_REF] Akamatsu | Lamellar eutectic growth with anisotropic interphase boundaries: Experimental study using the rotating directional solidification methods[END_REF].

We shall now proceed with the calculation of T as a function of µ. The five above-mentioned conditions at x = 0 are:

Im (kRZR) = pR , (19) 
Im (kLZL) = pL , (20) 
Re (ZL) = Re (ZR) , (21) 
Im (MRZR) = Im (MLZL) , (22) 
Im (kRMRZR) = Im (kLMLZL) . (23) 
As mentioned, they represent a system of five linear equations for the four unknowns ZRr, ZRi, ZLr and ZLi.

Elementary but lengthy calculations show that the condition for this system to have a solution can be written in the form

Fsym (pR + pL) + Fanti (pR pL) = 0 , (24) 
where

Fsym = `|kR| 2 + |kL| 2 2kDikLi ´MDiMLi `|MR| 2 + |MR| 2 2MRrMLr ´kDrkLr , (25) 
and

Fanti = `|kR| 2 |kL| 2 ´MDiMLi + `|MR| 2 |MR| 2 ´kDrkLr + 2 (kDrMDrkLiMLi kLrMLrkRiMRi) . (26) 
The functions Fsym and Fanti are symmetrical and antisymmetrical with respect to permutations of R and L, respectively, hence their names. The quantities kR, kL, MR and ML are functions of T and µ via System (18) while pR and pL are functions of T via Eq. ( 1). Therefore Eq. ( 24) can be viewed as an equation for T at given µ. This equation can be shown to have a single solution provided that the SB has a moderate, non-singular (without facet or unstable orientation range) anisotropy. A calculated T (µ) curve is shown in Figure 4. The anisotropy function taken for the calculation was / sl = 1 0.5 ⇥ 10 2 cos (4 ⇡/4) . With this anisotropy, pa ⇡ 0.05 and Ta ⇡ a ⇡ 1.4 ⇥ 10 2 rad. The values of K and do were the same as in Fig. 3. It can be seen that, as µ increases from 0 to µc, T first remains close to Ta over a large range of µ, and then falls rapidly to zero. Most of the decrease occurs between µ = 1 and µ = µc. The right panel of Fig. 4 illustrates the amplification and shift of u linked to the lateral propagation of the SB groove.

Knowing that T ! 0 as µ ! µc, we can study in more detail the behavior of the T (µ) function in this limit. By expanding Eqs. ( 18), ( 25) and (26) in powers of T it can be shown that Fsym ⇡ 4f anti T , where

f (0) sym = M 2 ni |kn| 2 , (27) 
and

f (1) anti = knrRe `m0 k ⇤ n M ⇤ n ´+ MniIm `0 k ⇤ n M ⇤ n ´. ( 28 
)
where m 0 and  0 depend on µ = µ µc, but not on T . At small T , Eq. ( 1) can be written in the form pR(T ) ⇡ pR0 + p 0 R T and pL(T ) ⇡ |pL0| + p 0 L T . Plugging these expressions into Eq. ( 24), we obtain 

T ⇡ f (0) sym (pR0 |pL0|) f (1) anti (pR0 |pL0|) + f (0) sym (p 0 R + p 0 L ) . ( 29 
anti ⇠ | µ| 1/2 . Thus, we can finally rewrite Eq. ( 29) in the form

T ⇡ A pR0 |pL0| pR0 + |pL0| (µc µ) 3/2 , ( 30 
)
where A only depends on K and do. In the limit of small do, A reads

A ⇡ 2 4/3 3 1/2 K 1/2 d 1/6 o ( 31 
)
and generally is of the order of magnitude of unity. It should be noted that the ratio (pR0 |pL0|) / (pR0 + |pL0|) may be termed "strength of anisotropy" of the SB near = 0. Eq. 30 indicates that ! 0 as µ ! µc does not depend on the strength of anisotropy of the SB. Finally, it should be reminded that the steady state of a SB-free interface in the limit of small µ is di↵erent from its state at rest. Therefore the finding (displayed in Fig. 4) that, in the presence of a SB, T ! Ta as µ ! 0 is not quite obvious and requires justification. We have seen that Mnr ! 0, Mni ! 0, knr ! 0 and kni ! d 1/2 o as µ ! 0. The fact that T does not tend to zero imposes that mRi ! T and mLi ! T . An elementary calculations shows that, as a consequence, Fsym contains a term that does not tend to zero as µ ! 0 (namely, the term 4k 2 ni mDimLi ! 4d 1 o T 2 ) , while Fanti has none. Therefore, according to Eq. ( 24), the SB must approach an orientation such that pR + pL = 0 as µ ! 0. In other words, this proves that, at low V , the tilt angle of the SB is close to the symmetrical configuration corresponding to T = Ta.

Conclusion

The theory presented in this study predicts that, during the directional solidification of a dilute alloy, the tilt angle of a SB should vary from a finite value (corresponding to the symmetrical configuration of its surface grooves and therefore depending on the strength of the anisotropy of the SB) to zero as the solidification speed varies from 0 to the cellular-instability threshold of the system. More specifically, it has been established that most of the decrease in the tilt angle takes place in the interval between the constitutional-supercooling velocity and Vc, indicating that the process is mostly linked to the overcoming of the surface energy barrier by the concentration gradients ahead of the interface. The experimental data about this phenomenon are not very numerous although the question of the interaction between solute and SBs can be traced back to the origins of modern solidification science [START_REF] Atwater | The influence of impurities on the macromosaic structures of tin and lead[END_REF]. It seems to be established that the tilt angle of the SBs is essentially V -independent at low V and that SBs run essentially parallel to the growth direction above the cellular-instability threshold [START_REF] Bottin-Rousseau | Formation of grain subboundaries during directional solidification below the cellular-bifurcation threshold[END_REF]. However, little is known about the transition between these two extreme regimes from the experimental standpoint. We conclude with a remark about SBs in the cellular regime. Several authors have noted that, on crossing the cellular-instability threshold, the SBs become attached to inter-cellular grooves and then run parallel to z, as mentioned. We wish to point out that those inter-cellular grooves, which contain a SB generally exhibit asymmetric comma-shaped profiles that contrast with the symmetrical profiles of perfect inter-cellular grooves. As explained in Fig. 5, this means that the angles between the SBs and their vectors are large, which clearly supports the basic presuppositions (strong capillary anisotropy of the SBs, local equilibrium at the junctions of the SBs with the solid-melt interface) of this work. 
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 2 Figure 2. Steady-state surface grooves during directional solidification. Left panel: isotropic grain boundary (GB). Right panel: anisotropic subboundary (SB). The groove is drifting towards the left. The deformation of the solid-melt interface has been strongly exaggerated.

Figure 3 .

 3 Figure 3. Subcritical (µ  µc) and supercritical (µ µc) neutral modes calculated with K = 0.75 and do=6.5⇥10 3 . Left panel: wavevector kn . Hatched area: instability range of the planar steady solution. Right panel: deformation amplitude Zn (top graph) and amplitude ratio Mn (bottom graph).
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 64 Figure 4. Left panel: Tilt angle of an anisotropic SB with respect to the direction of growth as a function of the solidification speed. For the values of the material parameters assumed in the calculation, see the text. Right panel: Profile of the surface (⇣) and perturbation to the solute distribution along the x axis ( u) at µ = 0.15. aniso: : same SB as in the left panel. iso: isotropic SB, everything else equal. The scales of the x and ⇣ axes are in a ratio of 2, 000 : 1 By expanding Eqs. (27) and (28) in powers of µ it can be shown that f (0) sym ⇠ | µ| and f

Figure 5 .

 5 Figure 5. Directional-solidification front in a shallow-cell regime (V slightly higher than Vc) with a SB attached to an intercellular groove. Sketch from Fig.4of Ref.[START_REF] Bottin-Rousseau | Formation of grain subboundaries during directional solidification below the cellular-bifurcation threshold[END_REF].
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