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Analyzing microtomography data with Python
and the scikit-image library

Emmanuelle Gouillart™, Juan Nunez—lglesias2 and Stéfan van der Walt3

Abstract

The exploration and processing of images is a vital
aspect of the scientific workflows of many X-ray
imaging modalities. Users require tools that
combine interactivity, versatility, and performance.
scikit-image is an open-source image
processing toolkit for the Python language that
supports a large variety of file formats and is
compatible with 2-D and 3-D images. The toolkit
exposes a simple programming interface, with
thematic modules grouping functions according to
their purpose, such as image restoration,
segmentation, and measurements. scikit-image
users benefit from a rich scientific Python
ecosystem that contains many powerful libraries for
tasks such as visualization or machine learning.
scikit-image combines a gentle learning curve,
versatile image processing capabilities, and the
scalable performance required for the
high-throughput analysis of X-ray imaging data.

Keywords: scikit-image; Python; image processing
library; 3-D image

Introduction

The acquisition time of synchrotron tomography im-
ages has decreased dramatically over the last decade,
from hours to seconds (Maire and Withers, 2014). New
modalities such as single-bunch imaging provide a time
resolution down to the nanosecond for radiography
(Rack et al., 2014). However, the time subsequently
spent in processing the images has not decreased as
much, so that the outcome of a successful synchrotron
imaging run often takes weeks or even months to be
transformed into scientific results.
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Transforming billions of pixels and voxels to a few
meaningful figures represents a tremendous data re-
duction. Often, the sequence of operations needed to
produce these data is not known beforehand, or might
be altered due to artifacts (Marone et al., 2010), or to
an unforeseen evolution of the sample. Image process-
ing necessarily involves trial and error phases to choose
the processing workflow. Therefore, image processing
tools need to offer at the same time enough flexibility
of use, a variety of algorithms, and efficient implemen-
tations to allow for fast iterations while adjusting the
workflow.

Several software applications and libraries are avail-
able to synchrotron users to process their images. Im-
ageJ (Abramoff et al., 2004; Schneider et al., 2012)
and its distribution Fiji (Schindelin et al., 2012) is a
popular general-purpose tool for 2-D and 3-D images,
thanks to its intuitive menus and graphical tools, and
the wealth of plugins contributed by a vivid commu-
nity (Schindelin et al., 2015). Software specialized in
analyzing synchrotron data are available as well, such
as XRDUA (De Nolf et al., 2014) for diffraction im-
ages obtained in powder diffraction analysis, or For
3-D images, commercial tools such as Avizo 3D soft-
ware (TM), or ToolIP/MAVIkit (Fraunhofer Institute
for Industrial Mathematics ITWM, 2016) are appreci-
ated for an intuitive graphical pipeline and advanced
3D visualization. Some synchrotrons have even devel-
oped their own tools for volume processing, such as
Pore3D (Brun et al., 2010) at the Elettra facility. Al-
ternatively, the use of a programming language gives
finer control, better reproducibility, and more com-
plex analysis possibilities, provided classical process-
ing algorithms can be called from libraries — thereby
limiting the complexity of the programming task and
the risk of bugs. Matlab (TM) and its image pro-
cessing toolbox are popular in the academic commu-
nity of computer vision and image processing. The
Python language is widely used in the scientific world
and in synchrotron facilities. As a general-purpose lan-
guage, Python is used in synchrotrons to control device
servers (Brookhaven National Lab, 2016; Coutinho, T\,
2016; Sugandhi et al., 2016), to access raw data of X-
ray detectors (Knudsen et al., 2013), to reconstruct
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tomography volumes from radiographs (Giirsoy et al.,
2014; Mirone et al., 2014), and in data processing pack-
ages for macromolecular cristallography (Adams et al.,
2010), azimuthal integration of diffraction data (Ash-
iotis et al., 2015), or fluorescence analysis (Solé et al.,
2007; V. Armando Sole, 2016).

scikit-image (Van der Walt et al., 2014) is a
general-purpose image processing library for the Python
language, and a component of the ecosystem of
Python scientific modules commonly known as Sci-
entific Python (Oliphant, 2007). Like the rest of the
ecosystem, scikit-image is released under a permis-
sive open-source license and is available free of charge.
Most of scikit-image is compatible with both 2-D
and 3-D images, so that it can be used for a large
number of imaging modalities, such as microscopy, ra-
diography or tomography. In this article, we explain
how scikit-image can be used for processing data
acquired in X-ray imaging experiments, with a focus
on microtomography 3-D images. This article does not
intend to be a pedagogical tutorial on scikit-image
for X-ray imaging, but rather to explain the rationale
behind the package, and provide various examples of
its capabilities.

Methods — Overview and first steps

In this section, we provide a short overview of the typi-
cal use patterns of scikit-image, illustrated by short
snippets of code. Since Python is a programming lan-
guage, the user interacts with data objects and images
through code, which is either entered and executed in
an interactive interpreter, or written in text files (so-
called scripts) that are executed.

Images are manipulated as numerical arrays, each
with a single, uniform data type. This common format
guarantees interoperability with other libraries and
straightforward access to and interpretation of com-
puter memory. The N-dimensional (2-D, 3-D, ...) nu-
merical array object is provided by the NumPy module
(Van Der Walt et al., 2011).

In image processing in Python, one of the first
tasks then is to generate NumPy arrays, which is of-
ten achieved by reading data from files. We read one
2-dimensional image from a file and display it as fol-
lows:

from skimage import io
io.imread(’figure_gallery .png’)
io.imshow (im)

im =

skimage is the name under which scikit-image is
imported in Python code. Note that functions (such
as imread that reads an image file, or imshow that
displays an image) are found in thematic submodules
of skimage, such as io for Input/Output.
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A stack of 2-D images, such as tomography slices
generated by a reconstruction algorithm, can be
opened as an image collection or a 3-D array:

>>> from skimage import io

>>> image_collection = io.imread_collection (' *.<>
tif )

>>> image_3d = io.concatenate(image_collection)
>>> print (image_3d.shape)

(800, 1024, 1024)

Raw data formats can be opened using the NumPy func-
tions fromfile (to load the array into memory) or
memmap (to keep the array on disk). The following code
creates an array from a raw image file of unsigned 16-
bit integers with a header of 1024 bytes

im = np.memmap( image.edf’, shape=(2048,

offset=1024, dtype=np.uint16)

2048) ,+

For every raw data specification, it is thus very
easy to write a reader using np.memmap (see for ex-
ample https://github.com/jni/python-redshirt).
hdf5 files are accessed using modules such as h5py,
pytables.

scikit-image has a simple Application Program-
ming Interface (API), based almost exclusively on
functions. Most functions take an image (i.e. a multi-
dimensional array) as input parameter:

>>> from skimage import filters
>>> im_gaussian = filters.gaussian(im)

Optional parameters can be passed as Python key-
word arguments, in addition to the image parameter.

>>> im_gaussian = filters.gaussian(im, sigma=3,<
mode="wrap ')

A few functions require several arrays to be passed,
such as the watershed segmentation algorithm that
takes as parameters the image to be segmented, and
an image of markers from which labels are propagated:

>>> from skimage import morphology

>>> labels = morphology.watershed(im, markers)

Therefore, the image processing workflow can be seen
as a directed graph (a richer structure than a linear
pipeline), where nodes are image-shaped arrays, and
edges are functions of scikit-image transforming the
arrays (see Fig. 1).

Most functions transparently handle 2-D, 3-D, or
even higher-dimensional images as arguments, so the
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Figure 1 scikit-image and the Scientific Python ecosystem. Images are opened from files as NumPy arrays. Functions of
scikit-image transform image arrays into other arrays with the same dimensions, or into arrays of numbers corresponding to
features of the image. The output of scikit-image functions can be passed to other Python modules relying on NumPy arrays, such as
SciPy or scikit-learn. Image-shaped arrays are transformed into visualizations with matplotlib (2D) or Mayavi (3D). A variety
of environments is available for code development and execution, from classical IDEs to Jupyter notebooks.

same functions can be used to process tomography,
microscopy, or natural images. The rest raise an error
when passed a 3-D argument:

>>> filters.
ValueError: The parameter
dimensional array

prewitt (im)

‘image ‘ must be a 2—<

However, the proportion of functions supporting 3D
images is always increasing, thanks to the many con-
tributors to the library.

While the majority of functions return processed im-
ages, returns can also be numerical value(s) such as
pixel coordinates of objects of interest or statistical
information about the image:

but also from the rich environment surrounding scien-
tific Python (Oliphant, 2007; Perez et al., 2011). Fig. 1
illustrates how several components of this ecosystem
combine into a sophisticated image processing work-
flow.

NumPy arrays are the cornerstone of the Scientific
Python ecosystem, and of scikit-image operations
in particular. Cropping or downsampling an image, or
retrieving pixels corresponding to a given label in a
segmentation are all NumPy “one-liners”. To illustrate
the compactness of NumPy code, consider modifying
pixel values below a threshold. This operation can be
written as

im[im < 0.5] =

>>> from skimage import exposure

>>> counts, bins = exposure.histogram(im)
>>> counts.shape

(256,)

The Python ecosystem
The benefits of scikit-image for image processing
come not only from the features of the package alone,

exploiting the ability to index arrays with boolean ar-
rays, also called masking. NumPy uses memory spar-
ingly and avoids making new copies of arrays whenever
possible, an important requirement when dealing with
the gigabyte-sized images of tomography. For example,
cropping a subvolume as follows does not create a copy
of the original array
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sub_volume = im[100:—100, 100:—100, 100:—100]

but instead refers to the correct memory offsets in the
original.

Interpreter and development environment. While
several interpreters are available to execute Python
instructions and scripts interactively, the most pop-
ular in the scientific world is IPython (Pérez and
Granger, 2007; Rossant, 2015). IPython is an advanced
interpreter, which integrates syntax highlighting, text
auto-completion, a debugger, introspection and profil-
ing methods, and online help. Several Integrated De-
velopment Environments (IDEs) come bundled with
IPython, together with other components such as a
text editor. Notable examples include Spyder (Fig. 2),
PyCharm, and Visual Studio Code.

The Jupyter notebook (Kluyver et al., 2016) is a
web application that grew out of the IPython project.
Jupyter notebooks provide an interactive development
environment within a web browser, where live code can
be enriched by explanatory text, equations and visu-
alizations (Fig. 3). Jupyter notebooks render directly
as webpages on GitHub, making them a straight-
forward tool to publish online a script and its out-
put. As of July 2016, more than 500,000 Jupyter
notebooks were posted on GitHub, demonstrating
their wide adoption by the community as workflow-
sharing tools (http://archive.ipython.org/media/
SciPy2016JupyterLab.pdf).

Visualization libraries. Visualizing images is an im-
portant component of the image processing work-
flow, used to inspect the final result and to adjust
the parameters of intermediate processing operations.
matplotlib (Hunter et al., 2007) is the most popular
2D plotting library of the Python ecosystem. It can be
used to visualize 2D data such as color or grayscale
images, and 1D data such as contour lines, outlines
of segmented regions, histograms of gray levels, etc.
Although matplotlib has simple 3D plotting capa-
bilities, we recommend using the mayavi module (Ra-
machandran and Varoquaux, 2011) for applications re-
quiring advanced 3D visualization, such as tomogra-
phy. mayavi is based on the VTK toolkit. It exposes a
simple APIT for visualizing data passed as numpy arrays.
For example, visualizing the surface of binary data can
be written as

# synthetic binary array from skimage.data

im = data.binary_blobs(length=400, n_dim=3).+«
astype (np.uint8)

# visualization

from mayavi import mlab

mlab.contour3d (im)

mlab.outline ()
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(see Fig. 4 for the resulting visualization).

For more advanced visualizations, a large majority
of VTK capabilities can be accessed through mayavi’s
pipeline API. mayavi offers a good trade-off between
simplicity of use for common operations, and acces-
sibility to more sophisticated capabilities such as re-
sponsive visualizations.

Advanced toolkits for signal processing and data sci-
ence. scikit-image is only one Python module that
can be used for data processing, among many others.
A very popular module is scikit-learn (Pedregosa
et al., 2011), a Python module for machine learn-
ing using NumPy arrays. Local features of an image
(such as local statistics of gray levels, or geometric
points of interest) or features of segmented objects
(e.g. geometrical and intensity characteristics of seg-
mented particles) can be extracted with functions from
skimage.feature (see Fig. 1). It is then possible to use
a classification algorithm from scikit-learn to label
pixels (a segmentation task) or to classify whole im-
ages or objects that have already been segmented. The
near-universal use of NumPy arrays ensures the inter-
operability between these packages, so that just a few
lines of code are sufficient to create these sophisticated
workflows.

The modularity of the Scientific Python ecosystem
may be confusing at first sight, but the core modules of
this ecosystem are almost perfectly compatible, thanks
to the shared use of NumPy arrays and common de-
velopment practices (although they are developed in
parallel by different teams). Several “distributions”,
such as Anaconda or Canopy, bundle together the most
popular libraries, including scikit-image.

Results

Figure 4 Simple 3-D visualization realized with Mayavi.
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In [12]: from skimage import exposure ﬁggﬁﬂ@
In [13]: counts, bins = exposure.histogram(smooth_image)
In [14]: plt.figure()
Out[14]: <matplotlib.figure.Figure at 0x7f3ec0393b10>
In [15]: plt.plot(bins, counts)
Out[15]: [<matplotlib.lines.Line2D at Ox7f3ec02c2510>]
In [16]: plt.title('Histogram of pixel values')
Out[16]: <matplotlib.text.Text at 0x7f3ec030f450>
20/Q|+| < | =l In [17]:
T
‘ Console | History log | IPython console
Figure 2 The Spyder IDE integrates a text editor (with syntax highlighting), the IPython interpreter, as well as a panel for code
introspection (online help, variable explorer, ...).

Image processing capabilities

Capabilities. scikit-image offers most classical im-
age processing operations, such as exposure and color
adjustment, filtering, segmentation, feature extraction,
geometric transformations, and measurements of re-
gion characteristics. In addition to common opera-
tions, some advanced algorithms are also implemented,
a selection of which is illustrated in Fig. 5. In the fol-
lowing, we briefly illustrate how scikit-image can be
used for some typical image processing tasks encoun-
tered when analyzing tomographic images: denoising,
mid-range feature detection, segmentation and mea-
surement of region properties. For the sake of brevity,
other tasks such as contrast manipulation or geomet-
ric transformations are not described here; the in-
terested reader is referred to the documentation of
scikit-image.

Tomographic images often suffer from artifacts or
poor signal-to-noise ratio. Therefore, denoising data
is often the first step of an image processing work-
flow. Several denoising filters are available for restor-
ing these images, ranging from general-purpose median
and bilateral filters to those more suited to specific
applications. For example, total-variation denoising
(Chambolle, 2004; Getreuer, 2012) is ideal for restor-
ing piecewise-constant images (see Fig. 5 a)), such as

images with a small number of phases encountered in
materials science (Bouttes et al., 2015). Conversely,
images with a fine-grained texture are better preserved
with non-local means denoising, a patch-based algo-
rithm (Buades et al., 2005) (see Fig. 5 a)).

Detecting the presence of objects or extracting pixels
corresponding to objects (a task known as segmenta-
tion) is an important task of image analysis for med-
ical or materials science applications. scikit-image
offers a wide variety of functions for detecting geomet-
rical features of interest in an image. In order to detect
thin boundaries, the ridges of an image can be iden-
tified as regions for which the leading eigenvalue of
the local Hessian matrix is high (see Fig. 5 b)). In the
Fourier space, peaks in 2D Bragg diffraction patterns
can be extracted using blob detection methods (Ash-
iotis et al., 2015), such as the Laplacian of Gaussian
method (see Fig. 5 b)).

Segmentation of regions of interest can be achieved
using one of various strategies, depending on the char-
acteristics of the image. Images with a clear con-
trast between regions can be segmented automatically
thanks to several thresholding algorithms, including
an adaptive local thresholding algorithm aimed at im-
ages with contrast variations. Super-pixel algorithms
(Achanta et al., 2012; Felzenszwalb and Huttenlocher,
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In [8]:

def trendlines(queries, norm=False):
fig, ax = plt.subplots()
for lang in languages:
counts = queries[lang]
X counts([:, 0]
y np.copy(counts|:,
if norm:
y /= counts[:, 2]
ax.plot(x, y * 100, label=lang, lw=4, alpha=0.8)
ax.set_xlim(np.min(x), np.max(x))
ax.set_xlabel('Year')
ax.set_ylabel('Percent of Refereed\nPublications Mentioning')

11

ax.legend(loc='upper left',
remove chartjunk(ax, ['top',

frameon=False)
'right'])

In [9]: trendlines(results, norm=True)

0.20
= DL
= Matlab

015, = Python

Percent of Refereed
Publications Mentioning
o
=
o

o
o
o

0.00
2000 2002 2004 2006 2008

Year

2010

most used) programming language in astronomy!

plt.savefig('python-vs-matlab-vs-IDL-in-astro.pdf')

2012

There you have it: some time in early 2015, Python overtook IDL as the most mentioned (and probably the

Figure 3 The Jupyter notebook allows mixing of computer code (top), plot and text output (middle), and free-form narrative text
(bottom). This makes it ideal to record and report code-based analyses. Screenshot from Nunez-Iglesias et al. (2016).

2014 2016

2004) create an over-segmentation of images in super-
pixels, by grouping pixels that are close together both
in color- and spatial distance (see Fig. 5 c)). Region-
growing algorithms, such as the morphological water-
shed or the random walker (Grady, 2006), propagate
the labels of user-defined markers through the image
(see Fig. 5 ¢)). The active contour algorithm (Kass
et al., 1988) fits snake contours to features of the im-
age, such as edges or high-brightness regions.

Following segmentation, the characteristics of la-
beled regions (particles, porosities, organs, . .. ) result-
ing from a segmentation can be measured using the
measure submodule. The different connected compo-
nents (e.g. bubbles or non-touching particles) of a bi-
nary image are labeled with the measure.label func-
tion. Properties of labeled regions such as size, ex-
tent, center of mass or mean intensity value are ac-
cessed with measure.regionprops (see Fig. 5 d)). Lo-
cal characteristics of a region can be retrieved as well:
Fig. 5 d) shows how the local diameter of open poros-
ity is measured by combining a skeletonization of the
porosity channels, and the distance transform to the
other phase measured on the skeleton.

Performance. Given the large size of tomography
datasets, the execution speed of image processing
operations is of critical concern. scikit-image re-
lies mostly on calls to NumPy operations, of which
most are performed in optimized compiled code (C or
Fortran). Performance-critical parts of scikit-image
that cannot call efficient NumPy code are implemented
in Cython. Cython (Behnel et al., 2011) is an exten-
sion of the Python language that supports explicit type
declarations, and is compiled directly to C. Therefore,
the performance of scikit-image can be close to the
one of libraries written in a compiled language such
as C++ or Java. For example, computing the water-
shed segmentation of a 2000x2000 array of floats into
1000 regions took about 1 s using 1 CPU of an off-the-
shelf laptop, and 10 s for a 256x256x256 image seg-
mented into 2000 regions. Similar timescales were ob-
tained with mahotas, a Python package implemented
exclusively in C++ (Coelho, 2013) (with a slight ad-
vantage for mahotas).

However, basic scikit-image code runs on a single
core. Computing workstations and servers used for X-
ray imaging typically have several tens of cores. Paral-
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d) measures

c) segmentation
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Figure 5 Typical image processing operations with scikit-image. Data are synthetic, unless stated otherwise. a) Filtering - Top:
non-local means denoising of an image with a fine-grained texture, acquired by in situ synchrotron microtomography during glass
melting (Gouillart et al., 2012). Bottom: total-variation denoising of an image with two phases, corresponding to phase-separating
silicate melts observed by in situ tomography (Bouttes et al., 2015). b) Feature extraction - Top: Hubble deep field (NASA, public
domain), blob detection using the Laplacian of Gaussian method. Bottom: ridge detection using the leading eigenvalue of the
Hessian matrix, neuron image from CREMI challenge (https://cremi.org/data/). c) Segmentation - Top: super-pixel
segmentation of a CT slice of the human head (ChumpusRex, Wikipedia, 2016), using Felzenszwalb's algorithm (Felzenszwalb and
Huttenlocher, 2004). Bottom: random walker segmentation (right) of noisy image (top-left corner), using histogram-determined
markers (bottom-left corner). d) Measures - Top: visualization of local diameter (color-coded on the skeleton curve) of an
interconnected phase (represented in violet). Bottom: particles color-coded according to their extent.

lelization of the computing workflow can be achieved in
multiple ways. The most trivial parallelization scheme
consists of applying the same workflow to different im-
ages, on different cores. However, finer-grained paral-
lelization is preferable when prototyping the process-
ing workflow.

An easy solution consists in dividing an image into
smaller images (with or without overlap, depending
on the operation), and to apply the same operation on
the different sub-images, on different cores. Creating
overlapping chunks is easy with the dedicated function
view_as_windows (or view_as_blocks for contiguous
non-overlapping chunks):

The joblib library enables easy parallel processing.
Looping over the different blocks, and dispatching the
computation over several cores, is realized with the
following syntax:

>>> from joblib import Parallel, delayed

>>> filtered_chunks = Parallel (n_jobs=4)(+
delayed (filters.gaussian) (chunks[i, j]) for<
i in range(4) for j in range(4))

>>> from skimage import util, data

>>> im = data.camera()

>>> im.shape

(512, 512)

>>> # chunks of size 134 with 8—pixel

>>> chunks = util.view_as_windows (im,
134), step=126)

>>> chunks . shape

(4, 4, 134, 134)

overlap
(134, «

scikit-image also offers experimental support for a
more integrated parallel processing pipeline, thanks to
the dask (Rocklin, M. and dask contributors, 2016)
module:

filtered_im = util.apply_parallel(filters.<
gaussian, im, depth=8)

The size of chunks is determined automatically from
the number of available cpus, or can be specified by
the user.
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Caching provides another tool to speed up data anal-
ysis. A situation that often arises is that, while proto-
typing a workflow, scripts (containing the image pro-
cessing pipeline) are run several times to experiment
with parameters. joblib provides a caching mecha-
nism that avoids the repetition of function calls, if their
arguments have not changed:

>>> from skimage import filters, data

>>> from joblib import Memory

>>> mem = Memory (cachedir=’/tmp/joblib ")

>>> median = mem.cache(filters.median)

>>> im = data.camera()

>>> filtered_im = median(im, np.omnes((3, 3)))

[Memory] Calling skimage.filters.rank.generic.<>
median ...

median (array ([[156, ..., 152],

ce

[121, ..., 1 dtype=uint8), array ([[+
1

<l 9

0.0min
np.ones ((3, 3))«

__________________________ median — 0.0s,
>>> filtered_again = median(im,

>>> # the above call did not trigger another <
evaluation

Finally, we note that the biggest performance im-
provements often come from the improvement of algo-
rithms (as opposed to computing architectures only).
For example, non-local means denoising (Buades et al.,
2005) is a costly operation, since it requires several
nested loops, on all pixels and on neighboring patches
to be compared with the pixel-centered patch. Thanks
to the implementation of a more recent algorithm
(Darbon et al., 2008) that modifies the internal orga-
nization of loops, it was possible to improve execution
time by a factor of roughly ten times. The large size of
the scikit-image community makes it likely for algo-
rithmic improvements to be discussed regularly. Dur-
ing the code review process, a close watch is also kept
on memory consumption, since for large image sizes,
transfers between computer memory (RAM) and CPU
cache are often a serious performance bottleneck.

Documentation

The quality of software documentation is (perhaps es-
pecially) important in software aimed at scientists.
scikit-image users have access to several kinds of
documentation. All functions are documented using
the NumPy documentation standard (Pawlik et al.,
2015), which is universal across all major Scientific
Python packages. The standard include a description
of all input and output variables and their data types,
together with explanations of what each function does
and how to use it. Function documentation is accessi-
ble online or within the development environment itself
(IPython, Spyder, Jupyter Notebook...).
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In addition, a graphical gallery of examples (http://
scikit-image.org/docs/dev/auto_examples/), part
of which is displayed in Fig. 6, showcases graphical ex-
amples of common image processing operations. The
examples are organized as an array of thumbnails with
a short title (see Fig. 6 left). These thumbnails link to
the webpage of the corresponding example, which fea-
tures a mini-tutorial on the image processing method,
the code needed to run the example and the figure
generated by the example. Since the graphical gallery
is an efficient way to inform users about the fea-
tures of scikit-image, every new feature integrated
in the package must include an example for the gallery.
Longer tutorials and a more narrative documenta-
tion is available as well in the online User Guide of
scikit-image. The User Guide explains in particular
”big picture”, foundational aspects of scikit-image,
such as its use of NumPy arrays as images, or how
the package interacts with other parts of the scientific
Python ecosystem.

Finally, tutorials on scikit-image are available in
various places, either as YouTube videos, or in the
SciPy Lecture Notes (Varoquaux et al., 2016), a com-
prehensive online book of Scientific Python tutorials.

Development and use of scikit-image
Who uses scikit-image. Estimating the number of ac-
tive users of an open-source package is a difficult task.
Download statistics, for example, largely overestimate
the number of active users, all the more if the pack-
age is bundled with others in a software distribution,
such as Anaconda or Canopy. A view closer to real-
ity can be obtained by analyzing the statistics of vis-
its of the online help, available on the project web-
site. As of the first half of 2016, 20000 unique visi-
tors visited the scikit-image website every month at
http://scikit-image.org/, from 138 countries.
The scikit-image paper of 2014 (Van der Walt
et al., 2014) has been cited by 120 research works (as
of August 2016, according to Google Scholar), among
which studies that used X-ray imaging in fields such as
medical imaging (Blackledge et al., 2016; Malan et al.,
2016; Shen et al., 2015), materials science (Bouttes
et al., 2015) or geoscience (Schliiter et al., 2014).

Development process. scikit-image is developed by
a diverse team of volunteers. More than 170 individu-
als have contributed to the package. The large number
of developers and users key to project’s sustainabil-
ity. The development process takes place on GitHub
https://github.com/scikit-image/scikit-image,
where users and developers propose and discuss new
contributions, report bugs or submit ideas for improve-
ments. A release cycle of one or two releases every year
ensures that new features are propagated to users on
a regular basis.
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Discussion — Current limitations and

challenges

While we emphasize the assets of scikit-image for
processing X-ray images, one should be aware of cur-
rent limitations.

Speed of execution. Although scikit-image ap-
proaches the speed of execution of compiled (C++,
Java) code, it cannot reach the performance of code op-
timized for the GPU, or the hand-tuned CPU-specific
optimizations found in OpenCV (Pulli et al., 2012). At
the moment, scikit-image is not the best tool for ul-
trafast computations where the workflow is known be-
forehand, simple and stable. However, it is an excellent
tool for exploring image data interactively and testing
different algorithms — an important component of data
processing in scientific work —, and its speed of exe-
cution is sufficient for processing gigabyte-sized tomo-
graphic images in seconds to minutes. Moreover, the
multiprocessing capability of scikit-image is likely
to improve in the near future.

3-D compatibility. Currently, about two thirds of
scikit-image functions transparently handle 2D or
3D arrays, with the remainder limited to 2D analy-
sis, often unnecessarily. Improved support for 3D and
higher-dimensional volumes is on the project roadmap.

Documentation for domain-specific applications. Some
image processing libraries or applications address a
specific scientific domain, such as CellProfiler (Car-
penter et al., 2006; Lamprecht et al., 2007) for biolog-
ical images. The documentation of such projects often
showcases examples that are close to the experience
of the targeted community. Since scikit-image is
application-agnostic, applications such as tomographic
imaging are not mentioned in detail in the documenta-
tion of scikit-image. A possible improvement would
be to write comprehensive tutorials addressing specific
communities, and to refer to these tutorials from the
main scikit-image documentation.

Getting started
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pad for beginners, and gently leads into other sec-
tions of the user guide. A gallery of examples (http://
scikit-image.org/docs/dev/auto_examples/) lets
users find applications close to their needs. Although
most examples in the gallery use 2D images, many are
applicable to 3D images as well.

Assistance on matters not covered by the doc-
umentation is provided on the dedicated mailing-
list scikit-image@googlegroups.com or on Stack-
Overflow http://stackoverflow.com/questions/
tagged/scikit-image.

Conclusion

scikit-image offers a wide variety of image process-
ing algorithms, using a simple interface natively com-
patible with 2D and 3D images. It is well integrated
into the Scientific Python ecosystem, so that it inter-
faces well with visualization libraries and other data
processing packages. scikit-image has seen tremen-
dous growth since its creation in 2009, both in terms of
users and included features. In addition to the growing
number of scientific teams that use scikit-image for
processing images of various X-ray modalities, domain-
specific tools are now using scikit-image as a de-
pendency to build upon. Examples include tomopy
(Giirsoy et al., 2014) for tomographic reconstruc-
tion, or DIOPTAS (Prescher and Prakapenka, 2015)
for the reduction and exploration of X-ray diffraction
data. It is likely that more application-specific soft-
ware will benefit from depending on scikit-image in
the future, since scikit-image strives to be domain-
agnostic and to keep the function interface stable. On
the end-user side, future work includes better integra-
tion of parallel processing capabilities, completion of
full 3-D compatibility, an enriched narrative documen-
tation, speed enhancements, and expansion of the set
of supported algorithms.
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Figures

List of Figures

1

scikit-image and the Scientific Python ecosystem. Im-
ages are opened from files as NumPy arrays. Functions of
scikit-image transform image arrays into other arrays with
the same dimensions, or into arrays of numbers corresponding
to features of the image. The output of scikit-image functions
can be passed to other Python modules relying on NumPy ar-
rays, such as SciPy or scikit-learn. Image-shaped arrays
are transformed into visualizations with matplotlib (2D) or
Mayavi (3D). A variety of environments is available for code
development and execution, from classical IDEs to Jupyter
notebooks. . . . ...
Simple 3-D visualization realized with Mayavi. . . . . . ..
The Spyder IDE integrates a text editor (with syntax high-
lighting), the IPython interpreter, as well as a panel for code
introspection (online help, variable explorer, ...). . . . . . .
The Jupyter notebook allows mixing of computer code (top),
plot and text output (middle), and free-form narrative text
(bottom). This makes it ideal to record and report code-based
analyses. Screenshot from Nunez-Iglesias et al. (2016).
Typical image processing operations with scikit-image.
Data are synthetic, unless stated otherwise. a) Filtering -
Top: non-local means denoising of an image with a fine-
grained texture, acquired by in situ synchrotron microto-
mography during glass melting (Gouillart et al., 2012). Bot-
tom: total-variation denoising of an image with two phases,
corresponding to phase-separating silicate melts observed by
in situ tomography (Bouttes et al., 2015). b) Feature ex-
traction - Top: Hubble deep field (NASA, public domain),
blob detection using the Laplacian of Gaussian method. Bot-
tom: ridge detection using the leading eigenvalue of the Hes-
sian matrix, neuron image from CREMI challenge (https:
//cremi.org/data/). c) Segmentation - Top: super-pixel
segmentation of a CT slice of the human head (ChumpusRex,
Wikipedia, 2016), using Felzenszwalb's algorithm (Felzen-
szwalb and Huttenlocher, 2004). Bottom: random walker
segmentation (right) of noisy image (top-left corner), using
histogram-determined markers (bottom-left corner). d) Mea-
sures - Top: visualization of local diameter (color-coded on
the skeleton curve) of an interconnected phase (represented
in violet). Bottom: particles color-coded according to their
extent. . ... Lo
Gallery of examples of scikit-image. The gallery of exam-
ples consists of an array of thumbnails (left), which link to
example webpages, each centered on a specific image pro-
cessing task. Each webpage includes Python code generating
a figure, the figure itself, and a short tutorial explaining the
image processing operations and the code. . . . . . . . ..
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Gallery of thumbnails

S

Drawing Region Thresholding Finding local maxima
Adjacency Graphs (RAGs)

The random walker algorithm
[1]_ determines the

segmentation of an image from
a set of markers...

Random walker
segmentation

Measure region properties Label image regions

Code, figure and mini-tutorial

import numpy as np
import matplotlib.pyplot as plt

Random walker segmentation
from skimage.segmentation import random walker

The random walker algorithm [1] determines the segmentation of an image from a set of from skimage.data import binary blobs
markers labeling several phases (2 or more). An anisotropic diffusion equation is solved with import skimage
tracers initiated at the markers’ position. The local diffusivity coefficient is greater if

neighboring pixels have similar values, so that diffusion is difficult across high gradients. The - (DRI (o SR (i

data = skimage.img as float(binary blobs(length=128, seed=1))

label of each unknown pixel is attributed to the label of the known marker that has the data += 8.35 * np.random. randn(*data.shape)
highest probability to be reached first during this diffusion process. markers = np.zeros(data.shape, dtype=np.uint)

) . . markers[data < -90.3] = 1
In this example, two phases are clearly visible, but the data are too noisy to perform the markers(data > 1.3] = 2
segmentation from the histogram only. We determine markers of the two phases from the
extreme tails of the histogram of gray values, and use the random walker for the = G Gl R (]

N labels = random walker(data, markers, beta=18, mode='bf')

segmentation.

. . # Plot results
[1] Random walks for image segmentation, Leo Grady, IEEE Trans. Pattern Anal. Mach. Intell. fig, (axl, ax2, ax3) = plt.subplots(l, 3, figsize=(8, 3.2),

2006 NOV; 28(11):1768‘83 sharex=True, sharey=True)

ax1l.imshow(data, cmap='gray', interpolation='nearest')
axl.axis('off")
Markers . Segmentation ax1.set_adjustable('box-forced')
] axl.set_title('Noisy data‘)
ax2.imshow(markers, cmap='hot', interpolation='nearest')
ax2.axis('off")
ax2.set_adjustable('box-forced')
ax2.set_title('Markers')
ax3.imshow(labels, cmap='gray’', interpolation='nearest’)
ax3.axis('off")
ax3.set_adjustable('box-forced')

Noisy data

ax3.set title('Segmentation’)

fig.tight layout()
plt.show()

Figure 6 Gallery of examples of scikit-image. The gallery of examples consists of an array of thumbnails (left), which link to
example webpages, each centered on a specific image processing task. Each webpage includes Python code generating a figure, the
figure itself, and a short tutorial explaining the image processing operations and the code.
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