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Multi-lag phase diagram analysis for transient
signal characterization

Cindy Bernard, Angela Digulescu, Alexandre Girard and Cornel Ioana

Abstract Phase diagram analysis is a potential technique that can offer interesting
information regarding the signal’s shapes and eventually transient signal charac-
terization. Indeed by choosing wisely the lag in phase diagram representations, it is
possible to highlight mathematical properties such as time-shift and time-scale oper-
ators, as well as amplitude modifications. Therefore, this paper develops the concept
of multi-lag phase diagram analysis (MLPDA), as well as different methods aimed
to extract parsimonious parameters from signal’s phase diagrams calculated for dif-
ferent values of lags. By combining all of them, we are then able to explore new
ways of transient signal characterization.

1 Introduction

In this chapter, we only consider transient signals that are characterized by sudden
amplitude changes. They usually traduce mechanical, electrical, or electromagnetic
phenomena that are very important to monitor. Such signal can be given by:

s(t) = A(t) , t ∈ [t0, t0 +D] (1)
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where the duration D is assumed much shorter than the signal’s observation time,
and t0 the starting time of the signal. The amplitude function A(t) of the signal is
assumed to have high order derivatives.

We particularly focus on the case of transients observed at a given distance from
the source and that consists of not only the transient at the origin (as it is gener-
ated by the phenomenon) but also of the propagation and the receiver processing
effects. Thus, the deformations introduced by the propagation are of great interest
to characterize the environment.

The methods proposed in our work will contribute to offer a potential interesting
solution, attempting to provide a general analyis framework of such signals. To do
so, we propose to investigate the signals similarities and dissimilarities through re-
currence plot (RP) which has been introduced by Eckmann et al. [1] in 1987 in order
to visualize recurrences of higher-dimensional phase space trajectories in nonlinear
data time series. By recurrence, we refer to the return of a state of a system to a pre-
viously visited point. Recurrence Plot Analysis (RPA) has then been derived from
RP and is based on three major steps: time-delay embedding (1980-1981) [2, 3],
recurrence plots (1987) and recurrence quantification analysis (RQA)(1992-2002)
[4, 5]. More details about the history of RPA can be found in [6] and an interna-
tional website gathers all the advances and communications of the community [7].

Therefore, the main idea of this chapter is to investigate the different signals’s
properties in their phase diagrams in order to explore the similarities and dissim-
ilarities between them. To do so, Section 2 first provides different mathematical
properties such as time-scale transformations and amplitude modifications between
transients that can be highlighted by the lag diversity in phase diagrams. Then Sec-
tion 3 proposes five new descriptors for transient characterization that enables to
extract the previously cited transformations. An application example is then pre-
sented in Section 4. Finally, Section 5 provides some conclusions and perspectives
of work.

2 Mathematical properties of lag diversity in phase diagram

In order to illustrate the concept of multi-lag PDA, a transient is modeled as a mod-
ulated cosine s(n) defined for n ∈ {1, . . . ,N} such as:

s(n) =
{

cos(2π f0n)w(n) if n ∈ [n0,n0 +∆ ]
0 otherwise (2)

with w(n) a modulating window (such as a Hanning window), f0 the central fre-
quency of the modulation (we consider f0 = 3 in our examples), n0 the beginning
of the transient and ∆ the transient duration.

Phase space diagram analysis of signal s(n), using the embedding dimension m
and lag τ , corresponds to a representation T that is defined as follows:
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T : RNxNxN −→MN−(m−1)τ,m (R)
(s,τ,m) 7−→ Tm,τ (s)

(3)

where:

Tm,τ (s)=



s(1) . . . s(1+( j−1)τ) . . . s(1+(m−1)τ)
s(2) . . . s(2+( j−1)τ) . . . s(2+(m−1)τ)

...
s(i) . . . s(i+( j−1)τ) . . . s(i+(m−1)τ)

...
s(N− (m−1)τ) . . . s(N− (m−1)τ +( j−1)τ) . . . s(N)


(4)

which can be summarized by:

Tm,τ (s) =
{

ti, j
}

i={1,2...,N−(m−1)τ}, j={1,2,...,m} (5)

with:
ti, j = s(i+( j−1)τ) (6)

Each row of the T matrix corresponds to a phase space vector. Each column
corresponds to the coordinates of one axis of the phase space.

Let us now investigate the properties of this representation to the time-shift oper-
ator, the scale operator and amplitudes changes. We define three signals s1 (n), s2 (n)
and s3 (n) such as:

s1 (n) = s(n+δ ) (7)
s2 (n) = s(αn) (8)
s3 (n) = β s(n) (9)

with δ the time-shift delay, α ∈R+ the dilation coefficient and β an amplitude mod-
ification coefficient. We propose to illustrate the different properties with equations
and numerical examples that are shown in Figure 1. The numerical examples are
computed with the following parameters: δ = 55, α = 2 and β = 1.5.

Investigation of the time-shift invariance property

We can start by considering the phase space vector of s1 (n) at instant n and the
relation given by Eq. 7. We have:

[s1 (n) ,s1 (n+ τ) , . . . ,s1 (n+(m−1)τ)] = [s(n+δ ) ,s(n+δ + τ) , . . . ,s(n+δ +(m−1)τ)]
= [s(n0)s(n0 + τ) , . . . ,s(n0 +(m−1)τ)]

(10)
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Fig. 1 Temporal data of: (a) s(n), (b) s1 (n), (c) s2 (n) and (d) s3 (n)

This result states that even if two identical signals are time-shifted, their phase
space diagrams are invariant. Mathematically speaking, it means that the rows of
Tm,τ (s1) are the same as Tm,τ (s)’s but they suffered the circular permutation and are
shifted compared to Tm,τ (s). This property is illustrated by Figure 2 where we can
see that for m = 2 and τ = 8 the phase space diagrams of the two signals are exactly
the same despite the time-shift between the signals.
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Fig. 2 (a) T2,4 (s) and (b) T2,4 (s1) phase space diagrams. The trajectories are the same despite the
time-shift.
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Investigation of the time-scaling property

We now consider s1 (n)’s phase space vector at instant n and the relation given by
Eq. 8. We have:

[s2 (n) ,s2 (n+ τ) , . . . ,s2 (n+(m−1)τ)] = [s(αn+n0) , . . . ,s(α (n+(m−1)τ)+n0)]
= [s(n1) ,s(n1 +ατ) , . . . ,s(n1 +(m−1)ατ)]
= [s(n1) ,s(n1 + τ0) , . . . ,s(n1 +(m−1)τ0)]

(11)
This result states that for a given m there exists many sets of lags [τ,ατ] that
enable an invariance of phase space diagrams. It means that it is possible to
identify two signals that are related by a dilation. Figure 3 presents the phase space
diagrams of s(n) and s1 (n) for two differents sets of lags: [4,4] and [4,8]. For the
first set, the two diagrams do not overlap, whereas the second set enables a perfect
superposition of the two diagrams.
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Fig. 3 Phase space diagrams of s(n) and s2 (n) for m= 2 and different sets of lags: (a) [4,4] and (b)
[4,8]. The dilation connection between the two signals can be enlightened by using the appropriate
set of lags.

Investigation of the amplitude coefficient modification

Finally, we consider s3 (n)’s phase space vector at instant n and the relation given
by Eq. 9. We have:

[s3 (n) ,s3 (n+ τ) , . . . ,s3 (n+(m−1)τ)] = [β s(n) ,β s(n+ τ) , . . . ,β s(n+(m−1)τ)]
= β [s(n) ,s(n+ τ) , . . . ,s(n+(m−1)τ)]

(12)
which can be summarized by:
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Tm,τ (s3) = βTm,τ (s) (13)

This result shows that the amplitude change is equivalent, in the phase space
diagram representation, with a shape-invariant scale transformation. This is
illustrated by Figure 4.
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Fig. 4 T2,4 (s3) and T2,4 (s) phase space diagrams. They are related by a shape-invariant scale trans-
formation.

3 Multi-lag phase diagram analysis

The previous section has shown that phase diagram representations can potentially
be invariant to the main transforms of signals such as: time-shift, time-scale changes,
amplitude modification, etc... The key point of the multi-lag based representation is
that the invariance can be controlled by the lag choice, which makes possible a better
exploration of the anayzed signals.

In this section, we propose different descriptors to extract parsimonious parame-
ters from each diagram acquired for a given lag. The evolution of these descriptors
with respect to the lags is then explored conducting to new representation tools for
transients.

In this Chapter, we restrained ourselves to m = 2 in order to visualize the results
but the work can be extended to higher embedding dimension. We also note y(n)
for x(n+ τ) in order to simplify the notations.
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Fig. 5 Ellipse modeling: major and minor axis are determined by an SVD on phase space diagram,
and a least square fitting method is used to calculate a and b.

3.1 Ellipse modeling

Generally, signals can have various trajectories with different shapes, but in this
subsection, we propose a general model for approximation of trajectories based
on ellipse shape (Figure 5). This choice is quite natural since the ellipse model is
specific to harmonic signals. Therefore, the model is simple and enables to extract
three parameters per phase space diagrams:

• the polar angle θ of the ellipse assuming that θ is the angle between the first
axis and the major semi-axis
• the major semi-axis a
• the minor semi-axis b

We assume the center of the ellipse being the center of phase space diagrams as
transients can be considered as zero-mean signals.

The first step consists in performing a singular value decomposition (SVD) of the
phase space diagram to calculate its eigenvectors. Those are of great interest as they
define a new basis that reflects the distribution of the data and also correspond to
the major and minor axis of the ellipse model. Then, a least squares fitting method
is performed to determine the ellipse that satisfy the following equation in the new
basis defined by the eigenvectors:

Ax2 +By2 = 1 (14)

where the semi-major and semi-minor axis are given by:



8 Cindy Bernard, Angela Digulescu, Alexandre Girard and Cornel Ioana{
a = 1/

√
A

b = 1/
√

B
(15)

At this point of the study, each diagram is modeled by an ellipse with these three
parameters [a,b,θ ]. The evolution of θ enables to estimate an apparent periodicity
of the transient, while the evolution of a and b enables to know how the data is
distributed in the phase space. If they are scattered over a large area, it means that
the lag used to construct the representation is not representative of the transient
contruction. On the other hand, if they are rather confined into a smaller area, it
means that the lag is representative and is well adapted to the study of this transient.
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Fig. 6 Temporal signals studied in this section and its wavelet transforms using the Daubechies
mother wavelet.

In order to illustrate the method, let consider three signals s1 (n), s2 (n) and s3 (n)
that are modulated cosines. s1 (n) and s2 (n) are related by a time-scale transfor-
mation while s3 (n) is the result of a 10-th low-pass FIR digital filtering applied
on s1 (n) with the normalized cutoff frequency of 0.1. Temporal signals are shown
in Figure 6. At first look, it is quite difficult to tell appart s1 (n) from s3 (n) and a
time-scale analysis would not do better as their frequency contents are really close
(Figure 6).

For the three signals and τ ∈ {1, . . . ,30}, we model each phase diagram by an
ellipse and record the variation of a, b and θ with respect to the lags. As we can see
in Figures 7 and 8, the 3 parameters present an apparent periodicity that are related
to the apparent periodicities of the signals. We call apparent periodicity the number
of samples between two successive zero-crossing. As an example, the number of



Multi-lag phase diagram analysis for transient signal characterization 9

5 10 15 20 25 30

−40

−30

−20

−10

0

10

20

30

40

τ

θ

 

 

s
1
(n)

s
2
(n)

s
3
(n)

Fig. 7 Evolution of θ with respect of τ for the
three studied signals.
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Fig. 9 (a) T2,3 (s1) phase space diagram and its associated ellipse model. (b) T2,6 (s1) phase space
diagram and its associated ellipse model.

lags between two successive maxima of θ is equal to 13 for s1 (n), 23 for s2 (n) and
12 for s3 (n), while the apparent periodicity is of 12.5 samples for s1 (n), 22.25 for
s2 (n) and 11.75 for s3 (n) which is coherent with the previous values.

The periodicity of a and b corresponds to the half period of the signals (Figure
8). Their maximal values correspond to phase diagrams that can be modeled by
circles (same value for both parameters), meaning that the phase diagrams are more
scattered in the phase space. This can be seen in Figure 9 where we plotted s1 (n)’s
phase diagrams for m = 2 and τ = {3,6}. For τ = 3 that enables to obtain a maximal
value for b, the phase diagram can be modeled by a circle and is well distributed in
the space, while for τ = 6, the phase diagram is concentrated into a smaller area.

We have seen that with the ellipse modeling it was posssible to summarize each
representation by only three parameters and estimate the apparent frequency of a
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transient. We can also explore the distribution of the diagram in the phase space
which is of great interest as it enables to highlight the lags that provide a great
concentration of the data or on the contrary a dispersal.

3.2 Trend modeling
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Fig. 10 Phase diagram’s trend is modeled by a third degree polynomial.

In the previous subsection, we have seen that phase diagrams were more or less
concentrated around a line that tends to rotate around the origin of the phase space
(due to the zero-mean of the modeled signals). This is why, we want to model this
line as a third degree polynomial (Figure 10) in order to quantify the rotation and
the natural trend of the diagram [8]. The model is defined as follows:

y = âx3 + b̂x2 + ĉx+ d̂ (16)

To do so, we consider the diagram as a scatterplot and perform a least square fitting
estimation by minimizing the following sum:

Argmin
â,b̂,ĉ,d̂

N

∑
i=1

(
s(i+ τ)−

(
âs3 (i)+ b̂s2 (i)+ ĉs(i)+ d̂

))
(17)

where s(i) corresponds to the analyzed signal for i∈{1, . . . ,N}; N being the number
of samples.

Therefore, for each representation, phase diagrams are summarized by four pa-
rameters

{
âτ , b̂τ , ĉτ , d̂τ

}
that vary with respect to τ . As studied signals can always

be considered as zeros mean, we can remove from consideration d̂: this parameter
will always be equal to zero. Thus, three parameters remain: â, b̂ and ĉ. They enable
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to discriminate transients by looking at their evolutions with respect to τ and they
also permit to highlight similitudes by looking at one parameter with respect to an-
other. This last representation allows to get rid of the evolution of τ and investigate
if whether or not the diagrams have similar trends for different lags: this can reflects
a time-scaling operation.
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Fig. 11 Evolution of (a) â,(b) b̂,(c) ĉ and (d) d̂ with respect of τ .

To illustrate the concept of trend modeling, we consider the three signals that
were introduced in the previous subsection. For all of them and τ = {1, . . . ,30},
we model each phase diagram’s trend by a third degree polynomial and record the
variations of the four parameters with respect to the lag. As we can see in Figure 11,
it is quite easy to discriminate between s1 (n) and s3 (n) by looking at the evolution
of the parameters of interest. The apparent periodicity of the parameters corresponds
to the apparent periodicity of the signals. As an example, the number of lags between
two successive maxima of ĉ is equal to 12 for s1 (n), 22 for s2 (n) and 11 for s3 (n),
while the apparent periodicity is of 12.5 samples for s1 (n), 22.25 for s2 (n) and
11.75 for s3 (n) which is coherent with the theoretical values. We can also notice
that the evolution of d̂’s is very small (below 0.0001), as well as for the evolution of
parameter b̂. This is why we remove this last parameter from consideration as well.

Figure 12 presents the evolution of ĉ with respect to the evolution of â. This
representation is interesting as we get rid of the evolution of τ . It enables to highlight
signals that would have the same phase diagram’s trends for different values of lags.
This is the case for s1 (n) and s2 (n) where the evolution of [â, ĉ] for both signals
overlap in the representation. This is coherent as the two signals are related by a
time-scale operator. As s1 (n) and s3 (n) are related by a low-pass filtering, we can
see that even if their representations are similar, they do not overlap. This shows the
complexity introduced by the filtering.

The modeling of phase diagrams’s trend by a third degree polynomial is of great
interest as it enables to detect if transients are related by a time-scale transformation.
However, at this point of the study, there is no method that tells us what couples of
lags we should use to highlight this transformation. This is why we moved torward
a matching phase diagram technique that is presented in the next subsection.
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Fig. 12 Evolution of ĉ with respect to â for the 3 studied signals.
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Generally, when we talk about SNR for transient analysis, we only consider sig-
nal and noise over the duration of the transient. Thus, the SNR is defined as follows:

SNRdB = 10log10
∑n s(n)
∑n b(n)

(18)

where s(n) corresponds to the noise-free transient and b(n) to the noise, defined for
n ∈ ∆ with ∆ being the time interval where is defined the transient of interest.

When it comes to noise in phase diagram, we can see in Figure 13 that the exter-
nal contour remains more or less the same depending on the level of noise consid-
ered. This is the reason why we focus on the bounding box of the trajectory that is
delimited by the maximal and minimal values of the studied signal.

O
x (n)

y (n) = x (n+ τ)

A•

• C

•
B

•D

max(sig)min(sig)

max(sig)

min(sig)

Fig. 14 Bounding box that confines transient trajectories are delimited by the maximal and mini-
mal values of transients.

We thus define 4 remarkables coordinates defined as follows and illustrated in
Figure 14:

A :

{
∀n, x(n1) = max

n
(x(n))

y(n1)
(19)

B :

{
x(n2)
∀n, y(n2) = max

n
(y(n)) (20)

C :

{
∀n, x(n3) = min

n
(x(n))

y(n3)
(21)
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D :

{
x(n4)
∀n, y(n4) = min

n
(y(n)) (22)

In order to compare two transient signals analysis, we consider the signals’ phase
space diagrams for different values of lag [τ1,i,τ2,i]i∈[1,...,τmax]

and we look for their
extremum points

[
Ak,i,Bk,i,Ck,i,Dk,i

]
k=1,2. Then, we compute 4 matrices HA, HB,

HC and HD defined as follows:

HX =
{

hX ,i, j
}

i, j∈[1,...,τmax]
(23)

=
{
D
(
X1,i,X2, j

)}
(24)

where D describes a given metric and X the extremum point taken into considera-
tion.

Each matrix provides a ”map” of the distances between the extremum points
of each phase space diagrams calculated for different values of lags. Therefore, it
enables to discover which couples of lags [τ1,τ2] need to be used to provide a match
between two extremum points.
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Fig. 15 Temporal data of the studied signals

In order to illustrate this concept, let consider two transients related by a time-
scale transformation with the dilation coefficient α = 3. Temporal data presented
in Figure 15 shows that s2 (n) (in red) is only dilated compared to s1 (n) (in black)
and does not suffer amplitude changes. In this part, the purpose is to highlight the
time-scale relation between these signals.

We first calculate the 4 matrices described previously using the Euclidean norm
D2 defined as follows:

D2 (x) =
∥∥X1,i−X2, j

∥∥
2 (25)

Those 4 matrices are displayed in Figure 16 with the same colorbar. In this example,
we can see that the error is always really small for the extremum point B contrary to
the other points. Nevertheless, they all have in common a ’line’ representing the set



Multi-lag phase diagram analysis for transient signal characterization 15

of lags where the error is minimum. Those ’lines’ are shown in Figure 17 and we
can notice that they overlap. They describe the sets of lags [τ1,τ2] to use that would
guaranty a match of the 4 extremum points for the two signals. Thus, we can deduce
a relationship between the sets of lags by performing a linear regression. We obtain
that:

τ2 = 3τ1 (26)

which is consistent with the dilation coefficient.

τ
2

τ 1

(a)

10 20 30 40 50

10

20

30

40

50

τ
2

τ 1

(b)

10 20 30 40 50

10

20

30

40

50

τ
2

τ 1

(c)

10 20 30 40 50

10

20

30

40

50

τ
2

τ 1
(d)

 

 

10 20 30 40 50

10

20

30

40

50

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Fig. 16 The four matrices displaying the distance between extremum points of s1 (n) and s2 (n)’s
phase space diagrams for different values of lags τ1 and τ2: (a) HA, (b) HB, (c) HC and (d) HD.

To validate this result, we draw s1 (n) and s2 (n)’s phase space diagrams by using
the set of lags [τ1 = 3,τ2 = 9] (Figure 18). As a matter of fact both phase space
diagrams overlap perfectly.

This technique allows to highlight time-scale transformations. However, even if
this technique enables to match extremum points having the same coordinates for
certain couples of lags, we need to keep in mind that trajectories can still be different
as the other coordinates are not considered. This is why it is interesting to monitor
the area covered by the trajectory in the phase space which is the subject of the next
subsection.

3.4 Area calculation

Previous subsection has shown that it was possible to define four reference coordi-
nates for each phase space diagrams that allow to find matching correspondances,
however, it is not enough to guaranty the invariance. The next idea consists in cal-
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Fig. 17 Sets of lags [τ1,τ2] that provide
matches for the extremum points.
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Fig. 18 Phase space diagrams of T2,2 (s) and
T2,4 (s1) respectively in black and red.

culating the area of the diagram to quantify the surface. To do so, the diagram is
considered as a curve having at each instant n polar coordinates

[
ρτk (n) ,θτk (n)

]
.

We then calculate the area A [s,τk] covered by the phase space diagram calculated
for τ = τk:

A [s,τk] =
∫

θτk (N)

θτk (1)
ρ

2
τk
(n)
∣∣dθτk (n)

∣∣ (27)

We also define the matrix A [s1,s2] defined as follows that enables to calculate
the distance bewteen two signals s1 and s2’s phase space diagram areas computed
for different sets of lags [τ1,τ2]:

A [s1,s2] =
{

ai, j
}

i, j∈[1,...,τmax]
(28)

=
{∣∣A [s1,τi]−A [s2,τ j]

∣∣} (29)

It permits to find the sets of lags that offer similar areas for two phase space dia-
grams. This analysis can be complementary to the bounding box method to highlight
time-scale transformation for instance.

In order to illustrate this concept, let consider the example presented previously
that only presents a time-scale transformation. We first compute the area for s1 (n)
and s2 (n) using τ = 1, . . . ,50. The evolution of the area according to the lag is
displayed for both signals in Figure 19. As we can see, A [s1,τ] presents a clear
maxima for τ = 17, while A [s2,τ] does not have one. A maxima notifies a change
on phase space diagrams that can as an example change its first eigenvector.

The computation of matrix A [s1,s2] provides the sets of lags that offer matching
areas. They are highlighted by a black dashed line in Figure 20. For τ1 = 1, . . . ,17,
we can see that this line is also a straight line that verifies the following equation:

τ2 = 3τ1 (30)
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Fig. 19 Evolution of the two signals ’s area
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Fig. 20 The matrix A [s1,s2] denables to calcu-
late the distance bewteen two signals s1 and s2’s
phase space diagram areas computed for differ-
ent sets of lags [τ1,τ2].

This relationship confirms the dilation coefficient that has been used for the signals
simulation.

This method is really usefull when coupled with the bounding box method. They
enables to highlight time-scale transformations between signals.

3.5 Polar coordinates analysis

We have shown in Section 2 that amplitude changes can be enlightened from phase
space diagrams. Indeed there exists a scale factor between two signals having an
amplitude relationship. To highlight it, phase diagrams are turned into polar coordi-
nates as shown in Figure 21. The assessment is that for a given polar angle, radius
are directly connected by the amplitude coefficient.

Let consider s1 (n) defined as in Eq. 2 and s2 (n) defined as follows:

s2 (n) =
1
β

s1 (αn) (31)

with α = 2 and β = 1.4, as an example. That is, s2 is derived from s1 by a double
scale and amplitude modification.

Figure 15 and Figure 22 present temporal data and phase diagrams obtained for
m = 2 and respectively τ = 8 and τ = 16. Using this set of parameters, we know that
the phase diagrams would be superposed if the signals’s amplitudes were identical.
However due to this difference they present a shape-invariant scale transformation.

We turn the cartesian coordinates into polar coordinates and draw the functions
ρ (n) = f (θ (n)) for the two signals that are shown in Figure 23. As we can see,
both curves are similar and it is easy to imagine a linear relationship between them.
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O
x (n)

y (n)

r (
n)

θ (n)

Fig. 21 Trajectory expressed in polar coordinate system. Each coordinates is represented by a
radius and a polar angle.
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Fig. 22 Phase space diagrams of T2,2 (s) and T2,4 (s1) respectively in black and red

However, for a given polar angle, there is not always a correspondance between the
two curves (Figure 24). This is the reason why we propose an algorithm to match
corresponding coordinates with respect to polar angles.
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Fig. 23 ρ (n) = f (θ (n)) for T2,2 (s) and
T2,4 (s1) respectively in black and red
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Fig. 24 Zoom in of Figure 23.

Algorithm description:

For each polar angle θ1 (n) of the first curve, the algorithm searches for the corre-
sponding polar angle on the second curve θ2 (n). A match is enlightened if the two
conditions are met: {

θ2 (n1) = argmin |θ1 (n0)−θ2 (n)|
θ2 (n1) < ε

(32)

where n0 is the index of θ1 (n) we are looking for, n1 is the corresponding index for
θ2 (n) and ε a threshold error that enables to discard certain associations that are not
consistent.

The algorithm selects M pairs of coordinates and calculates a ratio r (i) defined
for i ∈ {1, . . . ,M} such as:

r (i) =
θ1 (n0i)

θ2 (n1i)
(33)

Figure 25 presents the pairs of coordinates that have been selected by the algo-
rithm and the associated ratio. In this example, we can see that the ratio is consis-
tent along the entire polar angles interval which corroborates the idea of a shape-
invariant scale transformation. Moreover, the ratio is here equal to 1.4 which is the
value of β .

We have seen in this example that it was possible to estimate a shape-invariant
scale transformation. The same work can be done along an interval of polar angles
that would highligh amplitudes changes on this interval.
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Fig. 25 (a) Pairs of coordinates that have been selected by the algorithm to calculate the amplitude
modification known as r (n) (b)

4 Application example

In order to characterize transient modifications due to its propagation through a
cable, we now conduct an experiment using the facilities existing in our lab. We
generate a partial discharge (PD) on an electric cable whose ends T1 and T2 are con-
nected to a data acquisition system. The PD source is respectively localized at L1
and L2 distances from the recording devices, as presented in Figure 26.The main
idea is to estimate the relative propagation distances by comparing the relative de-
formations between the recorded signals. We note s0 (n) the generated PD, s1 (n) the
signal recorded at T1 and s2 (n) the signal recorded at T2.

×T1 T2

L1 = 304m L2 = 762 m

Fig. 26 Experimental outline

Time representation of emmitted and recorded signals are presented in Figure 27.
As we can notice, signals recorded after propagation through the cable reels differ
from the emitted one due to the propagation through the medium. They present
nonlinear dilation and amplitude changes that are more or less stronger depending
on the propagation range. Temporal changes are shown in Figure 28 where studied
signals have been superposed and normalized.

What is interesting with this kind of signals is that we can easily visualize that
a time-scale analysis would not be enough to characterize the modifications caused
by the propagation. There are dilation and also a modification of the envelop of
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Fig. 28 Time representation of the superporsi-
tion of normalized signals that highligths dila-
tion and amplitude changes.

the signal that would be difficult to analyze with a single type of mother wavelet
function. This is shown by Figure 29 where a time-scale study is performed for
the three signals using the Symlet mother wavelet. The results highly depend on
the choice of mother wavelet used and for the three cases, even if it is easy to detect
them, it is quite difficult to claim that they come from the same source as waveforms
changes with the propagation. This is the reason why it is usefull to move forward
MLPDA which is presented next.

Fig. 29 Time-scale study using the symlet mother wavelet for (a) s0 (n), (b) s1 (n) and (c) s2 (n).

To begin with, we need to normalize the signals by their maximal values, then
compute their phase diagrams for τ = 1, . . . ,20, search for the 4 extremum points
A, B, C and D, and finally compute the distance matrices HA, HB, HC and HD as
presented in subsection 3.3. We then look for the sets of lags [τ1,τ2] that minimize
the distances between each extremum points.

Thus, after the computation, we can see that it is not possible to superpose the dif-
ferent C and D coordinates, which is coherent with the normalization of the signals
by their maximum values. On the contrary, we can superpose the A and B coordi-
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nates. To illustrate this, we compute T2,4 (s1) and T2,6 (s2) shown in Figure 30, and
T2,5 (s1) and T2,8 (s1) shown in Figure 31. We can see that the top right parts of the
two trajectories superpose well in the first case compared to the other one, even if
the distances between A1 and A2, and B1 and B2 are smaller in the second case. This
result confirms that the bounding box method cannot be used alone to determine
dilation relationship. It needs to be coupled with a verification of the trajectories
and/or other methods. Nevertheless, according to Figure 30, we can conclude that
there is a dilation coefficient equal to τ2

τ1
= 3/2 between the positive parts of s1 (n)

and s2 (n).
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Fig. 30 Superposition of T2,4 (s1) and T2,6 (s2)
phase space diagrams. Even if the distances
d (A1,A2) and d (B1,B2) are not minimal, the
top right parts of the diagrams superpose well.
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Fig. 31 Superposition of T2,5 (s1) and T2,8 (s2)
phase space diagrams. The distances d (A1,A2)
and d (B1,B2) are smaller than in the first case
but the diagrams do not superpose well.

In order to quantify the time-scale coefficients obtained with MLPDA tool, we
propose to define an estimated dilation coefficient obtained as follows. For the nor-
malized signal’s parts of interest, we calculate the number of samples where the
signal’s amplitude is higher than half the maximal value, i.e. 0.5 and then compute
the ratio between the two numbers to obtain the estimated dilation coefficient. For
positive part, we obtain a ratio τ1/τ2 equal to 8/12, i.e. 2/3 which corresponds to
the coefficient we previously estimated.

As a conclusion, we can say that multi-lag tools have been used on partial dis-
charge in order to characterize two signals received at two ends of cable reels. We
have highlighted a time-scale transformation of the positive parts of the recorded
data after propagation.Therefore, MLPDA tools have shown that they are promising
to extract information from signals that suffer nonlinear modification.
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5 Conclusions and perspectives

In this article, we have shown in a first part that transients that were connected by
time-shifted operator, time-scaling operator and amplitude modification, have in-
variant (or shape-invariant) phase diagrams if the lags were chosen wisely. We then
proposed different methods to extract parsimonious parameters from each repre-
sentation and combine all of them to highlight the named properties. So far, the
developed methods provided good results for numerical examples as we showed in
the last section.

Future axis of research can propose to extend this work to higher embedding
dimensions. One possible idea could be to apply the same methods to the projections
of phase diagrams onto the different planes of the phase space. More work should
also be done to explore linear and nonlinear amplitude modifications.
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