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Evaluation of Off-The-Shelf CNNs for the Representation of Natural Scenes
with Large Seasonal Variations

Amandine Gout1,3, Yann Lifchitz1,3, Titouan Cottencin1,3, Quentin Groshens1,3,
Shane Griffith2,3,4, Jérémy Fix1,4, Cédric Pradalier2,3,4

Abstract— This paper focuses on the evaluation of deep
convolutional neural networks for the analysis of images of
natural scenes subjected to large seasonal variation as well
as significant changes of lighting conditions. The context is
the development of tools for long-term natural environment
monitoring with an autonomous mobile robot.

We report various experiments conducted on a large dataset
consisting of a weekly survey of the shore of a small lake
over two years using an autonomous surface vessel. This
dataset is used first in a place recognition task framed as a
classification problem, then in a pose regression task and finally
the internal features learned by the network are evaluated for
their representation power.

All our results are based on the Caffe library and default
network structures where possible.

I. INTRODUCTION

Mar. 14 June 25 Aug. 12
Fig. 1. Examples of variation in appearance of a section of the lake
shore from winter to summer. The significant variation in the vegetation
and lighting conditions makes place recognition particularly challenging.

Long-term natural environment monitoring using visual
inspection is the process of collecting images of an outdoor
landscape over a long duration with respect to the natural
dynamics of this environment. In our case, we are specifically
considering the weekly observation of a lake shore over mul-
tiple years using an autonomous boat programmed to follow
the shore at a constant distance while recording images. As
such, our images depict scenes which are combinations of
close-up trees, far-away trees, bushes, lawns, water and sky,
with a high level of similarities. Because we work in a natural
setting, this environment is subjected to seasonal changes
(trees blooming, leaves falling, ...), structural changes (cut
branch, fallen trees, mowed lawns) and weather variations
impacting the lighting condition, spectrum and incidence.
Figure 1 gives an example of a relatively easy group of
images in our dataset.

To assess the difficulty of interpreting these images, in a
previous work, we evaluated the time required by a human
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to decide if two images correspond to the same place albeit
at different time of the year. For some image pairs, our test
subjects took more than 30 seconds to confirm their answer.

One of the challenges of natural environment monitoring
is to be able to compare the appearance of vastly varying
outdoor settings for detecting and classifying changes (e.g.,
structural damage).

In this context, this paper focuses on the evaluation of
deep convolutional neural networks (CNN, [1]) applied to
images of natural environments subjected to large seasonal
variations. The task we set ourselves has three stages. For the
first, we evaluate the ability of a CNN to recognize a place
independently of the seasonal and lighting changes. This
problem is framed as a classification task where each class
is a location around our lake shore and a standard network
structure can be used. In the second stage, we consider
a CNN trained to predict the pose (or view point) of the
camera (2D position and heading) using an adapted network
structure suitable for a regression task. Finally, in the third
stage, we evaluate the quality of the internal representation
learned by the convolutional layers of the CNN to describe a
place independently of its seasonal appearance as well as the
generalizability of the resulting features. This third stage is
important for the potential of this internal representation to
be used to detect changes with respect to a season-invariant
representation of a place.

This study serves not to develop new network architec-
tures, but rather to evaluate standard off-the-shelf tools in the
context of a recurring question in robotics. For this reason,
all the results presented in this paper have been trained using
the Caffe library [2] with a default network structure where
possible.

In summary, this paper contribution is two-fold. First, it
introduces a relatively unique long-term natural environment
monitoring dataset. Second, this paper is a benchmark on the
performance of off-the-shelf CNNs for the very particular
task of processing images of natural environments subjected
to large seasonal changes and natural lighting conditions
variation.

II. DATASET AND EXPERIMENTAL SETUP

We have been creating a dataset of a natural environment
since August 2013, which is the basis for this study. Since
then, every 8 to 15 days, we operate an autonomous sur-
face vessel (Kingfisher from Clearpath Robotics, see fig. 2)
around a small lake next to our campus. This lake is 400m
long by 200m wide, with a small island and a total perimeter



of 1km. Its shores are covered with trees, from small bushes
to tall full-grown trees, some at the water line, others further
away, grass areas are mixed with the shrubberies and a small
scenic trail runs around the lake. Some of the places (as in
Fig. 1) have office buildings in the background.

Fig. 2. The Kingfisher on a very smooth lake. The pan-tilt camera is
housed in the white dome at the back of the boat, just behind the laser
scanner used for navigation.

Every survey we collect contains images acquired by a
pan-tilt surveillance camera (704 × 480 pixels) at 10Hz
with a conservative JPEG compression. The boat runs au-
tonomously at a constant distance of 10m to the shore
(lattice-type local planner) and at a bit less than 1km/h.
This means that a survey is a collection of close to 40’000
images, acquired with the camera pointing to the port or
starboard side of the boat (i.e. ±90o from the direction of
travel). In addition to the images, we record all the boat
sensor data: position from GPS, heading from compass, pitch
and roll angle from IMU although they can be neglected and
proximetry from the laser range finder (not used beyond the
on-board controller in this study).

This study includes data from 80 surveys from the second
half of 2013 up to the end of 2015. This corresponds to
potentially a bit more than 3’000’000 images collected over
80km of autonomous navigation.

The particularity of our dataset is that most of our im-
ages depicts natural scenes combining some water, trees
and shrubberies at various distances, sometimes grass areas
and/or far-away buildings, and sky. All of these elements
are challenging for computer vision: the lake surface acts
as a somewhat deformable mirror, sometimes very smooth
and reflective and at other times not reflective at all due
to wavelets. Additionally, flooding events means that the
water line can move by up to 1m in some surveys. Trees
are challenging for three reasons, first these ones do not
always have leaves, second they are fractal self-similar
structures, and last they are 3D semi-transparent structures
whose appearance is very sensitive to view point, especially
in winter. Finally, the sky varies with the weather and the sun
position. Because we run the boat on the perimeter of the lake
at different times of the day and as long as it is not raining (to
avoid water drops on the camera dome), our images are also
sometimes affected by sun-glare or very challenging dynamic

range requirements.

III. RELATED WORK

Mounting evidence suggests that the traditional approach
to data association, i.e., using local image features, is unreli-
able in unstructured environments. It is more applicable the
more structured an environment is. Point–based features can
be associated well indoors, but special care has to be taken
as they are applied in urban environments (e.g., street-view)
[3], [4]. They lose representational power as the environment
changes with night [5], rain [6], and shadows [7]. This
means that in some natural environments, like lake shores,
point–based feature matching is sporadic even among images
from the same survey, and is unreliable between different
surveys [8].

The lack of a dominant method for data association in out-
door environments has led to a number of new approaches.
All of them function using some form of information beyond
the capabilities of point–based features. Image sequence [9],
[10], [11], [12], [13], image patch [14], [15], and whole
image [16], [17] techniques are becoming increasingly de-
pendable. There are, however, still shortcomings among
them. A common limitation is robustness to changes in view-
point among some approaches based on sequences or whole
images. This may not be a factor in monitoring applications,
however, since surveys are captured from similar trajectories;
the viewpoint and the scale are relatively stable between
images (see e.g., [18]).

In the recent years, deep neural networks have become
very popular methods for solving both classification and
regression problems because technical difficulties related
to their training have been overcome. In the context of
image analysis, CNNs have been around for several decades
because they benefit from inherent regularities in images to
constrain the trained architecture and their architecture regu-
larize more general deep neural networks. In the recent years,
deep CNNs have set multiple benchmarks for state-of-the-art
performance on various machine learning tasks [19], [20].
Of particular interest for our study, deep CNNs have been
successfully applied to place recognition [21] (a classification
task), pose regression [22] and viewpoint estimation [23].
Finding the best neural network architecture for solving a
given machine learning problem can be very challenging. In
this study, we consider the CaffeNet architecture which is an
implementation in Caffe[2] of the AlexNet CNN [19]. This
network had state of the art classification accuracy on the
ImageNet Large Scale Visual Recognition Challenge.

IV. METHODOLOGY

A. Data Pre-Processing

We consider two experimental setups: a classification task
and a regression task. For the classification task, each image
is labeled with the discretized pose of the robot. The pose
consists in the position (from the GPS) and the heading (from
the compass) of the robot. The position is discretized into
a 350 m by 600 m grid, with 2.5 meters squares, centered
over the lake. The heading is discretized in nonoverlapping



angular sectors of 10 degrees. This formulation has a total
of 1’209’600 unique labels.

A subset of the label space was observed in our dataset. Of
the different labels that were observed, some were eliminated
in order to obtain a balanced training set. That is, a class was
only used if it was at least half as big as the largest class,
which contained 1750 images. The training set consisted of
295 classes with approximately 1’000 images for a total
of roughly 300’000 images. 5000 images were randomly
selected for the test set.

The regression task used the same set of images and the
labels were defined from the pose of the robot. An alternative
was to use the position and the heading of the robot as labels,
but this would imply to define a specific loss taking into
account the angular nature of the heading. Although feasible
in Caffe, this requires an in-depth modification of the library.
Instead, we used a Euclidean loss and therefore defined
the labels as a four-component vector with the position
of the robot (from GPS) and the position of the point 10
meters away from the robot along the optical axis of the
camera. One potential drawback of this approach is that the
regression problem becomes more complicated than if we
were to predict the position and heading since it requires
the regressor to predict a specific location along the heading.
However it turns out that despite this constraint, the regressor
performed reasonably well (see section V-B). Finally, in
order to ease the definition of the learning rate and to speed
up convergence of learning, the labels to be regressed are
normalized and centered.

B. CNN architecture and training

In this study, we used the AlexNet CNN[19] trained in
Caffe[2]. The network consists in five convolution layers,
five pooling layers, seven rectified linear unit layers, two
normalization layers and three fully connected layers. Minor
modifications were required to successfully train AlexNet.
For the classification task, the size of the mini-batches is
decreased to 32 samples and learning rate was decreased at
a regular rate 10 times throughout training. The output layer
of the fully connected part of the architecture uses a soft-
max transfer function to get a probability distribution over
the labels and the loss is the cross-entropy classification loss.

For the regression task, a linear output transfer function is
considered and the loss is the Euclidean loss. Experimentally,
it was required to consider a lower learning rate than AlexNet
which otherwise lead to a divergent loss. As we shall
see in the result section, several strategies for setting the
learning rate are considered. For both the regression and
classification problems, the architecture is trained with the
default CaffeNet settings, namely stochastic gradient descent,
a momentum set to 0.9 and a weight decay to 0.0005.

C. Extracting season invariant representations

Being able to classify an image as belonging to one part
of the lake with its viewpoint or to regress from it the pose
of the boat are of interest by themselves. However, one
of the objectives of the study was also to extract season

invariant representations in order to detect the changes of
the lake shore. This part of the study was done using the
network trained for the classification task. For every class
of the selected dataset, a prototypical image was computed
by averaging all the filter responses, at a given depth of the
network, of all the images belonging to the considered class.
A query image is then propagated through the network up
to the depth where the prototypes have been computed, the
responses of all the filters at that depth are then averaged and
this representation is compared to the computed prototypes.
The quality of a prototype image is assessed using the cosine
similarity between the representation of the query image and
the prototype. A new image is labeled by picking the class
whose prototype has the largest similarity with the image’s
averaged representation.

V. RESULTS

A. Classification

Our best training on the aforementioned dataset was made
with 300 000 iterations over mini-batches of size 32 (down
from the default 256 for better accuracy), with a learning
rate decreasing at a fixed rate ten times during the course of
training. The full training took 5 days to finish on a Tesla
K20C machine, and attained 70% accuracy on the test set,
on a top-1 classification basis. Such results are satisfactory
considering the similarities of natural scene images. It should
be noted that classification was not the main goal, but
a good classification will intuitively lead to better class
representations.

We can thus extract the trained filters responses to see
how images are processed by the network. The conv1
layer mostly learned edges, namely the skyline and the
waterline. Conv2 detected foliage, and convolutional layers
3 through 5 contained low-level features. We tested prototype
generation on all convolutional layers, as well as the last
pooling layer pool5, shown in Fig. 3.

Fig. 3. Example of prototypes for a given image

We generated prototypes for all classes, and tested whether
an image can be recognized only using its class prototypes.
Testing over a thousand random images and measuring using
a cosine distance shows that all layers can be used as suitable
descriptors, with distances to the wrong prototypes being



indubitably larger than distances to the right prototype on
average (see Table I, column 2 and 3 and Fig. 4)

Layer Overall Ratio Precision (%) Ratio (seen) Ratio (unseen)
(full dataset) top-20 (1st half) (2nd half)

conv1 1.76 43.9% 1.70 1.03
conv2 2.99 42.3% 0.93 0.96
conv3 1.86 34.8% 1.40 0.94
conv4 1.79 08.4% 1.16 1.00
conv5 1.68 57.3% 1.32 0.98
pool5 1.86 52.0% 1.42 0.95

Ratio of median distance of a random image to the wrong prototypes
over median distance to the correct prototype. 2nd column refers to the
ratio achieved using the complete dataset for training. 3rd column give
the percentage of successful top-20 classification using the distance to the
prototypes of the full dataset. 4th column is similar but using only half of the
classes. 5th column evaluate the generalization performance by evaluating
images from the classes not used for training.

TABLE I
CLASSIFICATION PERFORMANCE

We also trained the same network on half the classes, to
test for generalization capabilities. We tested whether the
network learned to reduce the dimensionality of an image
into its season–invariant representation. In the case of the
classes observed in the training set, the representation results
are analogous to the full dataset. However, the internal
features were not discriminative when applied on images
from unseen classes (Table I, columns 4 and 5). The network
learned to discriminate between its known classes, but it did
not produce a season–invariant representation.

B. Regression

The objective of the regression task is to perform local-
ization with performance comparable to an inexpensive GPS
system. The training parameters were tuned to reach the best
performance in the regression task.

The layers of the network were initialized using normal
distributions. The initialization variances were set to 0.1
for Conv1 and 0.05 for Conv2, Conv3, Conv4 and Conv5.
This made the weights big enough to propagate information
through the network while still ensuring convergence. The
initial learning rate and its evolution policy heavily depends
on the loss function. For the regression task, very high values
and a diverging behaviour were observed with the Euclidean
loss at the beginning of the training. The learning rate and
the weight decay on the last fully connected layer had to be
set to 5e-04 and 2.5e-6, respectively, to avoid these effects.
The learning rate policy was set to the “step” policy from
Caffe and it was chosen to decrease the learning rate by half
every 25’000 iterations. In our case this corresponds to the
number of iterations required to observe the stabilization of
the loss after each exponential decrease.

In this context, we tested three different approaches. The
first one consists in training every convolution layer with the
same learning rate. The second one consists in fine-tuning
the learning rate of the Conv1 layer based on the results
given by the first approach. The third one consists in loading
the weights of the convolution layers from the classification

a) First approach b) Second approach c) Third approach

Fig. 6. Conv1 filters after 135 000 iterations.

training. In order to compare our results with those three
approaches, we refer to the following loss function :

Loss =
0.5

scale2
∗

∑
i=1, 4

(labeli − predictioni)
2 (1)

The first approach allowed to achieve an average error
of 19.3 meters per label as it is shown in Fig. 5.a. The
loss computed on the test dataset is plotted in green and
the loss computed on the train dataset is plotted in blue.
However after the training, the convolution layer filters
did not exhibit any specific features (Fig. 6.a). Thus, it
appears that the regression was only supported by the fully
connected layers. Because our goal is to build a season-
invariant representation of natural scenes, this approach did
not reach our expectations.

The second approach led us to push further the differ-
ence of behavior between the fully-connected layers and
the convolution layers. By doubling the learning rate and
the weight decay for Conv1, we forced the convolution
layers to contribute more to the regression. This method
resulted in being more successful than the previous one. The
best average error we achieved was 18.3 meters (Fig. 5.b).
Some natural environment features can be identified in the
convolution filters (Fig. 6.b).

The last approach used the same learning rate settings
as the first approach. It was observed that the convolution
weights decreased during the training and ended with a
distribution similar to the second approach. The best average
error achieved was 20.9 meters (Fig. 5.c). However the
convolution filters retrieved exhibited different structures
than the second approach (Fig. 6.c). Based on this result
it can be concluded that the convolution weights learned
during the classification training could not be reused for the
regression task. The weights needed for this task required
a smaller variance and the final model presented the worst
results among the three approaches. Consequently, learning
from normally distributed convolutional gains seems to be
more efficient in the case of a regression.

The best results regarding the loss values on the train
and test datasets were achieved with the second approach.
After 150’000 iterations, the prediction errors are centered
Gaussian-like distributions with a standard deviation of 11.8
meters on X and 21 meters on Y. The labels were displayed
to be compared to the predicted positions (Fig. 7.a and b).
The red and green dots represent the original labels and the
blue and purple dots represent the predicted labels. The error



Fig. 4. Red dots represent the distance from a random class image to its class prototype, blue dots are distances to other class prototypes. Graphs show
layers conv1 through pool5.

a) First approach b) Second approach c) Third approach

Fig. 5. Loss Function for 135 000 iterations.

between X and Y coordinates of the predicted and original
labels was also plotted on Fig. 7.c and was found to be
centered on the origin without significant bias.

VI. CONCLUSIONS

This paper evaluated the performance of off-the-shelf
CNNs on a place recognition task and a pose prediction task
for natural environments under large seasonal changes, in
the context of a long-term autonomous monitoring problem.
To this end, we presented an original dataset consisting in
several million images taken at weekly interval on the shore
of a small lake over two years.

The inconsistency of the appearance of the water and the
sky, as well as the strong seasonal changes of vegetation
and the weather-dependent lighting conditions proved to be
manageable both for the classification task (70% precision)
and for the pose regression task (20m standard deviation
over 1km of shore line). However, it turned out that using

the standard network architecture did not result in learning
generalizable features leading to a season-invariant represen-
tation of the environment. Because Caffe was too limited
to explore this possibility within this study, a more general
network architecture (as in [24]) would be appropriate.
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