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Abstract—Transient signals have proved to be difficult to
characterize/classify because of their short duration and broad
spectrum. Methods based on time-frequency analysis are used for
transient detection, but their characterization is limited when it
comes to similar signals that have close amplitudes and frequen-
cies. This paper presents the multi-lag phase space analysis, an
alternative to the classical approaches for the characterization of
transient signals. New tools developed for this method are applied
on multi-path acoustic signals which are acquired using an
acoustic microphone placed in the center of a facility surrounded
by walls. The results are compared with the ones obtained using
time-frequency analysis.

Index Terms—Phase space, transient, recurrence, lag.

I. INTRODUCTION

Multi-path propagation implies that the received signal is the
sum of the attenuated and delayed versions of the emission.
Interference and phase shifting are a common occurrence in
signal processing application, the effects of which can have
a negative or positive effects on the results. When the source
is represented by an electrical arc coming from a photovoltaic
panel, it is important to classify the multi-path recorded signals
in order to insure the safety an reliability of the system. While
the detection of these faults was successfully achieved using
the time-frequency analysis [1], their characterization arises a
great interest for the classification of these signals in terms of
system’s monitoring [2].

The multi-lag phase space analysis is based on the phase
space representation concept and it describes the evolution
of a dynamic system in a multidimensional space, namely
its phase space for multiple lags. Reference [3] presents the
capability of discrimination between two similar signals using
their evolution in the phase space.

Furthermore, new tools have been developed based on the
multi-lag phase space analysis. The method is based on the
evolution of a signal in a multi-dimensional phase space
which creates a trajectory [4], [5]. This trajectory is described
using several parameters (extreme points, area, position vector,
angle, etc.) that change with the lag. In this paper, we present
a new technique for the characterization of transient signals
based on the information provided by the trajectory and its
defining parameters. We will prove that it is possible to

distinguish between multi-path acoustic signals using these
tools .

The paper is organized as follows: section II describes the
concept of phase space representation, section III presents the
new tools introduced for the multi-lag analysis and section IV
shows the results obtained using the proposed method. Section
V gives further interpretation of the results and points out our
future work.

II. PHASE SPACE REPRESENTATION

The concept of phase space representation comes from the
dynamical systems theory [4] describing the evolution of a
system in order to emphasize the states where the system
returns. This evolution is highlighted by the trajectory obtained
in the phase space. The trajectory is determined only by
the measurement made on the system. For this reason, the
multi-lag phase space analysis is a data-driven method which
is a major advantage, because it does not need any prior
information about the system.

A received signal is considered a measurement expressed
as the time series[5] from eq. (1).

s = {s[1], s[2], ..., s[N ]} (1)

The time series is, then, represented in a m dimensional
phase space. In this phase space, the values of the time series
become the coordinates of the vectors represented:

−→v[i] =

m∑
k=1

s[i+ (k − 1)τ ] · −→ek , i = 1,M (2)

where −→v[i] are the phase space vectors, m is the embedding
dimension of the phase space, τ is the delay (lag) between the
samples, M = N − (m−1)τ and −→ek are the axis unit vectors.
Plotting these vectors in the phase space gives the trajectory of
the system and each intersection of this trajectory represents
a recurrence point.

The multi-lag phase space analysis can illustrate the evo-
lution of the signal in any dimension, however we consider
the representation of the signal in two dimensions, in order
to simplify the interpretation of the results. Nevertheless, if
the studied signals are more complex and a higher dimension
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would be more suitable, yet the 2D representation would be
just the projection of those signals and its analysis would stand
meaningful.

Hereby, considering the Cartesian coordinate system, the
phase space points are given by:{

xn = s[n]

yn = s[n+ τ ]
(3)

where n is the n-th sample of the mesured time series and
−→v[n] = xn ·

−→
i + yn ·

−→
j .

We recall several proprieties of this representation, as men-
tioned in [3]. Considerind the signals s, s1, s2 and s3 with the
following correspondence:

s1[n] = s[n+ δ]

s2[n] = s[αn] (4)
s3[n] = β · s[n]

where α, β and δ are constant that modifie the evolution of
s signal, the subsequent properties arise:

−−→v1[i] = −−−→v[i+δ]
−−→v2[i] = −−→v[αi] (5)
−−→v3[i] = β · −→v[i]

Based on these properties, the multi-lag phase space rep-
resentation allows us to emphasize the similarities between
signals as those from (4), their trajectory being invariant to
translation and directly related to the lag and amplitude [3],
[6], [7].

Thus, the unique representation of the trajectory depends on
the lag and it is necessary to develop new tools in order to
characterize the trajectory on the phase space. These tools are
needed for a complete description and comparison between
similar signals.

III. NEW TOOLS FOR MULTI-LAG PHASE SPACE
ANALYSIS

In order to point out the properties for the newly developed
tools, we consider the test signals similar to the ones used in
[3].

Let the signal x(ω,α,ϕ)[n] be a generic signal given by eq.
(6). Hereby, we consider two similar signals s(ω1,α1,ϕ1)[n] and
sf (ω2,α2,ϕ2)[n], respectively where ω1/ω2 = 1.0256, a1/a2 =
0.667 and ϕ1 − ϕ2 = −π/3. In addition, a third signal is
considered, sd[n] which is the dilated version of s[n] with
α = 2 according to eq. (4).

x(ω,α,ϕ)[n] =

{
cos[ωn+ ϕ] · exp[−an], for n = 1, N,

0 otherwise
(6)

Figure 1 shows sd[n] is the dilated version of s[n], having
the same duration and amplitude, while sf [n] seems to be
similar to s[n]. In [3], the wavelet approach has shown that
these signals can not be set apart, but using the multi-lag phase
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Figure 1: Signals used for highlighting the properties of multi-
lag phase space analysis: (a) s[n], (b) sd[n], (a) sf [n],

Time[sam]

S
ca

le
s

CWT for s

 

 

200 400 600

20

40

60

80

100

120
−2

−1

0

1

2

3

(a)
Time[sam]

S
ca

le
s

CWT for s
d

 

 

200 400 600

20

40

60

80

100

120
−4

−2

0

2

4

(b)
Time[sam]

S
ca

le
s

CWT for s
f

 

 

200 400 600

20

40

60

80

100

120 −2

−1

0

1

2

3

(c)

Figure 2: Continuous wavelet transform (using Haar mother
wavelet function) the signals used to highlight the properties
of multi-lag phase space analysis

space representation the distinction can be made. Figure 2
shows the lack of information that can be obtained using the
wavelet approach for the signals previously considered.

The main concept of the multi-lag approach is presented in
fig. 3 .

The first tool proposed represents the extreme points on the
trajectory. We consider four possible extreme points on the
trajectory: 

A(xkA, ykA), xkA = max
n

(xn)

B(xkB , ykB), ykB = max
n

(yn)

C(xkC , ykC), xkC = min
n

(xn)

D(xkD, ykD), ykD = min
n

(yn)

(7)

For two trajectories corresponding to two signals, if the
extreme points overlap (no matter the lag used), it is highly
possible that their trajectories are similar (and so their cor-
responding signals), otherwise the signals are different. This
parameter is very useful when it comes to study two dilated
signals with the same amplitude.

In order to highlight the advantages brought by the points
defined by (7), we determine their coordinates for lag τ =
1, ..., 25 (half a period of s[n]), then compute the differences
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Figure 3: The schematic presentation of the multi-lag tools
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Figure 4: (a) The minimum difference between the extreme
points on the phase space of s[n] and sd; (b) Phase space
representation of s[n] for lag τ1 = 5, respectively sd[n] for
lag τ2 = 10.
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Figure 5: (a) The minimum difference between the extreme
points on the phase space of s[n] and sf ; (b) Phase space
representation of s[n] for lag τ1 = 5, respectively sf [n] for
lag τ3 = 5

between them and, finally, we keep only the minimum values
for each lag according to eq. (8).

∆X = min(Xs1 −Xs2) (8)

where Xsi represents one of the extreme points of the
trajectory from eq. (7) corresponding to the trajectory of signal
si, i = {1, 2}. The results are presented in fig. (4) and (5).

From fig. 4, it can be observed that the evolution of the
trajectory of sd[n] is the same as the one of s[n] when τ2/τ1 =
2, emphasizing the hypothesis that α = 2. For this reason, the
positions of these points overlap.

Concerning the evolution of sf [n], fig. 5(a) shows that the
extreme points do not overlap perfectly. In the representation
of the phase space for these signals, we choose τ1 = τ3 = 5,
due to the fact that there the positions of the extreme points
start to partially overlap. It can be seen that the trajectories of
the signals are different ( fig. 5(b)). It can be noticed that the
amplitude difference and frequency shift has a major impact
upon the evolution of the trajectory.

This observation leads to defining two more approaches:
the elliptic modeling and the polar coordinates representation,
respectively.

The use of the elliptic modeling is derived from [3]. The
idea is based on the fact that the phase space evolution of a
sine wave is an ellipse. We model the ellipse of the trajectory
considering the solution that minimizes the system:
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Figure 6: (a) The evolution of the area according to the lag;
(b) the phase space representation for approximately the same
value of the area (A = 1.35) : τ1 = 10 and τ = 10

S =

M∑
i=1

[F (xi, yi)]
2 (9)

where F (x, y) = Γx2+Λy2+1. A least square estimation is
performed on the sum from eq. (9) resulting the pair (Γ,Λ). It
goes that the semi-major axis a = 1/

√
Γ and the semi-minor

axis b = 1/
√

Λ.
According to [5], [8], a lag that determines an average

area describes a clear trajectory and excludes the cases of
irrelevance or redundancy. Hence, after the elliptic modeling,
we estimate the area of the circumscribed ellipse that includes
the points on the trajectory.

Figure 6 highlights the evolution of the area in multi-lag
representation. Obviously, that for the same value of the area
for sd[n] and s[n], the ratio between their lags is α = 2.
Instead, it can be noticed that, although the lag-area evolutions
have the same trend for sf [n] and s[n], at higher lags, the
values from sf [n] are slightly smaller than those of s[n]. In
terms of evolution into the phase space, we have chosen a lag
where the value of the area is different (fig. 6(b)). The phase
space representation for the same value of the area (for τ1 =
τ3 = 5) is given in fig. 5(b). The phase space representations
are different regardless of the used lag. The shape of the ellipse
is directly related to the frequency and amplitude content of
the signal [5], [8].

Using the lags from the elliptic modeling , we represent the
phase space trajectory in polar coordinates (eq. (10)).

ϕ[n] =
√
x2n + y2n

θ[n] = arctan
yn
xn

(10)

This representation is very useful for the study of signals
having a certain amplitude variation. Figure 7 presents the
evolution of sd[n] which is exactly the same as the one of
s[n]. However, although sf [n] exibits the same number of
oscillations as s[n] (given by the number of curves on the
phase diagram), the length of the vectors for negative angles
is smaller than the corresponding vectors of s[n]. The lengths
of the vectors for positive angles are also smaller than those of
s[n], except for the curve placed on top of the phase diagram.
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Figure 7: Polar coordinates representation: (a) s[n] (τ1 = 5),
(b)sd[n] (τ2 = 10), (c) sf [n] (τ3 = 5)
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This is directly related with the different amplitude modulation
of the signals.

Moreover, the number of points between the negative angle
peaks and the positive angle peaks are directly related to the
fundamental frequency of the signal, which is, in fact, a semi-
period of the signal. Let n0 be the number of points. It goes
that:

T0 =
2 · n0
fs

(11)

where T0is the fundamental frequency of the signal and fs
its sampling frequency.

Using eq. (11), we obtain fs/fsf = 1.024, pointing out
when two signals are the same (using the extreme points),
as well as to discriminating them (using the area and phase
diagram).

IV. MULTI-PATH ACOUSTIC SIGNALS

Considering the new information highlighted by these new
tools of representation, we use them in the characterization of
a multi-path acoustic signal, fig. 8.

The signal was acquired with an acoustic microphone. It
can be observed that s1 is the signal arrived at the sensor on
the direct path and s2, s3 are the reflexions of the acoustic
signal arrived on other paths.

In fig. 9, we present the results obtained using the wavelet
transform. Apart the signal amplitudes, there is no other
discrimination between the multi-paths.

However, considering the tools presented in section 3, we
used the elliptic modeling and determined the area of the
circumscribed ellipse of the trajectory in the phase space. The
signals are normalized to eliminate the area differences caused
by the attenuation of s2 and s3. The results are presented in
fig. 10.
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Figure 9: Percentage of energy for each wavelet coefficient:
(a) s1; (b) s2; (c) s3
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Figure 10: The multi-lag phase space representation of the area
of the points from the trajectory

It can be noticed that the areas have different progress,
although the signals are normalized. Still, their evolution
seems to have the same trend. The choice of the lag is
made so that the area of trajectories on the phase space
maintains approximately the same average value (A = 1.02):
τ1 = 11, τ2 = 12, τ3 = 8. Figure 11 illustrates the phase
diagram representation of the signals using the lags found in
the previous paragraph.

It can be seen that the reflected signals are attenuated,
because the norms of the reflexions s2 and s3 are significantly
smaller that those of s1. Moreover, it appears that the reflex-
ions have fewer curves with peaks than the direct path signal,
meaning that the reflexions bear fewer oscillations, which can
be assigned to dispersion. The oscillations with an energetic
level comparable to the noise are plotted on the thick area,
therefore a discrimination between the relevant signal and the
noise is hard to be obtained.

In addition, using the eq. (11), we obtain fs1/fs2 = 0.94
and fs1/fs3 = 0.92. Therefore, the reflected signals suffer
a frequency shift. This is because of their propagation path
where multiple phenomena take place: reflexion, diffusion,
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Figure 11: Polar coordinates representation for : (a) s1 : τ1 =
11 , (b) s2 : τ2 = 12, (c) s3 : τ3 = 8
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dispersion, etc.

V. CONCLUSION

In the last years, transient signals have been the subject
of major investigation and discussion in the signal processing
community. While the transient signal detection is possible,
their characterization/classification concerns a lot of applica-
tion context, because of their effects that they can bring to the
system according to their amplitude and/or frequency content.

As a follow-up of [3], the paper presents new methods of
characterization and discrimination of transient signals. The
methods are based on the concept of phase space representa-
tion which has its roots in the dynamical system theory. Firstly,
the tools developed for the characterization are emphasized
and their use is exemplified on simulated transitory signals. In
the second part, these new concepts are applied on a multi-path
acoustic signal. The extreme points method is able to highlight
when two signals are alike. The elliptic modeling and the
area provide important information for the discrimination and
characterization of two similar signals. For the real signals, the
methods were able to illustrate the change caused by different
propagation paths.

Future work foresees the extension of the method for an
m-dimensional phase space, working on several real transient
signals and the exclusion of the noise drawbacks.
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