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ABSTRACT

In this paper we tackle the problem of single channel audio source
separation driven by descriptors of the sounding object’s motion.
As opposed to previous approaches, motion is included as a soft-
coupling constraint within the nonnegative matrix factorization
framework. The proposed method is applied to a multimodal dataset
of instruments in string quartet performance recordings where bow
motion information is used for separation of string instruments. We
show that the approach offers better source separation result than
an audio-based baseline and the state-of-the-art multimodal-based
approaches on these very challenging music mixtures.

Index Terms— audio source separation, nonnegative matrix
factorization, motion, multimodal analysis

1. INTRODUCTION

Different aspects of an event occuring in the physical world can be
captured using different sensors. The information obtained from one
sensor, referred to as a modality, can then be used to disambiguate
noisy information in the other, based on the correlations that exist be-
tween the two. In this context, consider the scene of a busy street or
a music concert: what we hear in these scenarios is a mix of sounds
coming from multiple sources. However, information received from
the visual system in terms of movement of these sources over time
is very useful for decomposing and associating them with their re-
spective audio streams [1]. Indeed, often, there exists a corrrelation
between sounds and the motion responsible for the production of
those sounds. Thus, machines too could use joint analysis of audio
and motion to perform computational tasks in either of the modali-
ties which are otherwise difficult. In this paper we are interested in
audio and motion modalities. Specifically, we demonstrate how in-
formation from sound-producing motion can be used to perform the
challenging task of single channel audio source separation.

Several approaches have been proposed for monaural source
separation in the unimodal case, i.e., methods using only au-
dio [2–5], in which nonnegative matrix factorization (NMF) has
been the most popular one. Typically, source separation in the NMF
framework is performed in a supervised manner [2], where mag-
nitude or power spectrogram of an audio mixture is factorized into
nonegative spectral patterns and their activations. In the training
phase, spectral patterns are learnt over clean source examples and
then factorization is performed over test examples while keeping the
learnt spectral patterns fixed. In the last few years, several methods
have been proposed to group together appropriate spectral patterns
for source estimation without the need for a dictionary learning step.
Spiertz et al. [6] proposed a promising and generic basis vector clus-
tering approach using Mel-spectra. Subsequently methods based on
shifted-NMF, inspired by western music theory and linear predic-
tive coding were proposed [7, 8]. While the latter has been shown

to work well with harmonic sounds, its applicability to percussive
sounds will be limited.

In the single channel case it is possible to improve system perfor-
mance and avoid the spectral pattern learning phase by incorporating
auxiliary information about the sources. The inclusion of side infor-
mation to guide source separation has been explored within task-
specific scenarios such as text informed separation for speech [9] or
score-informed separation for classical music [10]. Recently, there
has also been much interest in user-assisted source separation where
the side information is obtained by asking the user to hum, speak or
provide time-frequency annotations [11–13].

Another trend is to guide audio source separation using video.
In such cases, information about motion is extracted from the video
images. One of the first works was that of Fisher et al. [14] who uti-
lize mutual information (MI) to learn a joint audio-visual subspace.
The Parzen window estimation for MI computation is complex and
requires determining many parameters. Another technique which
aims to extract audio-visual (AV) independent components [15] does
not work well with dynamic scenes. Later, work by Barzeley et
al. [16] considered onset coincidence to identify AV objects and sub-
sequently perform source separation. They dileanate several limita-
tions of their work, including: setting multiple parameters for opti-
mal performance on each example and possible performance degra-
dation in dense audio environments. Application of AV source sep-
aration work using sparse representations [17] is limited due to their
method’s dependence on active-alone regions to learn source char-
acteristics. Also, they assume that all the audio sources are seen
on-screen which is not always realistic. A recent work proposes to
perform AV source separation and association for music videos using
score information [18]. Some prior work on AV speech separation
has also been carried out [19,20], primary drawbacks being the large
number of parameters and hardware requirements.

Thus, in this work we improve upon several limitations of the
earlier methods. With the exception of a recently published study
[21], to the best of our knowledge no previous work has incorpo-
rated motion into the NMF-based source separation systems. More-
over, as we demonstrate in Section 3, the applicability of methods
proposed in [21] is limited. Our approach utilizes motion informa-
tion within the NMF parameter estimation procedure through soft
coupling rather than a separate step after factorization. This not only
preserves flexibility and efficiency of the NMF system, but unlike
previous motion-based approaches, significantly reduces the num-
ber of parameters to tune for optimal performance (to effectively
just one). Particularly, we show that in highly non-stationary scenar-
ios, information from motion related to the causes of sound vibration
from each source can be very useful for source separation. This is
demonstrated through the application of the proposed method to mu-
sical instrument source separation in string trios using bow motion
information. To the best of our knowledge this paper describes the
first study to use motion capture data for audio source separation.



The rest of the paper is organized as follows: In Section 2 we dis-
cuss our approach followed by the experimental validation in Section
3. Finally we conclude with a mention of ongoing and future work
in Section 4.

2. PROPOSED APPROACH

Given a linear instantaneous mixture of J sources

x(t) =

J∑
j=1

sj(t), (1)

the goal of source separation is to obtain an estimate for each of the
J sources, sj .

Within the NMF framework this is done by obtaining a low-
rank factorization for the mixture magnitude or power spectrogram
Va ∈ RF×N

+ consisting of F frequency bins and N short-time
Fourier transform (STFT) frames, such that,

Va ≈ V̂ = WaHa, (2)

where Wa = (wa,fk)f,k ∈ RF×K
+ and Ha = (ha,kn)k,n ∈

RK×N
+ are interpreted as the nonnegative audio spectral patterns and

their activation matrices respectively. Here K is the total number of
spectral patterns. Matrices Wa and Ha can be estimated sequen-
tially with multiplicative updates obtained by minimizing a diver-
gence cost function [22].

2.1. Motion Informed Source Separation

We assume that we now have information about the causes of sound
vibration of each source in the form of motion activation matrices
Hmj ∈ R

Kmj
×N

+ , vertically stacked into a matrix Hm ∈ RKm×N
+ :

Hm =

Hm1

...
HmJ

 , where Km =

J∑
j=1

Kmj . (3)

Following Seichepine et al.’s work [23], our central idea is to couple
Hm with the audio activations, i.e., to factorize Va such that Ha is
“similar” to Hm. With such a constraint, the audio activations for
each source Haj would automatically be coupled with their counter-
parts in the motion modality Hmj and we would obtain basis vectors
clustered into audio sources. For this purpose, we propose to solve
the following optimization problem with respect to Wa,Ha and S:

minimize
Wa,Ha,S

[
DKL(Va|WaHa) + α‖ΛaHa − SHm‖1

+ β

K∑
k=1

N∑
n=2

(ha,kn − ha,k(n−1))
2

]
subject toWa ≥ 0,Ha ≥ 0.

(4)

In equation (4), the first term is the standard generalized Kullback-
Leibler (KL) divergence cost function such that DKL(x|y) =
x log(x/y)−x+ y. The second term enforces “similarity” between
audio and motion activations, up to a scaling diagonal matrix S, by
penalizing their difference with the `1 norm. The last term is intro-
duced to ensure `2 temporal smoothness of the audio activations.
The influence of each of the last two terms on the overall cost func-
tion is controlled by the hyperparameters α and β, repectively. Λa is
a diagonal matrix with kth diagonal coefficient λa,k =

∑
f wa,fk.

The cost function is minimized using a block coordinate
majorization-minimization (MM) algorithm [23] where Wa and
Ha are updated sequentially. Our formulation is a simplified
variant of the previously proposed soft non-negative matrix co-
factorization (sNMcF) algorithm [23], wherein two modalities are
factorized jointly with a penalty term soft-coupling their activa-
tions. However, here we do not factorize the second modality (i.e.,
the motion modality) and its activations are held constant in the
update procedure. Note that, from the model’s perspective, Ha

and Hm need not contain the same number of components. So
if K 6= Km, then we can readily ignore some components when
coupling. However, for this work we maintain K = Km. The
reader is referred to [23] for details about the algorithm. Recon-
struction is done by performing pointwise multiplication between
soft mask, Fj = (WajHaj )./(WaHa) and mixture STFT and fi-
nally taking its inverse. Here Waj and Haj represent the estimated
spectral patterns and activations corresponding to the jth source,
respectively.

In the following section, we will discuss the procedure for ob-
taining motion activation matrices Hmj for each source.
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Fig. 1: An example of bow inclination and velocity data for violin.

2.2. Motion Modality Representation

While for audio, the classic magnitude spectrogram representation
is used, motion information must be processed to obtain a represen-
tation that can be coupled with audio activations. The question now
being: What motion features will be useful?

We work with a multimodal dataset of instruments in string quar-
tet performance recordings. Thus, the motion information exists in
the form of tracking data (motion capture or MoCap data ) acquired
by sensors placed on each instrument and the bow [24]. Now we
immediately recognize that information about “where” and “how”
strongly the sound-producing object is excited will be readily con-
veyed by bowing motion velocity and orientation in time. In this
light, we choose to use bow inclination (in degrees) and bow veloc-
ity (cm/s) as features (as shown in Fig. 1), which can be easily com-
puted from the raw motion capture data described in [24, 25]. These
descriptors have been pre-computed and provided with the dataset.
The bow inclination is defined as the angle between the instrument
plane and the bow. The bow velocity is the time derivative of the
bow transversal position. The motion activation matrix, Hmj for
j ∈ (1, J) can then be built using the following simple strategy:



1. In the first step, we quantize the bow inclination for each in-
strument into 4 bins based on the maximum and minimum
inclination values. A binary encoded matrix of size 4×N is
then created where the row corresponding to the active bin is
set to 1 and the rest to 0 for each frame.

2. With such a simple descriptor we already have information
about the active string within each time window. We then do a
pointwise multiplication of each component with the absolute
value of the bow velocity. Intuitively, this gives us informa-
tion about string excitation. Fig. 2 visualizes the effectiveness
of this step, where Fig. 2a depicts the quantized bow inclina-
tion vector components, overlapped for two sources. Notice,
especially in the third subplot, that there are several places
where the components overlap and the contrast between the
motion of these sources is difficult to see. However, once it is
multiplied with the bow velocity (in Fig. 2b) the differences
are much more visible.

3. EXPERIMENTAL VALIDATION

We conduct several tests over a set of challenging mixtures to judge
the performance of the proposed approach.

3.1. Dataset

We use the publicly available Ensemble Expressive Performance
(EEP) dataset1 [26]. This dataset contains 23 multimodal recordings
of string quartet performances (including both ensemble and solo).
These recordings are divided into 5 excerpts from Beethoven’s Con-
certo N.4, Op. 18. Four of these, labeled from P1 to P4 contain
solo performances, where each instrument plays its own part in the
piece. We use these solo recordings to create mixtures for source
separation. Note that due to unavailability of microphone recording
for the solo performance of the second violin in the quartet we con-
sider mixtures of three sources, namely: Violin (vln), Viola (vla) and
Cello (cel). The acquired multimodal data consists of audio tracks
and motion capture for each musician’s instrument performance.

3.2. Experimental Setup

For evaluating the performance of the proposed methods in different
scenarios we consider the following three different mixture sets:

1. Set 1 - 4 trios of violin, viola and cello, one for each piece
denoted by P1, P2, P3, P4 in Table 1.

2. Set 2 - 6 two-source combinations of the three instruments
for pieces P1 - P2.

3. Set 3 - 3 two-source combinations of the same instrument
from different pieces, e.g., a mix of 2 violins from P1 and P2.

Our approach is compared with the following baseline and state-
of-the-art methods:

1. Mel NMF [6] – This is a unimodal approach where basis vec-
tors learned from the mixture are clustered based on the sim-
ilarity of their mel-spectra. We take help of the example code
provided online for implementation of this baseline method.
2

1http://mtg.upf.edu/download/datasets/eep-dataset
2http://www.ient.rwth-aachen.de/cms/dafx09/
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(a) Quantized bow inclination.
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(b) Quantized components multiplied with bow velocity.

Fig. 2: Motion representation.

2. MM Initialization [21] – This is a multimodal method where
the audio activation matrix is initialized with the motion acti-
vation matrix during the NMF parameter estimation.

3. MM Clustering [21] – Here, after performing NMF on au-
dio, basis vectors are clustered based on the similarity be-
tween motion and audio activations. For details the reader is
referred to [21].

Note that, for the latter two methods, as done by the authors,
we utilize the Itakura-Saito (IS) divergence cost function. Code pro-



Mixtures Proposed Method MM Initialization MM Clustering Mel NMF
SDR SIR SAR SDR SIR SAR SDR SIR SAR SDR SIR SAR

Set 1

P1 2.78 6.06 6.60 -2.00 1.06 3.75 -7.25 -0.77 8.89 -1.15 1.48 5.45
P2 -0.37 1.81 6.17 -1.79 1.87 3.25 -7.37 -1.30 9.31 0.56 3.55 6.56
P3 0.97 3.85 5.81 -0.36 3.86 3.35 -6.45 -0.24 8.67 -2.64 0.32 4.80
P4 2.01 4.79 6.52 -0.37 4.33 3.05 -6.86 -1.03 11.51 0.59 3.94 5.67

Set 2

P1 - vln + vla 4.25 6.90 8.48 0.55 3.25 5.89 0.22 4.40 8.82 0.44 2.67 7.74
P1 - vln + cel 7.22 10.19 11.16 3.25 6.62 6.80 -3.99 1.77 18.77 3.56 7.30 8.40
P1 - vla + cel 2.56 5.81 7.27 -1.17 0.97 5.53 -3.15 2.91 17.06 2.87 10.00 7.55
P2 - vln + vla 0.12 1.75 7.40 -2.32 0.55 3.85 -1.01 4.03 12.59 3.11 6.32 8.39
P2 - vln + cel 5.97 9.10 10.20 4.98 9.95 7.16 -3.67 3.64 24.26 4.55 9.79 9.79
P2 - vla + cel 3.12 5.87 8.15 4.74 8.50 8.07 -3.52 3.08 17.49 4.94 9.23 8.49

Set 3
vln(P1) + vln(P2) 3.57 5.85 8.54 0.47 3.61 5.11 1.30 3.44 9.09 0.84 1.96 9.76
vla(P1) + vla(P2) -0.35 1.16 7.44 -1.37 0.43 6.13 -4.45 0.61 16.67 -1.71 0.82 4.73
cel(P1) + cel(P2) 3.66 5.94 8.62 2.07 5.79 5.86 -4.60 2.32 24.10 -0.42 2.22 6.08

Table 1: SDR, SIR and SAR (measured in dB) for different methods on each mixture. Best SDR is displayed in bold.

vided by Févotte et al. [27] is used for standard NMF algorithms.
The audio is sampled at 44.1 kHz. We compute the spectrogram

with a Hamming window of size 4096 (92 ms) and 75% overlap for
each 30 sec excerpt. Thus, we have a 2049 × N matrix. Here N
is the number of STFT frames. Since the MoCap data is sampled
at 240 Hz, each of the selected descriptors is resampled to match
the N STFT audio frames. For all the runs the proposed method
hyperparameters were set at α = 10 and β = 0.3 after preliminary
testing. As discussed in section 2.2, the number of components for
each instrument is set to 4. NMF for each of the methods is run for
100 iterations. For each mixture, all the methods are run 5 times and
the reconstruction is performed using a soft mask. The average of
each evaluation metric over these runs is displayed in Table 1.

Evaluation metrics: the Signal to Distortion Ratio (SDR), the
Signal to Interference Ratio (SIR) and the Signal to Artifacts Ratio
(SAR) are computed using the BSS EVAL Toolbox version 3.0 [28].
All the metrics are expressed in dB.

3.3. Results and Discussion

The results are as presented in Table 1, where the best SDR for
each mixture is displayed in bold. Our method clearly outperforms
the baselines and the state-of-the-art methods for highly challeng-
ing cases of trios (Set 1) and duos involving the same instrument
(Set 3). For the third set of mixtures, audio only methods would
not be able to cluster the spectral patterns well. Motion informa-
tion clearly plays a crucial role for disambiguation and indeed the
proposed method outperforms all the others by a large margin.

Particularly, notice that the multimodal baselines do not perform
well. The MM initialization relies on setting to zero the coefficients
where there is no motion. This might not prove to be the best strat-
egy with such a dataset because even during the inactive period of
the audio there is some motion of the hand. On the other hand, mul-
timodal clustering depends on the similarity between source motion
activation centroids and audio activations. As we observe during the
experiments, such a similarity is not very obvious for the data we
use and the method ends up assigning most vectors to a particular
cluster.

Despite its overall good performance it is worth noting that for
trio mixtures the proposed method performs poorly with P2. In fact,
all the mixtures involving the viola from the second piece seem to
have worse performance than others. We note that the separation for
the viola suffers. One possible reason for this could be that, for P2,

the motion descriptors of the viola with respect to the violin and the
cello overlap in parts. As a consequence, the estimation of Wa for
such cases is poor.

We must emphasize that the optimal value for α, which is held
constant here, would differ for each recording. Thus, it should be
possible to tune that parameter to gain the best performance, as could
be achieved by an audio engineer through a knob controlling α, in a
real world audio production setting. As an illustration, consider the
mixture of viola and cello from P2: if we search for the best α in the
mean SDR sense within the range (1, 15), we find that mean SDR
value of up to 5.97 dB can be reached at α = 1.5. Also, note that we
work with a limited number of components which is probably not
well suited for some of these cases.

4. CONCLUSION

We have demonstrated the usefulness of exploiting sound-producing
motion for guiding audio source separation. Formulating it as a soft
constraint within the NMF source separation framework makes our
approach very flexible and simple to use. We alleviate the short-
comings of previous works, such as multiple parameter tuning while
making no unrealistic assumptions about the audio environment.
The results obtained on the multimodal string instrument dataset are
very encouraging and serve as a proof-of-concept for applying the
method to separate any audio object accompanied with its sound-
producing motion. The use of motion capture data is new and the
proposed technique would apply to video data in a similar manner.

As part of ongoing work, we are investigating automatic extrac-
tion of motion activation matrix and ways to accommodate different
number of basis components in both the modalities.
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