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In the present paper, we studied the sintering of a submicronic a-alumina powder and modeled its
behavior using Olevsky's model. We further introduced a method for the identification of the creep
parameters based on SPS experiments that greatly simplify parameter determination. Subsequently, we
used the set of parameters obtained to study the densification of a part with a complex shape. We clearly
showed that the thickness shrinkage with different heights engender densification inhomogeneities.
1. Introduction

Themodeling of the sintering process is extremely useful in that
it allows the shrinkage of the sample and the final state of densi-
fication of a material (such as ceramics, metals or polymers) to be
predicted. During sintering a wide range of mechanisms occur
depending on the conditions and the process (e.g. free sintering,
hot pressing, field assisted sintering) [1e3]. Natural sintering
models [4] are based on the surface energy of the grains responsible
for their coalescence and consequently for the densification of the
powder. With Spark Plasma Sintering (SPS), a DC pulse current is
used to raise the temperature of the column (tools þ spacers) and
simultaneously a uni-axial pressure is applied on the powder bed.
To model sintering with applied pressure, models of porous solids
built on creep law have been considered [5e7] e one of them is the
NortoneGreen model. For a given material, four main parameters
need to be identified to use the complete NortoneGreen model.
Narbonne, 31062 Toulouse,

stourn�es).
Two of them are the Norton creep law parameters determined by
creep experiments on dense materials at different temperatures
and the two others: the Green functions c and f which are depen-
dent on the relative density. Function f is usually determined byHot
Isostatic Pressing (HIP) of a porous material and function c can be
determined by Hot-Pressing (HP) of a porous sample. Abouaf et al.
[8e11] used this type of model to predict the sintering of a nickel
super-alloy by HIP. Lately, Besson et al. [12,13] used the same
approach tomodel the HIP sintering of alumina and also considered
grain growth phenomena. Recently, Mondalek et al. [14,15] per-
formed inverse analysis to determine Green's function parameters
to describe the sintering of TiAl alloy by SPS. They also included in
their model the friction between the powder and the parts of the
mold. In the same way, Wolff et al. [16,17] determined Green's
functions for a nickel powder based on the work of Nicolle [18] and
an experimental identification.

Currently, one the most advanced theoretical work on modeling
of sintering by SPS process is that of Olevsky and Froyen [19]. Their
model contains three sintering phenomena, grain surface energy,
electro-migration and the load effect. The classical version of
Olevsky's model is closer to the NortoneGreen model. For example,
with alumina powder [1,20] this model only considers the creep
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law (the load phenomenon) and the free sintering components. In
the complete SPS model of Olevsky the coupling of the electro-
thermal model and the sintering model has been considered. The
load part of the model [1e3] contains like the NortoneGreen
model, some creep law parameters and two parameters depending
on the porosity which have been theoretically determined for
spherical pores [1,21].

In the present paper, we studied the sintering of a submicronic
alumina powder and modeled its behavior using Olevsky's model.
Different experiments in various conditions of heating rate and
pressure have been made in order to determine their influence on
the creep power laws parameters. Finally, a complex shape is
generated and the FEMmodel is used to explain the relative density
and microstructure heterogeneities observed in the real part.
2. Experimental

All the experiments were performed on the SPS machine (Dr.
Sinter 2080, SPS Syntex Inc, Japan) of the Plateforme Nationale
CNRS de Frittage Flash located at the Universit�e Toulouse III-Paul
Sabatier in Toulouse. For the determination of the creep law pa-
rameters, cylindrical molds (8 mm inner diameter e Fig. 1a) were
used and each time 1 g of powder (alumina 99.99%, reference TM-
DAR, Taimei Chemicals Co. Ltd) was loaded inside to ensure a
shrinkage curve with enough amplitude to minimize error. The
temperature set-point thermocouple was placed on the outer side
of the diewall (3mm in depth). To avoid anymistakes in identifying
the sintering parameters all the experiments were performed in
duplicate to obtain the real temperature of the sample. A second
thermocouple was used, its extremity being located in the powder
bed. The stress was evaluated by a load sensor and the strain by a
displacement sensor located on the bottom electrode. The
shrinkage of the powder compact was obtained by the column
displacement minus the thermal expansion of the graphite deter-
mined with experiments on samples fully beforehand densified.
For the study of the complex shaped part we used the configuration
of classical uniaxial compaction (Fig. 1b).

Field-emission-gun scanning electron microscopy (FEG-SEM,
JEOL JSM 6700F) observations on fractured samples were per-
formed at the TEMSCAN facility, Universit�e Toulouse III Paul-Sabatier.
Fig. 1. a) SPS configuration used for the compressi
3. Theory

3.1. Model description

Olevsky's model is based on a creep power law defined for a
porous viscous material.

sðWÞ ¼ KWm (1)

Where W is the equivalent strain rate, s(W) the equivalent stress
and K is the consistency factor. Other authors use another form of
the creep lawwith the factor A and the n exponent instead of K and
m. The following equations (2) and (3) are the temperature
dependence of K and the conversion of the two forms of the creep
law with K or with A.

K ¼ 1

A
1
n

¼ 1

A
1
n
o

Tmexp
�
mQ
RT

�
(2)

m ¼ 1
n

(3)

where A, A0 are the power law creep factors, T the absolute tem-
perature, R the gas constant, Q the power law creep activation
energy and n & m the exponents which are constants.

The power law creep equivalent strain rate of porous solids
needs to define two functions of the porosity, the normalized shear
modulus 4 and the normalized bulk modulus j.

4 ¼ ð1� qÞ2 (4)

j ¼ 2
3
ð1� qÞ3

q
(5)

The shrinkage rate _g and shape rate change _e are functions of the
strain rate tensor _ε components:
on tests b) Complex shape part configuration.



Fig. 2. Power law creep determination method (Taimei alumina, 100 K/min; 75 MPa):
a) Experimental sintering cycle (Temperature and Relative Density). b) Linearization
curves: Y vs 1/T. c) Modeled relative density for each tested n values (zoom in the
densification area).
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with _e the trace of the strain rate tensor _ε:

The W expression of a porous material is defined as follows:

W ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
1� q

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 _g2 þ j _e2

q
(7)

The stress tensor s is expressed as:

s ¼ sðWÞ
W

�
4 _εþ

�
j� 1

3
4

�
_ei
�
þ Pli (8)

where i is the identity tensor, Pl is the effective sintering stress of
free sintering which is defined by:

Pl ¼
3a
G
ð1� qÞ2 (9)

where a is the surface energy and G the average grain diameter.
In our case Pl can be ignored because the rapid thermal kinetics

combined with a high applied pressure make the creep part
predominant.

The porosity q is determined locally by the following mass
conservation equation.

_q

1� q
¼ _εx þ _εy þ _εz (10)

3.2. Analytical equations for SPS

The case of SPS can be assimilated to uniaxial powder
compaction (along the z-axis) in a die. Therefore, the external strain
rate tensor can be reduced to:

_ε≡

0
@0 0 0

0 0 0
0 0 _εz

1
A (11)

With (2, 7, 8) and (11), the stress z component expression
becomes:

sz ¼ KWm�1
�
4 _εz þ

�
j� 1

3
4

�
_εz

�
(12)

The shrinkage rate _g (6), shape rate change _e and equivalent
strain rate W (7) can be simplified in this way:

_e ¼ _εz (13)

_g ¼ j _εzj
ffiffiffi
2
3

r
(14)

W ¼ j_εzj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jþ 2

34

1� q

s
(15)

3.3. Method of experimental identification of creep parameters by
linear regression

As shown in Fig. 2, the sintering of the alumina powder is very
fast, consequently the sintering usually occurs during the
temperature ramp. It is thus better to determine an expression able
to identify the creep parameters directly in the temperature ramp.
Thus, in the following sectionwe describe the constant heating rate
identification method developed byWang and Raj [22] and applied
to the Olevsky model for the determination of the creep
parameters.

In order to determine the linearization equation at constant
heating rate, we combine equations (2), (12) and (15) to obtain the
strain rate z component in die compaction.

j _εzj
1
n ¼ �A

1
nsz�

jþ 2
34

�1þ1�n
2n

ð1� qÞn�1
2n

(16)

with in compression _εz � 0 consequently _εz ¼ �j _εzj.



Table 1
All values of the constant A0 and the activation energy Q at different heating rates
and pressures for the strain exponent n ¼ 1.

Temperature rate (K/min) P (MPa) A0 (1/s) Q (kJ/mol) n

25 100 2.28E-01 192 1
50 100 3.55E-01 190 1
100 100 9.20E-01 195 1
200 100 1.60E-01 156 1
100 75 8.73E-01 179 1
75 75 2.47E-01 178 1
25 75 4.93E-02 161 1
25 125 2.26E-02 154 1
75 125 3.33E-02 158 1
100 125 1.95E-01 181 1
We introduce here the temperature dependence (17) of the
power law creep factor A which is used by many authors [10,17,19]
in an-isothermic regime. The Arrhenius form comes from the
expression of the atomic diffusivity [3].

A ¼
A0exp

�
�Q
RT

�
T

(17)

Finally, combining equations (16) and (17) we obtain the line-
arization equation (18) used to determine the pre-exponential
constant A0 and the activation energy Q.

nln

0
@ jszj�

jþ 2
34

�1þ1�n
2n

ð1� qÞn�1
2n j_εzj

1
n

1
A� lnðTÞ ¼ �lnðA0Þ þ

Q
RT

(18)

with in compression sz � 0 and consequently sz ¼ �jszj.
All the left member terms are known by SPS experimental

measures except constant n. Equation (18) can be identified with
the linear function (19).
Fig. 3. Modeled relative density for different tested n, for va
Y ¼ aþ bx (19)

Where Y is the left member of equation (18) and x ¼ 1/T.
A0 is obtained by:

A0 ¼ expð�aÞ (20)

Q is obtained by:

Q ¼ bR (21)

The last parameter, the stress exponent n is determined by
means of a comparative study. This methodology uses the high
sensitivity of densification to this parameter. Indeed a non-suitable
n value will not give a perfect fit of the experimental data points.
Thus, we used linear regression to determine a set of couples (A0;
Q) for each n value. Next, each of these pairs of values are intro-
duced into an analytical SPS model to find which one is the true
value of n. The analytical model, executed on Octave software, uses
equations (16) and (17) and the mass conservation equation (10).

4. Results and discussion

Paragraphs 4.1 and 4.2 are devoted to the determination of the
creep power law parameters using the detailed linearization
method for the experiments presented respectively in Fig. 2, ob-
tained with various heating rate and pressure conditions. Para-
graphs 4.3 and 4.4 are devoted to the study of the influence of the
grain growth on the densification and the microstructure for both
configurations and to the validation of the power law parameters
determined in section 4.1.

4.1. Identification of the creep parameters

First the experimental data (relative density Fig. 2a, external
strain rate and pressure) are taken into consideration to plot
(Fig. 2b) the Y member of equation (18) as a function of the inverse
of the temperature (1/T) for n ranging between 1 and 3 reasonable
values for alumina considering the literature [22,23]. Moreover the
rious heating rate V (K/min) and a pressure of 100 MPa.



Fig. 4. Power law creep coefficients: A0 and Q vs heating rate.
range of relative density of the analysis is limited to 0.9 because the
effect of grain growth is drastically increased after this well-known
threshold [24] and this will be discussed later.

Fig. 2b shows the best accordance of the regression for n close to
1. The next step is to determine the couple (A0, Q) for each value of n
and introduce this value into the analytical model. Fig. 2c reports
the comparison of each modeled curve of the variation of relative
density with temperature and the experimental points. Once again
increasing the value of n increases the discrepancy between the
Fig. 5. a) Relative density curves in various grain activation energies QG. b) Grain size
variation for QG ¼ 520 kJ/mol.
experimental points and the calculated curves. This confirms that
up to relative densities of 0.9, the value of n ¼ 1 is in accordance
with experiment. Above a relative density of 0.9 all calculated
curves start to diverge probably due to an effect of grain growth
(see section 4.3).
4.2. Power law creep parameters identification in various
experimental conditions

In order to determine the effects of the heating rate and pres-
sure on the power law creep parameters we used the set of ex-
periments reported in Table 1. (see Fig. 3 and Appendix A) gathers
the results of the nine experiments and shows the comparisons
Model/Experimental using the linearization method developed in
section 4.1. For all curves the best fit is obtained for n value equal to
the unity (n¼ 1). Considering this latter in the model, the evolution
of the identified values of A0 and Q as a function of the heating rate
(Fig. 4), shows a tendency of increase of A0 and Q between 25 and
100 K/min and then a decrease for higher 200 K/min. The A0 and Q
parameters increase between 75 and 100 MPa and seems to
decrease between 100 and 125 MPa, there is no obvious effect on
the pressure. For each applied pressure, it is possible to write the
power law creep expression depending of the heating rate in a
Fig. 6. a) Experimental grain size (SEM image of the final microstructure). b) Histo-
gram of the grain size distribution.



Fig. 7. a) Desired geometry, b) Cut plane with two strategic areas.

Fig. 8. Final stage of sintering in classical configuration: a) relative density. b) displacement on z. c) SEM image at point B. d) SEM image at point H.
domain ranging from 25 to 100 K/min (see Appendix A).
4.3. The grain growth effect

In the work of Gurt-Santanach et al. [24] performed on the same
submicronic a-alumina powder, grain growth was observed to start
above a temperature of 1000 �C. The experiment reported in Fig. 2
has a dwell temperature of 1200 �C and the relative density curve at
the end of the cycle seems to slow down and looks like an
asymptotic curve with a final relative density of 0.987. In contrast,
Fig. 2c shows at the end of a cycle an asymptotic variation of the
density close to full relative density (relative density¼ 1) instead of
0.987. The discrepancy between the calculated and experimental
values may be attributed to a grain growth phenomenon which is
known to slow down the densification rate [4]. The grain growth
law is known to be thermally activated [24]. According to Olevsky's
model [3] for alumina, the granular growth law defined by equation
(22) also depends on the porosity (q).

_G ¼ k0
3G2

�
qc

qc þ q

�3
2

exp
��QG

RT

�
(22)

Then, the creep law is affected by the grain size as in equation (23)
K ¼
�
G
G0

�2 1

A
1
n
o

Tmexp
�
mQ
RT

�
(23)

where G is the average grain diameter, G0 the initial grain diameter
of 0.14� 10�6 m, k0 a constant of 7� 10�4 m3/s, QG is the activation
energy of the grain growth and qc a critical porosity of 0.05.

An increase of the grain size during the cycle (i.e. the ratio G/G0)
leads to an increase in K and thus to a corresponding decrease of
the sintering rate. The calculated relative density curves with
different values of the grain growth activation energy (QG) (Fig. 5a),
confirm the strong influence of this phenomenon on the final
stages of sintering. A high value of QG implies limited grain growth
that leads, at the final stage, to a relative density curve approaching
a value of 1. By contrast, a low value of QG leads to strong grain
growth that slows the sintering rate, the calculated relative density
curve at the final stage of sintering remaining below the experi-
mental relative density points. A good agreement of the final
behavior of the calculated relative density with the experimental
points was obtained with a value of the activation energy of
QG ¼ 520 kJ/mol. Introducing this value into equation (22), the
average grain size was calculated to be 2.6 mm (Fig. 5a). The SEM
image (Fig. 6a) of a fractured surface of the sample indicates the



experimental distribution of the grain size (Fig. 6b) and gives an
average value of 2.7 mm ± 1.5 mm. The final grain size given by the
model seems to be in very good agreement with experiment.

4.4. Finite element approach

The mechanical approach previously described was then
coupled, by finite element method (FEM) configuration in a COM-
SOL Multiphysics code (version 4.3b) with the already described
electro-thermal model [25] and adapted to the present study for
the densification of a complex shaped part (Fig. 7). The densifica-
tion in classical uniaxial configuration detailed in Fig. 1b is modeled
and the results are reported in Fig. 8. It is to be noted that the
thickness differences of the complex shape imply strong relative
density gradients in the sintered part. The bottom zones of the
areas of initial high thickness (Fig. 7b point B) remain porous while
the others (Fig. 7b point H) are nearly fully densified (Fig. 8a). In
these zones, the material need more shrinkage (in the compression
direction) to be fully densified compared to the thinner ones. These
latter are thus first densified and then block the stroke of the
punches. Thus, the displacement field appears with bent curves
(Fig. 8b). In accordance with the simulation, SEM images reveal
high level of porosity (20% by image analysis) at point B (Fig. 8c)
and a nearly fully dense microstructure at point H (Fig. 8d). The
strategies implemented to resolve these heterogeneities and gra-
dients will be presented in an other publication.

5. Conclusion

The first part of this work presents a methodology for the
determination of the creep parameters using Olevsk's model. The
method consists of three main parts:

- First, a linear regression of the experimental data up to relative
densities around 0.9 is performed to determine the power law
creep parameters: the pre-exponential factor (A0) and the
activation energy (Q) for different values of the strain exponent
n.

- The analytic model compares the different couples (A0, Q) and
locates the suitable n value.

- The parameters corresponding to grain growth can be deter-
mined with the final part of the experimental relative density
curve.

This empiric methodology can be used to determine the sin-
tering parameters of a material with simple SPS experiments. The
main advantage of this method is its ability to rapidly obtain sin-
tering parameters of a material with few SPS experiments
compared to classical studies that use a lot of mechanical tests
involving lengthy experiments and characterizations.

The modeling of uniaxial compaction of a complex shape shows
very good agreement between experiment and simulation and
highlights the problem of height shrinkage differences that creates
areas of high porosity gradients.
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