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Indices in XML databases 

 

INTRODUCTION 

 

Since XML (eXtensible Markup Language; Bray et al., 2004) emerged as a standard for 

information representation and exchange, storing, indexing, and querying XML documents 

have become major issues in database research. Query processing and optimization are very 

important in this context, and indices are data structures that help enhance performances 

substantially. Though XML indexing concepts are mainly inherited from relational databases, 

XML indices bear numerous specificities. 

 

The aim of this article is to present an overview of state-of-the-art XML indices, and to 

discuss the main issues, tradeoffs and future trends in XML indexing. Furthermore, since 

XML is gaining importance for representing business data for analytics (Beyer et al., 2005), 

we also present an index we specifically developed for XML data warehouses. 

 

BACKGROUND 

 

Indexing and querying XML documents through path expressions expressed in XPath (Clark 

& DeRose, 1999) and XQuery (Boag et al., 2006) have been the focus of many research 

studies. Two families of approaches aim at efficiently processing path join queries. They are 

based on structural summaries and numbering schemes, respectively. 

 

Structural summary-based indices 

 



Structural index-based approaches help traverse XML documents’ hierarchies by referencing 

structural information about these documents. These techniques extract structural information 

directly from data and create a structural summary that is a labeled, directed graph. Graph 

schemas can be used as indices for path queries. Dataguide (Goldman & Widom, 1997) and 1-

index (Milo & Suciu, 1999) belong to this family of indices. 

 

Dataguide’s structure describes by one single label all the nodes whose labels (names) are 

identical. Its definition is based on targeted path sets, i.e., sets of nodes that are reached by 

traversing a given path. 

 

1-index clusters nodes according to a bisimilarity relationship. Two nodes are said bisimilar if 

they share identical label paths in the XML data graph. Bisimilar nodes are grouped together 

into one index node. A 1-index is smaller than the initial data graph and thereby facilitates 

query evaluation. To help select labels or evaluate path expressions, hash tables or B-trees are 

used to index graph labels. 

 

Dataguide and 1-index code all paths from the root node. The size of such summary structures 

may be larger than the original XML document, which degrades query performance. A(k)-

index (Kaushik et al., 2002) is a variant of 1-index that is based on k-dissimilarity and builds 

an approximate index to reduce its graph’s size. An A(k)-index can retrieve, without referring 

to the data graph, path expressions of length of at most k, where k controls index resolution 

and influences index size in a proportional manner. However, for large values of k, index size 

may still become very large. For small values of k, index size is substantially smaller, but 

A(k)-index cannot handle long path expressions. 

 



To accommodate path expressions of various lengths, without unnecessarily increasing index 

size, D(k)-index (Qun et al., 2003) assigns different values of k to index nodes. These values 

conform to a given set of frequently-used path expressions (FUPs). Small or large values of k 

are assigned to index parts that are targeted by short or long path expressions, respectively. To 

help evaluate path expressions with branching, a variant called UD(k, l)-index (Wu et al., 

2003) also imposes downward similarity. 

 

AD(k)-index (He & Yang, 2004) builds a coarser index than A(k)-index, but suffers from 

over-refinement. M(k)-index, an improvement of D(k)-index, solves the problem of large scan 

space within the index, without affecting path coverage. However, there is a drawback in this 

design: M(k)-index requires adapting to a given list of FUPs. 

 

U(*)-index (universal, generic index; Boulos & Karakashian, 2006), like 1-index, exploits 

bisimilarity. However, U(*)-index exploits a special node labeling scheme to prune the search 

space and accelerate XPath evaluations. Furthermore, U(*)-index does not need to be adapted 

to any particular list of FUP; it has a uniform resolution, and is hence more generic. 

 

APEX (Chung et al., 2002) is an adaptive index that searches for a trade-off between size and 

effectiveness. Instead of indexing all paths from the root, APEX only indexes frequently-used 

paths and preserves the structure of source data in a tree. However, since FUPs are stored in 

the index, path query processing is quite efficient. APEX is also workload-aware, i.e., it can 

be dynamically updated according to changes in query workload. A data mining method is 

used to extract FUPs from the workload for incremental update (Agrawal & Srikant, 1995). 

 



The main weakness of these indices is that they can only answer single path expressions 

directly. To process so-called branching path expressions, whose graphical representation 

contains branches and corresponds to a small tree (or twig), they must perform a costly join 

operation. To reduce the number of joins, XJoin-index (Bertino et al., 2004) pre-computes 

some structural semi-join results to support attribute selection, possibly involving several 

attributes, detection of parent-child relationships, and counting. 

 

Finally, other techniques such as extended inverted lists (Zhang et al., 2001) and Fabric 

(Cooper et al., 2001) are aimed at processing containment queries over XML data stored in 

relational databases. Containment queries are based on relationships among elements, 

attributes and their contents. Extended inverted lists include a text index (T-index; Milo & 

Suciu, 1999) that is similar to traditional indices in information retrieval systems, and an 

element index (E-index) that maps elements into inverted lists. 

 

Fabric indexes several XML documents by encoding paths, from root to leaves. The resulting 

indicators are then inserted into a Patricia trie (Cooper et al., 2001), which processes them like 

simple strings. A dictionary stores correspondences between indicators and path label names. 

To use this index, query labels are also transformed into indicators by exploiting the 

dictionary. 

 

Numbering scheme-based indices 

 

A numbering scheme encodes each XML element by its positional information in its 

document’s hierarchy. Most numbering schemes reported in the literature are based either on 

a tree-traversal order, or on the textual positions of start and end tags (Srivastava et al., 2002). 



If such a numbering scheme is embedded in the labeled trees of XML documents, a structural 

relationship (e.g., ancestor-descendant) between a pair of elements can be determined quickly 

without traversing the whole tree.  

 

To evaluate queries involving structural relationships, structural join indices efficiently 

support functions such as findDescendants and findAncestors that are needed in structural 

joins. For instance, a B+-tree may be built on the joining element’s StartPos attribute (Chien 

et al., 2002). XR-tree (XML Region Tree; Jiang et al., 2003) is a dynamic external memory 

index structure that is specifically designed for strictly nested XML data. Actually, an XR-tree 

is a B+-tree with a complex index key entry and extra stab lists associated with its internal 

nodes. 

 

XB-tree (Bruno et al., 2002) combines structural features of both B+-tree and R-tree. XB-tree 

first indexes pre-assigned intervals of elements from a tree structure. Next, it organizes the 

intervals’ starting points as a B+-tree. Each internal node maintains a set of regions that 

completely includes all regions in their child nodes. Regions in XB-tree nodes may overlap 

partially. 

 

XML structural join-based experiments performed on these indices indicate that they achieve 

comparable performances for non-recursive XML data (i.e., XML documents with no node-

to-node internal references), while XB-tree outperforms the other indices for highly recursive 

XML data (Li et al., 2004). 

 

INDICES IN XML DATA WAREHOUSES 

 



XML data warehouses form an interesting basis for decision-support applications that exploit 

so-called complex data (Darmont et al., 2005). Several studies address the issue of designing 

and building XML data warehouses. They use XML documents to manage or represent 

warehouse facts and/or dimensions (Pokorný, 2002; Hümmer et al., 2003; Park et al., 2005). 

This approach helps store XML documents natively and query them easily with XML query 

languages. However, decision-support queries are generally complex. They indeed typically 

involve several join and aggregation operations. In addition, many XML-native DBMSs show 

relatively poor performances when data volume is very large and queries are complex. 

 

Most existing XML indexing techniques are applicable only onto XML data that are targeted 

by single path expressions. However, in XML data warehouses, queries are complex and 

include several path expressions. Furthermore, building existing indices on an XML 

warehouse causes a loss of information in decision-support query resolution. Indeed, 

clustering (1-index and variants) or merging (Dataguide) identical labels causes the 

disappearance of fact-to-dimension relationships, which are essential to process analytical 

queries. We illustrate this issue in the following example. 

 

Let us consider a sample warehouse document, cube.xml, composed of cell (fact) elements 

(Figure 1(a)). Each cell is identified by a combination of dimension identifiers and one or 

more measures. Figure 1(b) features the corresponding 1-index. Since 1-index represents cells 

linearly, i.e., all labels sharing the same label path are represented by one label only, the 

dimension combinations that identify facts are lost. 

 



 

 

Figure 1: cube.xml document structure (a) and corresponding 1-index (b) 

 

Eventually, most of the approaches we presented in the previous section can only index one 

XML document at a time, whereas in XML warehouses, data are typically stored in several 

fact and dimension XML documents; and analytic queries must be performed over these 

documents. Fabric does handle multiple documents, but it is not adapted to XML data 

warehouses either, because it does not take into account relationships between XML 

documents (i.e., fact-to-dimension references in our case). 

 

To address the issues of multiple path expressions in analytic queries, loss of referential 

information and multi-document indexing, we have proposed a new index that is specifically 

adapted to XML, multidimensional data warehouses (Mahboubi et al., 2006a). This data 

structure help optimize access time to several XML documents by eliminating join costs, 

while preserving information contained in the initial warehouse. 

 

To implement our indexing strategy, we selected XCube (Hümmer et al., 2003) as a reference 

data warehouse model. Since other XML warehouse models from the literature are relatively 

similar, this is not a binding choice. XCube’s advantage is its simple structure for representing 

facts and dimensions in a star schema: one document for facts (facts.xml) and another one for 

all dimensions (dimensions.xml). 



 

Our index structure is designed to preserve relationships between facts and dimensions. To 

achieve this goal, we move data from facts.xml and dimensions.xml into a common structure 

that actually is our index. This process helps store facts, dimensions and their attributes into 

the same XML element. It wholly eliminates join operations, since all necessary information 

for a join operation is stored in the same index cell. This data structure is also stored into an 

XML document (index.xml). Queries need to be rewritten to exploit our index instead of the 

initial warehouse. This rewriting process consists in preserving selection and aggregation 

operations, while eliminating joins. 

 

To validate our proposal, we performed both a complexity study and field experiments. Our 

tests showed that using our index structure significantly improved the response time of a 

typical decision-support query expressed in XQuery. Furthermore, they also demonstrated 

that well-indexed XML-native DBMSs could compete with relational, XML-compatible 

DBMSs. 

 

FUTURE TRENDS 

 

As we underlined in the background section, structural summary approaches generate large 

indices and do not support partial path matching queries. Labeling schemes allow to quickly 

identify relationships among element nodes and to reduce index size, but fail to support 

dynamic XML data. Furthermore, the semi-structured nature of XML data and requirements 

on query flexibility pose unique challenges to indexing methods. Hence, quite recently, 

researchers proposed hybrid indexing techniques (Catania et al., 2006). XML indexing is 



likely to keep on following this path, while more specific solutions may also appear, e.g., for 

XML data warehouses. 

 

The XML warehouse index structure we propose also suffers from these common weaknesses 

(index size and construction cost). We indeed merge all warehouse data into the same 

structure. In addition, this process needs to parse all elements within the warehouse XML 

documents. Index construction is thus very costly. FUPs proposed by Min et al. (2005) might 

be a solution. FUPs are obtained from a representative workload with data mining approaches, 

and represent frequent join operations. This could help us materialize these operations only 

within our index structure. 

 

More generally, XML indexing strategies should be better-integrated in host XML-native 

DBMSs. This would certainly help develop incremental strategies for index maintenance. 

Moreover, in our particular case, query rewriting mechanisms would also be more efficient if 

they were part of the system. 

 

Finally, it is crucial to carry on adapting or developing highly efficient optimization 

techniques in XML-native DBMSs and relational, XML-enabled DBMSs. Several interesting 

leads are currently being researched, such as XML view materialization (Mahboubi et al., 

2006b; Phillips et al., 2006) or partitioning (Bonifati et al., 2006). 

 

CONCLUSION 

 

Neither XML-native nor XML-enabled DBMSs implement most of the indexing techniques 

presented in this article. Both classes of systems indeed support only basic solutions. 



Relational, XML-enabled DBMSs use simple structural indices such as B-trees and their 

derivatives. Similarly, most XML-native DBMSs index only element and attribute contents 

and tag names. In both cases, either full-text inverted indices for indexing textual contents, or 

path indices are typically adopted. Hence, in conclusion, we strongly believe that XML 

DBMSs should now feature state-of-the-art, XML-specific indexing schemes to be able to 

compete with relational DBMSs in terms of performance. 
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TERMS AND DEFINITIONS 

 

Database management system (DBMS): Software set that handles structuring, storage, 

maintenance, update and querying of data stored in a database. 

 



XML-enabled DBMS: Database system in which XML data may be stored and queried from 

relational tables. Such a DBMS must either map XML data into relations and translate queries 

into SQL, or implement a middleware layer allowing native XML storing and querying. 

 

XML-native DBMS (NXD): Database system in which XML data are natively stored and 

queried as XML documents. An NXD provides XML schema storage and implements an 

XML query engine (typically supporting XPath and XQuery). eXist (Meier, 2002) and X-

Hive (X-Hive Corporation, 2007) are examples of NXDs. 

 

XML data warehouse: XML database that is specifically modeled (i.e., multidimensionally, 

with a star-like schema) to support XML decision-support and analytic queries. 

 

Index: Physical data structure that allows direct (vs. sequential) access to data and thereby 

considerably improves data access time. 

 

Structural summary-based index: Labeled-graph structure that summarizes XML graph 

structural information. 

 

Numbering scheme-based index: Tree structure in which each XML data node is uniquely 

identified by an interval. 


