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Abstract
In the aim of testing tools for tracing cell trafficking of exogenous cholesterol, two fluores-

cent derivatives of cholesterol, 22-nitrobenzoxadiazole-cholesterol (NBD-Chol) and 21-

methylpyrenyl-cholesterol (Pyr-met-Chol), with distinctive chemico-physical characteristics,

have been compared for their cell incorporation properties, using two cell models differently

handling cholesterol, with two incorporation routes. In the Caco-2 cell model, the cholesterol

probes were delivered in bile salt micelles, as a model of intestinal absorption. The two

probes displayed contrasting behaviors for cell uptake characteristics, cell staining, and ef-

flux kinetics. In particular, Pyr-met-Chol cell incorporation involved SR-BI, while that of

NBD-Chol appeared purely passive. In the PC-3 cell model, which overexpresses lipopro-

tein receptors, the cholesterol probes were delivered via the serum components, as a

model of systemic delivery. We showed that Pyr-met-Chol-labelled purified LDL or HDL

were able to specifically deliver Pyr-met-Chol to the PC-3 cells, while NBD-Chol incorpo-

ration was independent of lipoproteins. Observations by fluorescence microscopy evi-

denced that, while NBD-Chol readily stained the cytosolic lipid droplets, Pyr-met-Chol

labelling led to the intense staining of intracellular structures of membranous nature, in

agreement with the absence of detectable esterification of Pyr-met-Chol. A 48 h incubation

of PC-3 cells with either Pyr-met-Chol-labelled LDL or HDL gave same staining patterns,

mainly colocalizing with Lamp1, caveolin-1 and CD63. These data indicated convergent

trafficking downwards their respective receptors, LDL-R and SR-BI, toward the cholesterol-

rich internal membrane compartments, late endosomes and multivesicular bodies. Interest-

ingly, Pyr-met-Chol staining of these structures exhibited a high excimer fluorescence emis-

sion, revealing their ordered membrane environment, and indicating that Pyr-met-Chol
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behaves as a fair cholesterol tracer regarding its preferential incorporation into cholesterol-

rich domains. We conclude that, while NBD-Chol is a valuable marker of cholesterol esterifi-

cation, Pyr-met-Chol is a reliable new lipoprotein fluorescent marker which allows to probe

specific intracellular trafficking of cholesterol-rich membranes.

Introduction
Cholesterol is an essential component of mammalian cells, mainly present in the plasma mem-
brane, but also distributed in various intracellular compartments. Indeed, it is both involved in
membrane lipid composition, with a structural role and functional modulation of many mem-
brane proteins, and in various cellular metabolic pathways and regulations. In order to maintain
cellular homeostasis, cellular cholesterol content and trafficking are highly regulated at the level
of influx, synthesis, esterification and efflux [1,2]. In the organism, cholesterol is provided both
by synthesis in peripheral tissues and by absorption through the enterocytes in the intestine. In-
testinal absorption requires solubilization in biliary micelles, which allows cholesterol availabili-
ty in the aqueous medium present in the intestine lumen. In the other tissues, cellular exchanges
of cholesterol with the external medium are mediated by lipoproteins, which act as “donor” and
“acceptor” particles, ensuring a global regulation through its handling in the systemic circula-
tion. The various lipoprotein classes display distinct physiological characteristics in connection
with their specific receptors at the cell surface [3]. As a consequence, in some pathophysiological
situations, the regulation of cholesterol metabolism and traffic is altered [4,5].

It is thus essential to be able to quantify and qualitatively characterize cellular cholesterol
fluxes. Fluorescent markers present many technical and practical advantages over radiolabelled
compounds [6], and they also allow imaging approaches [7]. However, very few fluorescent de-
rivatives of cholesterol are presently available, and the question of the specificity of their cellu-
lar delivery is pivotal for assessing the physiological relevance of the cell staining obtained.
Indeed, very few fluorescent cholesterol derivatives have been studied on cultured cells [8],
and, when considering lipoprotein involvement, only high density lipoproteins (HDL)-
mediated cell delivery of dehydroergosterol (DHE) [9] and of Bodipy-cholesterol (Bodipy-
Chol) [10] have been tested. The use of the intrinsically fluorescent sterol DHE is however
hampered by the drawback of a poor photostability (leading to quick fluorescence quenching),
which presents heavy practical difficulties, and this is also the case for cholestatrienol and
dansyl-cholesterol [8]. In contrast, the recently reported fluorescent derivative of cholesterol,
Bodipy-Chol, appears much more convenient for biological labellings (cells and embryos,
being possibly delivered by non-specific means, i.e. dimethylsulfoxide and cyclodextrin) [11],
and it has been shown to insert into lipid rafts [12] and to be esterified in cells [11], making it a
fair cholesterol probe for cellular metabolism. Few years ago, synthesis and chemico-physical
characterization on model membranes of another new fluorescent cholesterol derivative,
21-methylpyrenyl-cholesterol (Pyr-met-Chol), has been reported, and it has been shown to in-
teract with ordered membrane lipids similarly to cholesterol [13]. However, nothing is still
known about its incorporation into cultured mammalian cells and its intracellular fate. In an-
other hand, the other fluorescent cholesterol derivative, 22-nitrobenzoxadiazole-cholesterol
(NBD-Chol), has been long ago reported to reliably probe cholesterol esterification [14], and in
particular it has been repeatedly used for staining the cytosolic lipid droplets/bodies [15,16].
However, its pathway for cell incorporation has not been analyzed, and, otherwise, studies on
model membranes have shown that it does not insert in ordered membranes as cholesterol
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[17,18]. In addition, we have recently shown that Pyr-met-Chol stably and specifically associ-
ates with lipoproteins, in clear variance with NBD-Chol [19]. Considering the contrasting
chemico-physical properties of these two fluorescent cholesterol derivatives, and using the long
ago described NBD-Chol as a “reference” probe, we thus wondered whether Pyr-met-Chol
may be used as a reliable cholesterol probe in mammalian cultured cells regarding its traffick-
ing, assessed by its intracellular distribution and/or metabolization downwards its lipoprotein-
mediated cell delivery.

We have thus comparatively tested Pyr-met-Chol and NBD-Chol on two cultured cell mod-
els, both presenting high demands in cholesterol trafficking but largely differing by their gener-
al characteristics of lipid handling. We first used a cell model that incorporates exogenous
cholesterol after its solubilization in mixed biliary micelles, which act as donors of lipids (and
of the considered fluorescent derivatives of cholesterol), mimicking the intestine lumen condi-
tions. For that purpose, we chose the Caco-2 cell line model, which displays an enterocytic dif-
ferentiation allowing for studies of the intestinal absorption processes, including cholesterol
uptake and transport [20]. Second, we used a cell model that specifically incorporates exoge-
nous cholesterol thanks to lipoprotein receptors, i.e. scavenger receptor class B type I (SR-BI)
for HDL and low density lipoprotein (LDL) receptor (LDL-R) for LDL, mimicking blood
stream supplying. To test such a lipoprotein-specific vectorization of a fluorescent derivative of
cholesterol, we chose the PC-3 cell line that originates from a metastatic, hormono-indepen-
dent prostate cancer. PC-3 cells are known to require large amounts of cholesterol for growth
and secretion of cholesterol-rich membrane vesicles, prostasomes, their increased cholesterol
influx being ensured by an up-regulation of lipoprotein receptors [21]. This cell model thus
provides an interesting pathophysiological situation, since cholesterol metabolism modulation
could be considered as a potential approach for controling such a clinically devastating cancer
[22]. In addition, it is noteworthy that the multifunction scavenger receptor, SR-BI, which is
well-known as a HDL-specific receptor [23], has also been reported as a molecular receptor for
biliary micelles [24,25].

In this work, we have successively addressed the specificity of the cell incorporation pathway
of Pyr-met-Chol, as compared with NBD-Chol, and the characteristics of its intracellular dis-
tribution so obtained under fairly physiological conditions. In summary, we show here that (i)
Pyr-met-Chol and NBD-Chol display clearcut differences for their cellular uptake processes,
(ii) SR-BI is involved in Pyr-met-Chol, but not NBD-Chol, incorporation in Caco-2 cells from
biliary micelles and in PC-3 cells from HDL, (iii) Pyr-met-Chol, stably associated with HDL
and LDL in contrast to NBD-Chol, can be specifically delivered to PC-3 cells harboring the cor-
responding lipoprotein receptors, and (iv) Pyr-met-Chol incorporation leads to an intracellular
staining of membrane compartments characterized by their cholesterol richness and their
ordered structure, as revealed by pyrene excimer fluorescence emission. Finally, these data
lead to the conclusion that, while NBD-Chol is a fair marker of esterification metabolism,
Pyr-met-Chol is a reliable tracer of unesterified cholesterol of exogenous origin.

Experimental Procedures

Chemicals and cells
Pyr-met-Chol was a kind gift from Dr A Lopez (CNRS Toulouse, France) and stock solution
was solubilized in chloroform/methanol (9:1), NBD-Chol was from Sigma-Aldrich and
stock solution was solubilized in chloroform/methanol (2:1). Taurocholate (TC), Nile Red,
filipin and recombinant albumin were from Sigma-Aldrich, Bodipy493 was from Molecular
Probes, TMP-153 was from Biomol International LP, oleic acid, 1-monooleoylglycerol, phos-
phatidylcholine, lysophosphatidylcholine and 25-hydroxycholesterol were from Avanti,
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BLT-1 (2-hexyl-1-cyclopentanone thiosemicarbazone) was from Chembridge. Monoclonal
mouse antibodies (Ab) against early endosome antigen-1 (EEA-1), against lysosomal-
associated membrane protein-1 (Lamp-1), against CD13 and against CD63 were from BD
Biosciences, monoclonal mouse Ab against calnexin was from Interchim, polyclonal rabbit
Ab against adipocyte differentiation-related protein (ADRP)/adipophilin and against caveo-
lin-1 were from Santa-Cruz, goat Alexa546-labelled anti-rabbit secondary Ab was from
Invitrogen, donkey Cy3-labelled anti-mouse secondary Ab was from Jackson Immunore-
search Labs.

The Caco-2 cell line, clone TC7, was a kind gift from Dr M. Rousset [26]. It is originated
from a differentiated human colon adenocarcinoma. Cells were cultured in DMEMmedium
supplemented with 20% heat-inactivated fetal bovine serum, 1% non-essential amino acids and
1% antibiotics (Invitrogen) in an incubator at 37°C in 10% CO2 and humidified atmosphere.
They were seeded either on a solid (Nunc) or a porous support (Transwell, 0.4 μm pores poly-
carbonate filter). Culture medium was changed every 2 days. Cultured cells spontaneously form
an epithelial-like polarized cell monolayer that is considered as well differentiated (as regarding
functional enzymes and transporters expression) beyond 2 weeks after confluency [27].

The PC-3 cell line is originated from a human androgen-independent prostate cancer [28].
Cells were provided from ATCC. They were cultured in Ham’s F12 medium supplemented
with 10% fetal calf serum and penicillin (100 U/ml) plus streptomycin (10 μg/ml) (Invitrogen)
in an incubator at 37°C in 5% CO2 and humidified atmosphere, after seeding onto glass slides
for microscopy observations or onto plastic supports for kinetics determinations. The plastic
microplates suited for UV measurements were from Greiner, and those for visible measure-
ments were from Nunc.

Stable expression of fluorescently tagged SR-BI in Caco-2 cells and PC-3 cells was achieved
using a previously described lentivirus-based strategy, which permits efficient and long-term
transgene expression without clone selection [29]. Briefly, fragments corresponding to the
SR-BI open reading frame lacking the initiation codon were inserted downstream the enhanced
green fluorescent protein (EGFP) cDNAs. The fusion fragments EGFP-SRBI were cloned into
a HIV-1-based lentiviral pTrip vector carrying a tetracycline response element (TRE) (BIVIC
platform, IFR 150, CHU Rangueil, Toulouse), in order to induce EGFP-SRBI expression
after addition of 1 μg/ml doxycycline in the culture medium. The engeneered, EGFP-SR-BI-
expressing Caco-2/EGFP-SR-BI and PC-3/EGFP-SR-BI cells were cultured under the same
conditions as Caco-2 and PC-3 cells, respectively.

Fluorescent labelling of purified lipoproteins
Purified LDL and HDL fractions were prepared from healthy donor plasma by ultracentrifuga-
tion (120 000 g, at 4°C, 66 h) onto a KBr layer of density 1.06 and 1.19, respectively. Fluorescent
labelling was performed as previously described [19]. Briefly, 1–7 mg/ml of lipoprotein, dia-
lyzed against phosphate-buffered saline (PBS), was incubated with Pyr-met-Chol (using etha-
nol as a vehicle) at 5% mol/mol of the non-esterified cholesterol amount present in the
lipoprotein fraction (corresponding to 20–50 μM for HDL and 130–300 μM for LDL). Incuba-
tion was performed for 48 h at 37°C, under gentle stirring and protection from light, and la-
belled lipoproteins were then dialyzed using a semi-permeable membrane with a 10 kDa cutoff.
Bound Pyr-met-Chol fluorescence was measured by a fluorometric assay, using a Varioskan
Flash fluorescence plate reader (Thermo-Electron), with excitation and emission wavelengths
at 330 nm and 400 nm respectively, against a standard curve. Protein concentration was deter-
mined by the Biorad protein assay, taking albumin as a standard.
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Analysis of cholesterol derivatives esterification
Acyl-CoA:cholesterol acyltransferase (ACAT) activity was determined on PC-3 cells cultured
for 72 h in the presence of either Pyr-met-Chol (10 μM) or NBD-Chol (10 μM), then
washed twice with PBS containing taurocholate (TC) 2 mM and once with PBS alone. Cells
were then scrapped in methanol/water 2:1 v/v, and lipids extracted, separated on silica gel
plate in hexane/formic acid/diethylether (55:1:45 v/v/v) and revealed by UV irradiation or io-
dide vapor.

Cell incorporation and efflux kinetics measurement
Caco-2 cells were seeded at 300,000 per well in 12-well plastic plates. Between 15 and 21 days
after cell confluency, cells were cultured overnight without serum, then washed and incubated
during various periods with a bile salt micellar solution composed of 2 or 5 mM taurocholate,
0.6 mM oleic acid, 0.3 mM 1-monooleoylglycerol, 0.04 mM phosphatidylcholine, 0.16 mM
lysophosphatidylcholine and 5 μM of Pyr-met-Chol or NBD-Chol.

PC-3 cells were seeded at 250,000 per well in 12-well plastic plates, and cultured until con-
fluency, washed and then incubated with 5 μM of both Pyr-met-Chol and NBD-Chol using
ethanol as a vehicle (final volume 0.5% v/v in the culture medium), under various culture con-
ditions. For some experiments, incubations was performed with 0.1 mg/ml Pyr-met-Chol-
labelled purified LDL or HDL (Pyr-met-Chol added at 5% mol/mol of the non-esterified
cholesterol amount in the lipoprotein fraction) in the absence of fetal calf serum.

For incorporation experiments, after various incubation durations, Caco-2 or PC-3 cells
were washed twice with PBS/TC 2 mM and once with PBS alone, and they were then lysed by
sodium dodecylsulfate (SDS) 0.5% in PBS. Fluorescence of the cell lysate was quantified (for
Pyr-met-Chol, excitation and emission at 330 nm and 400 nm, respectively; for NBD-Chol,
470 nm and 530 nm respectively) against standard curves realized under the same conditions
(SDS 0.5% and the presence of control cell extracts). Each quantitative determination of cellu-
lar incorporation is normalized to the protein content of the cells. Data are representative of 2
to 9 independent experiments, each experimental point being performed in triplicate. After a
48 h standard PC-3 cell incubation, about 30–50% of Pyr-met-Chol was incorporated into the
cells in absence of serum, compared to about 5–10% in the presence of serum, about 5% in
presence of labelled purified HDL and about 50% in the presence of labelled purified LDL.

For basal efflux kinetics measurements, Caco-2 cells were first seeded on Transwell inserts
(at 300,000 per well), and between 15 and 21 days after cell confluency, cells were incubated, as
for the incorporation experiments, with a taurocholate-based micellar solution composed of 2
mM taurocholate and containing 5 μM of both Pyr-met-Chol and NBD-Chol, but added into
the apical culture medium. After various incubation durations, cells were washed twice with
PBS/TC 2 mM and once with PBS alone, and they were then lysed by SDS 0.5% in PBS, and
fluorescence of the cell lysate was quantified as described above. In parallel, aliquots were taken
from the basal culture medium, and fluorescence was quantified. For efflux kinetics measure-
ments, PC-3 cells were incubated with Pyr-met-Chol as for the incorporation experiments dur-
ing 48 h, then washed twice with PBS/TC 2 mM and once with PBS alone, and then cells were
further cultured in the absence of Pyr-met-Chol for various periods, then washed, lysed and
collected, and their remaining content in Pyr-met-Chol was determined as described above.

When appropriate, statistical significance of differences measured between two experimen-
tal conditions were assessed according to Student’s t test (p = 5% being taken as the significance
threshold).
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Cell staining and immunofluorescence
Caco-2 cells were seeded either onto glass slides put in the same plastic wells as for cellular ki-
netics experiments, or on Transwell inserts whose filters were cut out and transfered onto glass
slides for microscopy observation. Between 15 and 21 days after cell confluency, cells were cul-
tured overnight without serum, then washed and incubated, as described above, with a tauro-
cholate-based micellar solution containing 5 μM of both Pyr-met-Chol and NBD-Chol (added
into the apical culture medium for cells cultured on filters). PC-3 cells were seeded onto glass
slides put in the same plastic wells as for cellular kinetics experiments, and Pyr-met-Chol and
NBD-Chol were added to the medium as described above (either directly, using ethanol as a ve-
hicle, or by the mean of labelled purified lipoproteins), for 48–72 h, under various culture con-
ditions. Caco-2 or PC-3 cells were washed twice with PBS/TC 2 mM and once with PBS alone,
and fixed by paraformaldehyde (3%) during 12 min at 4°C. For staining of polar lipids in mem-
branes, the fixed cells were treated by 1 μg/ml Nile Red, and for neutral lipids (in lipid drop-
lets), they were treated by 1 μg/ml Bodipy493 during 15 min at room temperature (RT). For
free cholesterol staining, cells were first fixed by paraformaldehyde (3%) during 30 min at RT,
then treated by glycine 20 mM during 10 min (RT), and then by filipin at 70 μM during 30 min
(RT). For immunofluorescence experiments, fixed cells were permeabilized by either Triton
X100 0.01% during 5 min (RT) or saponin 0.05% during 45 min (RT), and are then blocked by
bovine serum albumin 1 mg/ml or fetal calf serum 10%. The cells were incubated in the pres-
ence of primary Ab during 1 h at RT after Triton X100 treatment, or during the 45 min of sapo-
nin treatment, then in the presence of the secondary Ab during ½ h at RT. Each staining step
was followed by three washes using PBS. The slides were finally mounted using Mowiol
(Sigma). For live cell imaging, cells were maintained at 37°C and 5% CO2 within a small incu-
bation chamber where humidity was regulated by a culture medium infusion system (Harvard
Apparatus, France), during time lapse experiments in two-photon microscopy. Images were ac-
quired at various times during 24 h.

Mono-photon and two-photon excitation fluorescence microscopy
imaging
Pyr-met-Chol and NBD-Chol were observed using a two-photon excitation (TPE) LSM 7MP
Zeiss (Carl Zeiss, Jena, Germany) microscope equipped with a Chameleon Ultra II Ti:sappire
laser (Coherent, Santa Clara, CA, USA), or a Leica SP5 (Leica Microsystems CMS, Mannheim,
Germany) microscope equipped with a MAITAI Ti:sappire laser (Spectraphysics, Santa Clara,
CA, USA). Immunofluorescence observations of Cy3 or Alexa-546 coupled secondary Ab
staining were performed with the Leica SP5 microscope using the mono-photon excitation
(MPE) confocal mode with a He:Ne laser 543 nm, allowing parallel observations on three chan-
nels tuned for precise wavelengths, and sequential use of TPE or MPE mode. For some experi-
ments, we took advantage of the well-known spectroscopic property of the pyrene fluorophore
to emit in the 420–560 nm range when an excited molecule transiently encounters a non-
excited molecule, making an “excited dimer” or excimer. In particular, this happens when Pyr-
met-Chol is inserted in a cholesterol-rich ordered membrane domain [30,31]. Thus, Pyr-met-
Chol was excited at a wavelength of 710 nm in TPE, and we used either i) a 370 to 485 nm
band-pass (BP) filter to select emission wavelengths of Pyr-met-Chol global fluorescence emis-
sion, ii) or a 370 to 409 nm BP filter for Pyr-met-Chol monomer emission, iii) or a 443 to 507
nm BP filter for excimer emission. For NBD-Chol and Bodipy493, excitation was at 940 nm in
TPE, and emission recorded with a 500–550 nm BP filter. For Nile Red, excitation was at 810
nm in TPE, and emission recorded with a 530–640 nm BP filter; for filipin, wavelengths were
710 nm and 370/485 nm respectively; for EGFP, wavelengths were 940 nm and 490/540 nm
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respectively. Excitation of Cy3 or Alexa-546 coupled secondary Ab staining were performed in
MPE with the laser line 546 nm, and emission was selected with a 565–610 nm BP filter. Acqui-
sitions were performed with a 63X oil objective (1.4 NA). Fields were averaged 4 times to in-
crease signal to noise ratio, and amplifier gain and offsets of each photomultiplier were
adjusted for a given experiment, but were set constant for the sake of comparison between two
coupled conditions, except otherwise indicated. Each condition was imaged on at least three
different fields.

Image processing and analysis was performed using Metamorph Imaging System software
package (Molecular Devices Corp., Sunnyvale, CA). At least 20 cells were quantified for each
staining. Colocalization analyses for Pyr-met-Chol were done with the JACoP plugin of Image
j software [32]. Manders M2 overlap coefficient was calculated for each couple, defined as the
ratio of the summed intensities of pixels from the Pyr-met-Chol channel for which the intensi-
ties of the red channel was above zero to the total intensity in the Pyr-met-Chol channel [33].
Therefore, M2 is a good indicator of the proportion of the Pyr-met-Chol signal coincident with
a signal in a red channel over its total intensity.

Results

Comparison of the cellular behaviors for NBD-Chol and Pyr-met-Chol
incorporated in Caco-2 cells
We first addressed the cell incorporation of the two fluorescent derivatives of cholesterol by
measuring their respective uptake kinetics into Caco-2 cells, cultured on solid support and in-
cubated for various durations with taurocholate-based mixed micelles containing 5 μM of
NBD-Chol or Pyr-met-Chol. When taurocholate concentration increased from 2 mM, close to
its critical micellar concentration (cmc), to 5 mM, clearly above it, NBD-Chol incorporation
was only slightly increased (for 2 and 3 h incubations, with an increasing factor of 1.4 at 3 h),
whereas Pyr-met-Chol incorporation increased more than 10 times after a 3 h incubation (Fig
1A and 1B). Using 5 mM taurocholate to form the donor micelles, we then tested the effect of
the presence during the incubation of BLT-1 (at 10 μM), an inhibitor of SR-BI-mediated lipid
apical uptake by enterocytes [34]. While NBD-Chol uptake was not altered by BLT-1, Pyr-met-
Chol uptake was reduced by more than 60% (Fig 1C and 1D).

We then performed imaging studies using confocal fluorescence microscopy to compare the
cell staining patterns obtained with NBD-Chol and Pyr-met-Chol. Due to the low excitation
wavelength of pyrene, we used TPE microscopy. Control images of non-stained cells showed
an absence of detectable autofluorescence. We tested the respective cellular localizations of the
probes in Caco-2 cells cultured on porous support since this is the most physiological situation,
with highly differentiated and polarized cells forming a sealed cellular monolayer. After incu-
bation with the taurocholate-based donor micelles added into the apical compartment, co-
staining of the Caco-2 cells by the two fluorescent derivatives of cholesterol clearly showed that
they did not stain the same intracellular structures (Fig 1E and 1F; see the merge image in
panel A in S1 Fig). The rather punctate structures intensely stained by NBD-Chol could be
assigned to lipid droplets/bodies, since they exhibited a good colocalization with ADRP/
adipophilin (panel B in S1 Fig). Actually, NBD-Chol has been reported on various cell systems
to be esterified by ACAT (acyl-CoA:cholesterol acyltransferase), even more efficiently than
cholesterol, and embedded into lipid bodies, hence leading to a huge fluorescence emission en-
hancement due to the hydrophobic environment of the NBD fluorophore in the core of these
lipid bodies [14,15,16].

We also measured the respective cellular efflux kinetics of NBD-Chol and Pyr-met-Chol to
the basal compartment from Caco-2 cells cultured on porous filters and submitted to an apical
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Fig 1. Compared cellular incorporations and effluxes of NBD-Chol and Pyr-met-Chol in Caco-2 cells. Panels A and B: Influence of the concentration of
the solubilizing bile salt taurocholate on cellular incorporation. Differentiated Caco-2 cells cultured on solid support were incubated for various periods with a
solution composed of 2 (squares) or 5 mM (triangles) taurocholate, 0.6 mM oleic acid, 0.3 mM 1-monooleoylglycerol, 0.04 mM phosphatidylcholine, 0.16 mM
lyso-phosphatidylcholine, and 5 μM of NBD-Chol (panel A) or Pyr-met-Chol (panel B). Cellular contents of NBD-Chol and Pyr-met-Chol were quantified by
fluorometry on cells lysed in the presence of 0.5% SDS. When non-apparent, error bars are included within the symbols; p<5% (*) indicates a statistically
significant difference between the absence and presence of taurocholate in Panel A; in Panel B, the difference is highly significant between the whole kinetic
curves. Panels C and D: Influence of the SR-BI inhibitor BLT-1 on cellular incorporation. Differentiated Caco-2 cells cultured on solid support were incubated
for various periods with the same solution than in Panels A and B, containing 5 mM taurocholate with 5 μM of Pyr-met-Chol or NBD-Chol, in the absence
(hollow circles) or presence (closed circles) of 10 μMBLT-1. Cellular contents of NBD-Chol and Pyr-met-Chol were quantified by fluorometry on cells lysed in
the presence of 0.5% SDS.When non-apparent, error bars are included within the symbols; in Panel D, the difference is highly significant between the whole
kinetic curves. Panels E and F: Cell staining. Differentiated Caco-2 cells cultured on porous support were incubated for 2 hours with the samemicellar
solution than in Panels A and B, containing 5 mM taurocholate with 5 μM of Pyr-met-Chol or NBD-Chol, added in the apical compartment, then fixed and
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incubation with the taurocholate-based donor micelles. Since we considered longer incubation
durations, up to 24 hours, than for the uptake experiments shown in Fig 1A and 1B, we used
the lower taurocholate concentration of 2 mM to avoid cell suffering. We simultaneously mea-
sured the corresponding cellular incorporation of the two probes, which showed that the
amount of NBD-Chol incorporated still increased over 24 h, whereas that of Pyr-met-Chol was
stationary between 4 and 24 h (Fig 1G and 1H). The amount of NBD-Chol effluxed in the basal
compartment progressively increased between 4 and 24 h, whereas that of Pyr-met-Chol was
much limited and only detectable after the 24 h incubation (Fig 1G and 1H).

These experiments on Caco-2 cells indicated marked differences for the cellular behaviors
of the two fluorescent cholesterol derivatives: Pyr-met-Chol absorption involved SR-BI, where-
as NBD-Chol is able to incorporate the cultured cells by a purely passive diffusion mechanism
(likely thanks to its amphiphilic nature).

Pyr-met-Chol delivery to PC-3 cells via lipoprotein-specific uptake
pathways
Taking into account that NBD-Chol only marginally associates with HDL and not detectably
with LDL, while Pyr-met-Chol associates with serum lipoproteins grossly proportionally to
their protein content [19], we focussed on Pyr-met-Chol-labelled lipoproteins as donor parti-
cles to target cells. We thus measured the incorporation of Pyr-met-Chol in PC-3 cells, known
to display up-regulated LDL receptors [21,35]. Pyr-met-Chol was either added directly to the
serum-containing culture medium or delivered from labelled purified lipoproteins. When Pyr-
met-Chol (5 μM) was incubated with PC-3 cells in the presence of fetal calf serum or human
serum (at 10%), there was a comparable increasing uptake over 72 h (Fig 2A), even with a ten-
dency for a higher incorporation for fetal calf serum, but likely without physiological signifi-
cance taking into account the comparable serum composition, in particular regarding
cholesterol [36]. At variance, when Pyr-met-Chol was previously associated with purified lipo-
proteins, the uptake was saturable with LDL, with a clearly more rapid incorporation and with
a higher plateau level (3.5 times) for LDL than the level reached at 72 h for HDL (Fig 2B). Tak-
ing into account a labelling level by Pyr-met-Chol higher for HDL than for LDL by a factor of
about 2 (when normalized against protein content) [19], this difference of cell incorporation is
actually twice more marked between LDL and HDL. This clear difference between the kinetics
of cell incorporation according to the nature of the lipoprotein delivering Pyr-met-Chol sug-
gested that it can follow different lipoprotein-specific uptake pathways. In addition, as a control
experiment, when Pyr-met-Chol was incubated with PC-3 cells in the absence of serum or in
the presence of recombinant albumin (devoid of any lipoprotein contaminant) instead serum,
the cellular incorporation was much more important (Fig 2C). This was consistent with a che-
lating effect of the lipoproteins for Pyr-met-Chol that prevents it to freely diffuse in the medi-
um and to be non-specifically incorporated into the cells. Since the kinetics in the presence of
albumin was not different from that in the absence of serum, albumin was thus not involved in
the specific cellular uptake pathway, specifically mediated by LDL or HDL. In contrast, the cel-
lular uptake of NBD-Chol, virtually not associated with lipoproteins, only moderately (but
significantly, p<5% for 24–48 h incubation times) depended on the presence of serum in the

observed by TPE fluorescence microscopy; NBD channel is green (panel E) and pyrene channel is in blue (panel F). Scale bar corresponds to 10 μm. Panels
G and H: Compared cells incorporation and efflux kinetics. Differentiated Caco-2 cells cultured on porous support were incubated for various periods with the
same solution than in Panels A and B, containing 2 mM taurocholate with 5 μM of Pyr-met-Chol or NBD-Chol, added in the apical compartment. Cellular (dark
bars) and basal compartment (white bars) contents of NBD-Chol (panel G) and Pyr-met-Chol (panel H, note the different ordonate scale) were quantified by
fluorometry on cells lysed in the presence of 0.5% SDS.

doi:10.1371/journal.pone.0121563.g001
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Fig 2. Donor-dependence of the incorporation kinetics of Pyr-met-Chol and NBD-Chol in PC-3 cells. Panels A and B: PC-3 cells were incubated for
various periods with 5 μMPyr-met-Chol in Ham F12 medium supplemented with 10% fetal calf serum (closed squares) or 10% of human serum (closed
circles), or with 0.1 mg/ml of Pyr-met-Chol-labelled purified LDL (open squares) or Pyr-met-Chol-labelled purified HDL (open circles). In Panel B, the
difference is highly significant between the whole kinetic curves. Panels C and D: PC-3 cells were incubated for various periods with 5 μMPyr-met-Chol
(panel C) or NBD-Chol (panel D) in Ham F12 medium in the absence (triangles) or in the presence of 10% fetal calf serum (squares) or 1 mg/ml human
recombinant albumin (circles). Pyr-met-Chol and NBD-Chol contents were measured by fluorometry on cells lysed in the presence of 0.5% SDS. When non-
apparent, error bars are included within the symbols; p<5% (*) indicates a statistically significant difference between the absence and presence of serum (or
albumin). Panel E: PC-3 cells were incubated for 24 h with 5 μMPyr-met-Chol in the absence (left image) or presence (right image) of 10% fetal calf serum,
and observed by TPE fluorescence microscopy as living, non-fixed cells. In order to present images with adequate signal intensities giving them a fair
legibility, we used a higher acquisition gain for the image recorded in the presence of serum with respect to that in the absence of serum. Scale bar
corresponds to 10 μm.

doi:10.1371/journal.pone.0121563.g002
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incubation medium, and albumin presence was sufficient to mimic the effect of serum on this
non-specific cellular uptake (Fig 2D). In addition, fluorescence microscopy imaging did not
show any difference whether NBD-Chol was incorporated in the absence or presence of serum
(not shown).

Furthermore, when PC-3 cells were incubated for 48 h in the presence of 10 μM 25-hydro-
xycholesterol, a liver X receptor (LXR) agonist regulating cell cholesterol metabolism and traf-
fic, cellular incorporation of Pyr-met-Chol was decreased by about 25% (p<5%) (panel A in S2
Fig), while that of NBD-Chol was not significantly altered (decrease<10%) (panel B in S2 Fig).
This differential effect provided further evidence that Pyr-met-Chol, in contrast to NBD-Chol,
was incorporated through a regulated specific pathway. In addition, the presence of BLT-1 (at
10 μM), a SR-BI-mediated HDL uptake inhibitor [37], during the PC-3 cells 48 h incubation
with purified Pyr-met-Chol-labelled HDL or LDL induced a decrease of Pyr-met-Chol incor-
poration by about 50%, compared to the control without BLT-1, in the case of HDL (p<5%)
(panel C in S2 Fig), but had no effect in the case of LDL (panel D in S2 Fig): this showed the se-
lective involvement of SR-BI for the HDL-mediated incorporation. By the way, the absence of
inhibiting effect of BLT-1 when using labelled purified LDL is indicative that Pyr-met-Chol la-
belling does not modify LDL in such a manner to be handled by SR-BI instead of their specific
receptors (like oxidized or acetylated LDL). Finally, the amount of Pyr-met-Chol specifically
incorporated into the PC-3 cells, about 1 nmol/mg cell prot, was rather low but nevertheless
represented a non-negligeable pool compared to their cellular cholesterol, measured to be
27 ± 3 nmol/mg cell prot for non-esterified cholesterol and 3 ± 0.3 nmol/mg cell prot for
esterified cholesterol.

The role of serum components in the cellular Pyr-met-Chol incorporation was further ana-
lyzed by fluorescence microscopy imaging of the intracellular staining of living PC-3 cells, in-
cubated 24 h in the presence or absence of fetal calf serum. In the presence of serum, we
observed that Pyr-met-Chol fluorescence was distributed between intracellular punctate struc-
tures and a diffuse cytoplasmic staining (Fig 2E), with an intensity ratio of 0.21 for the brightest
structures to the total cellular fluorescence emission. In clear contrast, in the absence of serum
as control conditions, Pyr-met-Chol fluorescence was predominent in the punctate structures
with respect to a much lower diffuse cytoplasmic staining (Fig 2E), with an intensity ratio of
0.43. This difference of intracellular staining patterns showed that the corresponding cell incor-
poration pathways were distinct, and this strongly supported that, in the presence of serum,
Pyr-met-Chol did not incorporate the cells as free molecules in the medium, as if they were re-
leased by the labelled lipoproteins (hence bypassing their receptors as in the absence of serum).
Globally, it can be concluded that the serum lipoproteins mediate Pyr-met-Chol cellular incor-
poration by specific delivery routes, giving the opportunity to address the differences of cell
trafficking downstream HDL and LDL receptors. In contrast, NBD-Chol incorporation in PC-
3 cells, as in Caco-2 cells, appears independent of specific receptors.

Intense staining of intracellular punctate structures by Pyr-met-Chol
specifically delivered to PC-3 cells
We then addressed intracellular location of Pyr-met-Chol delivered through lipoprotein-
dependent pathways. For the sake of comparison, we first analyzed the respective cellular fluo-
rescent staining patterns obtained after 48 h incubation with Pyr-met-Chol and NBD-Chol
simultaneously added (each at 5 μM) to the serum-containing culture medium. After cell fixa-
tion, the co-staining images showed that the fluorescence emissions of Pyr-met-Chol (cyan)
and of NBD-Chol (green) were mainly observed in intensely stained intracellular punctate
structures (Fig 3A). However, these structures clearly did not colocalize, as demonstrated in

Pyrene-Labelled Cholesterol as a Marker of Specific Cell Incorporation

PLOS ONE | DOI:10.1371/journal.pone.0121563 April 15, 2015 11 / 27



the merge image, the channel superimposition being mainly limited to regions corresponding
to diffuse cytoplasmic staining by Pyr-met-Chol and NBD-Chol, with the only exception of
very few punctate structures apparently overlapping (within the image resolution). When we

Fig 3. Pyr-met-Chol staining of PC-3 cells. Panel A: Double staining of PC-3 cells by Pyr-met-Chol (cyan
channel) and NBD-Chol (green channel). PC-3 cells were incubated for 48 h in Ham F12 medium
supplemented with 10% fetal calf serum in the presence of 5 μMPyr-met-Chol and 5 μMNBD-Chol; cells
were then fixed and observed by TPE fluorescence microscopy. Arrows indicate examples of the intracellular
structures intensely stained by either fluorescent cholesterol derivative. The third column is the merge image,
channel superimposition is in red. Scale bar corresponds to 10 μm. Panel B: Double staining of PC-3 cells by
Pyr-met-Chol (cyan channel) and Bodipy493 (green channel). PC-3 cells were incubated with Pyr-met-Chol
as above, then fixed and treated with 1 μg/ml Bodipy493, and observed by TPEmicroscopy. The third column
is the merge image, channel superimposition is in red. Scale bar corresponds to 10 μm. Panels C and D:
Double staining of PC-3 cells by Pyr-met-Chol (cyan channel) and Nile Red (red channel). PC-3 cells were
incubated with Pyr-met-Chol as above, then fixed and treated with 1 μg/ml Nile Red, and observed by TPE
microscopy. The third column is the merge image, channel superimposition is in white. Scale bar
corresponds to 10 μm. In panel D, the images were obtained from panel C by increasing the gamma factor to
2, which enhances the low and medium intensity red pixels without modification of the brightest ones, thus
allowing for a clear vizualization of the diffuse cytoplasmic staining as well as brighter structures (but no more
allowing relative quantifications).

doi:10.1371/journal.pone.0121563.g003
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stained PC-3 cells with Bodipy493, a classical marker of intracellular lipid bodies, we also ob-
served that Pyr-met-Chol fluorescence virtually did not colocalize with the structures stained
by Bodipy493 (Fig 3B), confirming NBD-Chol data. Anyway, it could be expected that both
cholesterol derivatives can partially colocalize within some intracellular membranes.

These imaging data were then reinforced by biochemical analysis of the capacity of PC-3
cells to esterify the cholesterol derivatives. After a 72 h incubation with these two cholesterol
derivatives, separation by thin layer chromatography of the cell lipid extracts showed a
large fluorescent spot for NBD-Chol (Rf = 0.035) and a small spot for esterified NBD-Chol
(Rf = 0.162), but only one detectable fluorescent spot for Pyr-met-Chol (Rf = 0.129), indicating
that ACAT was not able to esterify Pyr-met-Chol. In addition, when PC-3 cells were incubated
with TMP-153, an ACAT inhibitor, we noticed a decrease in number and intensity of the punc-
tate structures stained by NBD-Chol, while the structures intensely stained by Pyr-met-Chol
displayed a decreased intensity that follows the global cell staining (panels A and B in S3 Fig).
Actually, under the same conditions, we observed a marked inhibition of Pyr-met-Chol cellular
incorporation by about 55% (p<5%) (panel C in S3 Fig), whereas no effect was detected for
NBD-Chol (panel D in S3 Fig). These experiments using TMP-153 also showed that the
intracellular esterification of cholesterol regulated the entry of Pyr-met-Chol delivered by
lipoprotein-dependent pathway, but not that of NBD-Chol, which was delivered by a non-
specific route.

When PC-3 cells were stained with Nile Red, whose red fluorescence emission non-
specifically probes membrane polar lipids [38], there was a partial but fair colocalization
with Pyr-met-Chol staining (Fig 3C), indicating that Pyr-met-Chol inserts into various intra-
cellular membranes. Indeed, by altering the image contrast, it could be observed that, besides
the intensely stained intracellular structures, Pyr-met-Chol staining also displayed a diffuse
cytoplasmic staining (in agreement with the previous observations of non-fixed cells) that
colocalized with Nile Red (Fig 3D).

For the sake of comparison, we also observed PC-3 cells stained with filipin, the classical
marker of unesterified cell cholesterol. The staining pattern showed a well-labelled plasma
membrane and some intracellular irregular structures (S4 Fig). Comparison with Pyr-met-
Chol staining reflects the inherent difference between the two fluorophores, that is filipin stains
all the cellular non-esterified cholesterol pools while Pyr-met-Chol can only trace for the exog-
enous cholesterol delivered through lipoproteins pathways.

Intracellular distribution in PC-3 cells of Pyr-met-Chol specifically
delivered by LDL or HDL
Since specific lipoprotein-dependent pathways appear to be involved in Pyr-met-Chol cellular
uptake, we further focused on the comparison of intracellular compartments stained by
Pyr-met-Chol when delivered to PC-3 cells by either purified human LDL or HDL. TPE mi-
croscopy observations showed that Pyr-met-Chol staining of the punctate structures was more
important for LDL than for HDL, and clearly increased between 24 h and 48 h for HDL incuba-
tion, while roughly constant with LDL (Fig 4). This is in agreement with the cellular incorpo-
ration kinetics displayed in Fig 2B, and allows to conclude that the intense staining of these
intracellular structures is roughly proportional to the global cell incorporation (without major
bias due to any quenching or enhancement phenomenon).

We then determined the intracellular distribution of the Pyr-met-Chol-stained structures
by analyzing their colocalization with various specific markers of intracellular membrane com-
partments (Fig 5). After 48 h of incubation with either Pyr-met-Chol-labelled LDL or HDL, the
stained structures were mainly associated with the late endosome marker Lamp-1 and with the
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prostasome-precursor intracellular vesicles marker CD63 (Fig 5A and 5B), as examplified by
the merge images (Fig 5C and 5F; see the corresponding monochannel images in panels A-D
in S5 Fig), with no clear difference for the levels of partial colocalization observed with HDL
and LDL incubations. Partial colocalization was also observed with the caveolae marker
caveolin-1, but also without clear difference between HDL and LDL incubations. In addition,
with both LDL and HDL, Pyr-met-Chol-stained structures colocalized to a lesser extent with
the early endosome marker EEA-1, and were virtually not associated with the endoplasmic re-
ticulum marker calnexin, or with the plasma membrane marker CD13.

Pyr-met-Chol excimer to monomer fluorescence ratio as a specific tool
to localize and follow ordered membranes
Thanks to its pyrene moiety, Pyr-met-Chol has the advantage to form excimers when inserted
in raft-like ordered lipid membranes [13], displaying fluorescence emission at higher wave-
lengths than monomers (420–580 nm vs 360–410 nm). After PC-3 cells were incubated for 48
h with either Pyr-met-Chol-labelled LDL or HDL, the fluorescence emission of Pyr-met-Chol
was recorded in both the monomer and excimer channels of the TPE microscope. We observed
that, for both LDL and HDL-mediated delivery, the major part of the intracellular structures
intensely stained by the Pyr-met-Chol monomers were most intensely stained by Pyr-met-
Chol excimers (Fig 6A). An excimer/monomer ratio IE/Im could be calculated from the mea-
sured fluorescence intensities in the doubly intensely stained structures, considered as regions
of interest. This ratio had a similar value for either route delivering Pyr-met-Chol to the cells,
LDL (IE/Im = 0.62) or HDL (0.65). In both cases, these data show that Pyr-met-Chol excimers
can evidence intracellular membrane domains that provide to the dye a specific local

Fig 4. PC-3 cells staining by Pyr-met-Chol-labelled purified HDL or LDL. TPEmicroscopy imaging of
fixed PC-3 cells was performed after a 24 h (left panels) or 48 h (right panels) incubation in the presence of
0.1 mg/ml of Pyr-met-Chol-labelled purified LDL (upper panels) or Pyr-met-Chol-labelled purified HDL (lower
panels). TPE microscopy acquisitions were done with the same gain settings for the 24 h and 48 h incubation
conditions, but they were lower for LDL than for HDL. Scale bar corresponds to 10 μm.

doi:10.1371/journal.pone.0121563.g004
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environment characterized by an ordered structural organization, and that these membrane
compartments were observed to be among those that contain the highest amounts of Pyr-met-
Chol incorporated in the cells. In the other hand, the intracellular structures with lower fluores-
cence emission in the monomer channel, including the diffuse cytoplasmic staining, were not

Fig 5. Colocalization analysis between Pyr-met-Chol and protein markers of intracellular membrane
compartments in PC-3 cells. TPEmicroscopy imaging of fixed PC-3 cells was performed after a 48 h
incubation with 0.1 mg/ml of Pyr-met-Chol-labelled purified LDL (left panels) or Pyr-met-Chol-labelled purified
HDL (right panels), followed by permeabilization with Triton X-100 and immunostaining using specific
antibodies against either EEA-1 (early endosomes), CD63 (prostasome-precursor vesicles), caveolin-1
(caveolae), Lamp-1 (late endosomes), calnexin (endoplasmic reticulum) or CD13 (plasmamembrane).
Panels A and B: Manders coefficient were calculated as indicators of the proportion of Pyr-met-Chol signal in
the intensely stained structures that colocalized with the signal of each of the antibodies (secondary
antibodies labelled by Cy3, except Alexa-546 for caveolin-1 detection). Panels C and D: Merge images of the
colocalization of Pyr-met-Chol (cyan channel) with Lamp-1 (red channel); superimposition is in white. Panels
E and F: Merge images of the colocalization of Pyr-met-Chol (cyan channel) with CD63 (red channel);
superimposition is in white. Scale bar corresponds to 10 μm.

doi:10.1371/journal.pone.0121563.g005
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at all apparent in the excimer channel (Fig 6A). These observations that Pyr-met-Chol, deliv-
ered via LDL and HDL pathways, preferentially associated to ordered, cholesterol-rich, intra-
cellular membranes, thus indicated a similar distribution to that occuring with membrane
cholesterol.

We then observed living, non-fixed PC-3 cells in both monomer and excimer channels over
a 24 h Pyr-met-Chol incubation in the presence of serum. After 5 h, both Pyr-met-Chol
monomer and excimer stainings were visible, but rather faint (not shown), in agreement with
the cellular incorporation kinetics presented in Fig 2A. After 24 h, excimer staining mostly cor-
responded to the intracellular punctate structures stained by the monomers (Fig 6B). The
excimer/monomer ratio IE/Im was evaluated to 0.78 under these conditions. These observations
on living cells showed that cell fixation did not sensibly alter the staining pattern exhibited by
Pyr-met-Chol.

Fig 6. Simultaneous staining of PC-3 cells by Pyr-met-Chol monomers and excimers. Panel A: TPE
microscopy imaging of fixed PC-3 cells was performed after a 48 h incubation with 0.1 mg/ml of Pyr-met-
Chol-labelled purified LDL (upper panels) or Pyr-met-Chol-labelled purified HDL (lower panels), and the
fluorescence emission was simultaneously observed for pyrene monomers (white channel) and excimers
(cyan channel). Acquisition gains were much higher for images obtained for HDL incubation than for LDL.
Scale bar corresponds to 10 μm. Panel B: TPEmicroscopy imaging of living, non-fixed PC-3 cells was
performed after a 24 h incubation of Pyr-met-Chol in the presence of 10% fetal calf serum, and the
fluorescence emission was simultaneously observed for pyrene monomers (white channel) and excimers
(cyan channel). Scale bar corresponds to 10 μm.

doi:10.1371/journal.pone.0121563.g006
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Functional relevance of the Pyr-met-Chol stained membranes
Pyr-met-Chol staining (after a 48 h incubation) of PC-3 cells gave the opportunity to further
study their ordered membrane pools. In particular, besides the intensely stained punctate intra-
cellular structures described above, we also observed rather large and irregularly shaped, often
hollow, structures at the periphery of some of the cells (Fig 7A). These structures were present

Fig 7. Staining of pericellular membrane structures and Pyr-met-Chol efflux. Panel A: Pyr-met-Chol
staining of pericellular structures. TPE microscopy imaging of fixed PC-3 cells was performed after a 48 h
incubation of 5 μMPyr-met-Chol in the presence of 10% fetal calf serum. Scale bar corresponds to 10 μm.
The right image is a magnification of the left one, and the arrows point some of the pericellular structures.
Panel B: Fluorescent labelling of transfected PC-3 cells expressing the fusion protein EGFP-SR-BI. TPE
microscopy imaging of fixed PC-3/EGFP-SR-BI cells was performed as in panel A (48 h incubation of 5 μM
Pyr-met-Chol in the presence of 10% fetal calf serum); cyan channel for Pyr-met-Chol and green channel for
EGFP-SR-BI; the white arrows point some of the singly labelled pericellular structures, and the red and pink
arrows point two doubly labelled pericellular structures. Panel C: Kinetics of Pyr-met-Chol efflux from PC-3
cells. PC-3 cells were incubated for 48 h with 5 μMPyr-met-Chol in the presence of 10% fetal calf serum, then
washed and further cultured in the absence of Pyr-met-Chol for various periods. Remaining Pyr-met-Chol
content was measured by fluorometry on cells lysed in the presence of 0.5% SDS. When non-apparent, error
bars are included within the symbols.

doi:10.1371/journal.pone.0121563.g007
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in spite of cell washing, indicating that they were likely not free but somehow attached to the
cells. These “pericellular structures” were also observed after Nile Red staining (Fig 3C), which
showed their membranous nature. They were similarly observed on living, non-fixed cells (not
shown). However, they were no longer apparent after permeabilizing detergent treatment, pre-
cluding any immunofluorescence study of membrane markers associated with these structures.
In addition, when Pyr-met-Chol was delivered from either purified LDL or HDL, these pericel-
lular structures were approximately similarly present (not shown). By analyzing Pyr-met-Chol
cell staining of these structures in both monomer and excimer channels of the TPE microscope,
the excimer/monomer ratio IE/Im was evaluated to 0.37 after LDL-mediated Pyr-met-Chol de-
livery and to 0.20 after HDL-mediated Pyr-met-Chol delivery. Finally, since it has been re-
ported that the microvillar extensions present on various cell lines are the preferential location
of SR-BI [39], we engineered the PC-3/EGFP-SR-BI cells to address the possible relationships
between SR-BI and the pericellular structures. It is noteworthy that these pericellular structures
were labelled in these cells expressing the fusion fluorescent protein EGFP-SR-BI (Fig 7B).

We then analyzed Pyr-met-Chol efflux out of PC-3 cells prelabelled by a 48 h Pyr-met-Chol
incubation in the presence of serum, and washed before further culture in the absence of Pyr-
met-Chol. We prepared a membrane fraction by ultracentrifugation of the culture medium col-
lected after 96 h, as previously described [40], and we recorded the fluorescence emission spec-
trum of these membranes. This showed that a noticeable fraction of the secreted Pyr-met-Chol
emitted in the excimer wavelengths (I480/I400 = 0.24), indicating that at least a fraction of the
dye was present in secreted ordered membranes. Finally, we measured kinetics of Pyr-met-
Chol efflux over 72 h from the cells prelabelled under the same conditions, and this showed
that a major part (roughly half) of Pyr-met-Chol incorporated into the PC-3 cells was not re-
tained but was secreted by the cells, with a relatively slow rate (half-time of 5–6 hours, Fig 7C).

Discussion
In contrast to NBD-Chol, Pyr-met-Chol is shown here to use specific pathways, involving
SR-BI and LDL-R, to incorporate two different cultured cell types, i.e. biliary micelles for Caco-
2 cells and labelled lipoproteins for PC-3 cells. This evidence is pivotal to validate the physio-
logical relevance of the observed characteristics of the intracellular trafficking of the considered
fluorescent sterol. In particular, after a 48h incubation with PC-3 cells, Pyr-met-Chol is ob-
served to preferentially localize in cholesterol-rich ordered intracellular membranes after traf-
ficking downwards HDL as well as LDL receptors.

Distinct cell incorporation fates for NBD-Chol and Pyr-met-Chol from
biliary micelles
Caco-2 cell line displays an enterocytic differentiation phenotype which makes it a valuable
model for studying intestinal absorption processes, including cholesterol transport. For lipid
absorption to be realized at the level of the apical brush border, bile salt-based mixed micelles
are required to solubilize the dietary lipids and conveniently “present” them to the apical cell
transporters in charge of them [41,42]. The use of Caco-2 cells thus gave the opportunity to
test the cell uptake of fluorescent cholesterol derivatives using a “simple” delivery route based
on bile salt micelles as vectors. We used taurocholate to form model micelles of simplified com-
position, but aimed at mimicking at best the physiological processes for delivering the fluores-
cent cholesterol derivatives [43]. However, taurocholate concentration is determinant for the
nature and chemico-physical properties of the formed hydrophobic donor structures. Indeed, 5
mM taurocholate (although somehow lower than the cmc of the pure detergent in water) is
enough to form mixed micelles in the presence of hydrophobic environment [44,45], while at 2
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mM it can be only expected to form so-called “sub-micellar aggregates” [46,47]. Mixed micelles
[48] are well-recognized to increase solubility of polycyclic hydrophobic molecules, including
sterols, providing an efficient means for emulsification and vectorization [49,50], whereas sub-
micellar aggregates can provide only limited solubilization capacities for hydrophobic com-
pounds [47,49]. Data presented in Fig 1A and 1B thus give the indication that Pyr-met-Chol
takes much larger benefit of being solubilized in mixed micelles than NBD-Chol in terms of in-
corporation into Caco-2 cells. In addition, the clear inhibition of Pyr-met-Chol cell incorpo-
ration by BLT-1 shows that SR-BI mediates, at least partly, its apical handling, as previously
reported for cholesterol after its solubilization in taurocholate-based micelles [41]. In agree-
ment, the fusion protein EGFP-SR-BI, expressed in transfected Caco-2/EGFP-SR-BI cells, was
observed to be mainly localized in the apical pole of the cells, even in the absence of any biliary
micelles (S6 Fig). In contrast to Pyr-met-Chol, the absence of BLT-1 effect on NBD-Chol cell
incorporation, along with the only slight influence of the chemico-physical state of the donor
solution that indicated a much lower dependence on micelle-mediated solubilization, is consis-
tent with a purely passive mechanism for cell membrane permeation of this amphiphilic
molecule.

Once present in the Caco-2 cells, the two fluorescent cholesterol derivatives also exhibit
clearly distinct behaviors. For NBD-Chol, and in contrast to Pyr-met-Chol, colocalization with
adipophilin and absence of kinetic saturation of the incorporated amount at 24 h (Fig 1G and
1H) are consistent with its efficient intracellular esterification, allowing accumulation in the
lipid bodies, as previously reported for various cell types [14,15,16]. The cellular efflux kinetics
also showed differences, being more rapid and important for NBD-Chol than for Pyr-met-
Chol. However, for both cholesterol probes, the effluxed fraction with respect to the cellular in-
corporation at 24 h is fairly comparable (10–15% range) with the reported values (about 5%)
using radio-labelled cholesterol on Caco-2 cells in monolayer for the same time range [51].

The marked differences in cell staining patterns observed for the two fluorescent cholesterol
probes suggest that they follow distinct dynamic membrane pools when they are incorporated
by the delivery system made of taurocholate-based micelles. Since another cell incorporation
route for lipids and lipophilic compounds is provided by lipoproteins, we took benefit of the re-
cent evidence that Pyr-met-Chol, in contrast to NBD-Chol, tightly associates with LDL and
HDL [19]. We thus further compared these two fluorescent derivatives of cholesterol regarding
their cell delivery to the PC-3 cell line model that well expresses lipoproteins receptors.

Lipoprotein receptor-mediated delivery of Pyr-met-Chol to PC-3 cells
When incubated in the absence of serum with PC-3 cells, Pyr-met-Chol is delivered as a free
molecule, and it displays a higher total incorporation and a lower diffuse cytoplasmic staining
(relative to the intracellular punctate structures) than in the presence of serum (Fig 2A and
2E). These clear-cut differences of interaction with the PC-3 cells characterize the distinction
between non-receptor, i.e. without serum, and receptor-mediated, i.e. with lipoprotein-
containing serum, influx pathways. In the last case, no Pyr-met-Chol appears to be exchanged
with the incubation medium as free molecules (as would happen if the lipoprotein labelling
would have been not so stable), and all Pyr-met-Chol is thus sequestered by serum compo-
nents, that sustain a limiting and specific cellular incorporation, even in the early phases of in-
cubation. Albumin, well-known to bind lipophilic molecules and alter their bioavailability [52],
cannot directly be involved in mediating Pyr-met-Chol cell delivery (Fig 2C), but may contrib-
ute as an intermediate chelating component that would transiently transfer Pyr-met-Chol to li-
poproteins for receptor-mediated cell delivery. In addition, it should be noted that the slower
cell incorporation kinetics of Pyr-met-Chol observed when it is directly added to serum
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(Fig 2C) rather than using labelled purified LDL (Fig 2B) was likely a result of the delay (hour
range) necessary for labelling the LDL present in the serum [19].

The involvement of lipoprotein receptors is confirmed by the decrease of Pyr-met-Chol in-
corporation observed with serum in the presence of the LXR agonist, 25-hydroxycholesterol
(panel A in S2 Fig), or the ACAT inhibitor, TMP-153 (panel C in S3 Fig), two compounds
known to alter receptor-mediated cholesterol incorporation [53]. Moreover, the higher and
faster cellular incorporation from Pyr-met-Chol-labelled purified LDL than from Pyr-met-
Chol-labelled purified HDL (Fig 2B) is also indicative of an interaction with the corresponding
specific receptors, and this is consistent with the reported overexpression of LDL receptors in
the PC-3 cells [21,35]. However, when PC-3 cells are incubated in the presence of total serum,
the relative contributions of LDL- and HDL-mediated incorporation routes are expected to be
fairly comparable since HDL are present in foetal calf serum in somehow higher (2–3 fold)
amounts than LDL [54].

At variance with Pyr-met-Chol, NBD-Chol cellular incorporation is not sensitive to
25-hydroxycholesterol or TMP-153, confirming that NBD-Chol, which virtually does not bind
to lipoproteins, is delivered to the cells by a receptor-independent incorporation pathway that
is only partially limited by its chelation to albumin (Fig 2D). Thus, in PC-3 as well as in Caco-2
cells, Pyr-met-Chol and NBD-Chol are submitted to receptor-mediated and non-specific cellu-
lar incorporation pathways, respectively.

Intracellular staining by lipoprotein-delivered Pyr-met-Chol
Compared intracellular esterification of the two cholesterol derivatives. When Pyr-

met-Chol and NBD-Chol are simultaneously delivered to PC-3 cells in the presence of serum,
they intensely stain internal structures that are clearly distinct (Fig 3A), evidencing different in-
tracellular routing for these two fluorescent cholesterol derivatives. NBD-Chol well labels lipid
bodies (or droplets) [14,15], displaying a dramatically increased fluorescence emission when
included as esterified form in the hydrophobic core of these particles. Indeed, we show that
NBD-Chol is partly esterified in PC-3 cells, although TMP-153 does not affect NBD-Chol cell
incorporation (panels B and D in S3 Fig), which is likely the consequence of the esterification
of only a small fraction of the probe, assuming that esterification is necessary for increasing the
amount of intracellular stored sterols. In contrast, Pyr-met-Chol labels intracellular structures
different from lipid bodies, and is not detectably esterified by ACAT in PC-3 cells. The partial
colocalization (15%) of the diffuse Pyr-met-Chol cytoplasmic staining with the marker cal-
nexin (not shown) rules out an impediment of access to ACAT in the endoplasmic reticulum.
Otherwise, this absence of intracellular Pyr-met-Chol esterification is consistent with the re-
ported dependence of ACAT activity on the structure of the lateral chain presented by sterols,
such as phytosterols [55,56]. Such metabolisation difference between NBD-Chol and Pyr-met-
Chol has also been observed for lecithin:cholesterol acyltransferase (LCAT) [19].

Compared incorporation routes mediated by LDL and HDL. Since we have recently
shown the specific association of Pyr-met-Chol with LDL and HDL [19], we are in position to
compare their respective cell incorporation routes. When either Pyr-met-Chol-labelled puri-
fied LDL or Pyr-met-Chol-labelled purified HDL were added to PC-3 cells, the staining intensi-
ty of intracellular stuctures increases faster and more intensely with LDL than with HDL (Fig
4), in agreement with the cell incorporation kinetics (Fig 2B). However, the low staining signal
for short-time incubation (< 24h) does not allow to discriminate between a time shift or an ac-
tual qualitative difference between HDL and LDL routes. Anyway, at steady state (> 48h), no
clear difference between LDL- and HDL-mediated delivery was observed for Pyr-met-Chol
staining, regarding colocalization with various membrane compartment markers or the
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fluorescence ratio excimer/monomer in the intensely stained structures. Actually, LDL-
labelling Pyr-met-Chol, incorporated by the "LDL receptor-mediated clathrin-dependent en-
docytosis" mechanism [57], and HDL-labelling Pyr-met-Chol, incorporated by the "HDL
retro-endocytosis" mechanism [58], finally meet toward a common intracellular compartment,
likely related to late endosomes (Lamp-1 positive) and multivesicular bodies (CD63 positive),
where Pyr-met-Chol accumulates lately (Fig 5). Thus, there is no indication of durably separat-
ed pools of intracellular Pyr-met-Chol either delivered from LDL or HDL, but rather a progres-
sive “mixing” in the various intracellular membranes of these two exogenous fluorescent
cholesterol pools of different origins. To our knowledge, such a question has never been direct-
ly addressed using a specific fluorescent labelling of the donor LDL vs HDL particles, and this
evidences the usefulness of Pyr-met-Chol as a marker of specific lipoprotein-mediated
cell delivery.

Pyr-met-Chol excimer fluorescence emission as a marker of intracellular
cholesterol-rich membranes
An interesting hallmark of the pyrene group is its ability to form excimers, displaying a specific
fluorescence emission under favorable local conditions. In particular, Pyr-met-Chol can reveal
ordered, cholesterol-rich, raft-like microdomains in model membranes [13], with a ratio of ex-
cimer to monomer emission in the range of 0.2–1 (depending on the lipid composition), this
value being roughly independent from the amount of probe present in the membrane [59]. In
our experiments, the excimer emission in the intracellular structures is similar when Pyr-met-
Chol is delivered from LDL or HDL, with a ratio excimer to monomer evaluated by double
channel TEP microscopy at about 0.6 (Fig 6A), although the amounts of dye incorporated dif-
fers by a factor of about 4. This indicates that Pyr-met-Chol excimer emission cannot be due to
a simple concentration effect, but reflects the ordered organization of the membrane environ-
ment of the dye, likely linked to a local enrichment in cholesterol. This environment felt by the
probe downwards lipoprotein uptake is obviously independent of that occuring within the
fluorescently labelled lipoproteins that are incubated with the cells [19]. In addition, the major-
ity of intracellular structures that display excimer emission are also highly stained by Pyr-met-
Chol monomers, suggesting that Pyr-met-Chol and cholesterol distribute similarly, at least in
the cholesterol-rich membranes. Indeed, these Pyr-met-Chol-stained intracellular structures
colocalize with markers of late endosomes and of multivesicular bodies, both known for their
high cholesterol content [60], and with caveolin-1, well-known for its association with choles-
terol. These data validate the usefulness of this cholesterol-derived probe as a convenient tool
for addressing the cellular fluxes of cholesterol-rich membranes (without the drawbacks of cell
fractionation).

As an illustration, PC-3 cells, which are well-known for their capacity to secrete cholesterol-
and sphingomyelin-rich membrane vesicles, called prostasomes [61], harbor pericellular struc-
tures that are stained by Pyr-met-Chol monomers and excimers (Fig 7A). These membrane
structures could be reminiscent of the blebs (or “aposomes”) reported to occur in various pros-
tate cells [62]. The colocalization in at least a part of these pericellular structures of Pyr-met-
Chol and EGFP-SR-BI (Fig 7B), which otherwise labels the plasma membranes as expected for
its function as HDL receptor, raises the question of possible functional relationships between
them, in particular in the frame of the multifunctional abilities of SR-BI. Finally, incorporated
Pyr-met-Chol is not sequestered in the cells, and can follow outward exchanges with the exter-
nal medium, as shown by its efflux kinetics (Fig 7C) and its presence in extracellular membrane
vesicles. Pyr-met-Chol can thus be followed for its cell influxes and effluxes whatever the
exchange mechanisms involved, such as bile salt micelles and lipoproteins, respectively, as
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observed with Caco-2 line, or lipoproteins and membrane vesicles, respectively, as observed
with PC-3 line.

Pyr-met-Chol, a new fluorescent probe to investigate membrane
cholesterol trafficking in target cells downwards specific delivery
Few years ago, Pyr-met-Chol has been synthesized as a new pyrene-labelled cholesterol deriva-
tive [13], differing from a previously synthesized pyrene-based cholesterol derivative using a
carboxyl group for grafting the fluorophore, which had the drawback of giving too a hydrophil-
ic molecule for reliably mimicking cholesterol membrane interaction [63,64]. Indeed, Pyr-met-
Chol compares favorably with other fluorescent lipid probes already used as markers of lipo-
protein delivery since, typically, DiI and DiO are widely used as fluorescent membrane probes
delivered to target cells by labelled lipoproteins [65,66], but the charged structure of the carbo-
cyanine moiety makes it sensitive to membrane potential, thereby influencing its intracellular
distribution. Moreover, the length and saturation of the alkyl chains of DiI/DiO are determin-
ing for targeting the membrane compartments where they insert, which can be influenced by
the presence of microdomains [67]. Among the very few fluorescent cholesterol derivatives
studied on cultured cells [8], generally using non-specific routes for cell delivery, only HDL-
mediated cell delivery of DHE [9] and of Bodipy-Chol [10] have been tested. With respect to
Bodipy-Chol, Pyr-met-Chol shares some interesting and important biological properties, such
as good photostability and preferential partitioning in cholesterol-rich membranes, but howev-
er they essentially differ by their ability to be esterified in cells: Bodipy-Chol is esterified, but in
a more or less lower level than (radioactive) cholesterol depending on the incubation condi-
tions of the cultured cells (but using non-specific routes for cellular delivery) [11], whereas
Pyr-met-Chol is not esterified, which could have some consequences on their intracellular traf-
ficking and distribution. Indeed, Pyr-met-Chol can be considered as a fair probe of non-
esterified cholesterol, and thus a good reporter in the cells of interest of the intra-membrane
cholesterol of exogenous origin, without any interference with esterification metabolism, in-
cluding various cholesterol pools handled by the two ACAT isoforms and their possible regula-
tions. Otherwise, pyrene-labelled phospholipids [68] or cholesterol esters delivered by LDL
[69] have been used to investigate lipid metabolism, but since these probes are processed by en-
zymatic activities, they cannot reliably trace membrane compartments. It appears finally that
Pyr-met-Chol and Bodipy-Chol exhibit distinct but complementary cellular properties, and
can hence be considered as aimed at probing different aspects of cholesterol cell handling.

As a whole, Pyr-met-Chol presents many advantages: (i) a long-term metabolic stability and
a strong resistance to photodegradation, in contrast to DHE, cholestatrienol and dansyl-
cholesterol; (ii) the chemico-physical properties of Pyr-met-Chol for insertion in the mem-
brane lipid phase, which allows to trace the cholesterol molecules, in particular regarding parti-
tioning into cholesterol-rich ordered domains; (iii) the ability of Pyr-met-Chol to follow
specific cell delivery routes, which validates the physiological relevance of its observed intracel-
lular trafficking; (iv) the possible simultaneous observations for Pyr-met-Chol of two fluores-
cence emission wavelengths (corresponding to monomers and excimers) that report on its
molecular environment, which allows a quantitative follow-up of a given membrane compart-
ment corresponding to a measured emission excimer/monomer ratio.

Actually, Pyr-met-Chol can stain various internal membrane compartments, more or less
enriched in cholesterol, including endoplasmic reticulum where Pyr-met-Chol is even more
prominent (~15%) than cholesterol (representing less than 2% [2]), perhaps as a consequence
of not being esterified by ACAT. It should be noted that the very weak Pyr-met-Chol staining
of plasma membrane is in agreement with cell labelling by DHE, that is much less intense than
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filipin at the plasma membrane level [70]. This could be interpreted by the fact that the choles-
terol pool in plasma membrane is mainly provided from endogenous biosynthesis, feeding this
important membrane with intact, non-oxidized cholesterol, at variance with exogenous choles-
terol possibly delivered by oxidized lipoproteins. Although it remains to be determined wheth-
er Pyr-met-Chol is submitted to "regular" interactions with the various proteins involved in the
intracellular cholesterol trafficking, Pyr-met-Chol finally appears to much more reliably trace
the physiological traffic pathways of exogenous unesterified cholesterol than NBD-Chol does.

Conclusion
As a conclusion, Pyr-met-Chol is a reliable fluorescent exogenous sterol that can probe bile salt
micelle-mediated as well as lipoprotein-mediated specific cellular delivery, evidencing in both
cases the involvement of the multifunction scavenger receptor SR-BI. It is also a probe that
gives the opportunity to delineate the respective cellular pathways downwards the HDL and
LDL receptors. Since this probe allows to conveniently observe the intracellular pathways in-
volving cholesterol-rich membranes, it could be considered as a fair tracer of exogenous unes-
terified cholesterol (and other sterols). This approach could hence be applied to any other cell
models that have to deal with important cholesterol fluxes with the extracellular medium (e.g.
hepatocytes, neurons. . .).

Supporting Information
S1 Fig. Caco-2 cells costaining either by NBD-Chol and Pyr-met-Chol (panel A) or by
NBD-Chol and ADRP immunofluorescence (panel B). Panel A: Merge image corresponding
to the monochannel images presented in Fig 1E and 1F: green: NBD-Chol localization; blue:
Pyr-met-Chol localization. Panel B: Caco-2 cells, cultured on glass slides until differentiation,
were washed and incubated for 2 h in the presence of biliary micelles containing 5 mM tauro-
cholate and 5 μMNBD-Chol, then fixed and permeabilized, and successively treated by anti-
ADRP Ab and by Alexa546-labelled secondary Ab. The cells were observed by bichannel
confocal fluorescence microscopy: red, Alexa546 emission; green, NBD emission (yellow signs
colocalization). Scale bar correponds to 10 μm.
(TIF)

S2 Fig. Effect of 25-hydroxycholesterol and BLT-1 on Pyr-met-Chol incorporation in PC-3
cells. Panels A and B: Effect of 25-hydroxycholesterol. PC-3 cells were incubated for 48 h in
culture medium supplemented with 10% fetal calf serum in the presence of 5 μM Pyr-met-
Chol (A) or 5 μMNBD-Chol (B), in the absence or presence of 10 μM 25-hydroxycholesterol
(NT, non-treated control cells). Pyr-met-Chol and NBD-Chol cellular fluorescence emissions
were quantified as in Fig 2. p<5% (�) indicates a statistically significant difference. Panels
C and D: Effect of BLT-1. PC-3 cells were incubated for 48 h in culture medium supplemented
with 0,1 mg/ml of Pyr-met-Chol-labelled purified HDL (C) or LDL (D), in the absence or pres-
ence of 10 μM BLT-1 (NT, non-treated control cells). Pyr-met-Chol cellular fluorescence emis-
sions was quantified as in Fig 2. p<5% (�) indicates a statistically significant difference.
(TIF)

S3 Fig. Effect of the inhibition of cholesterol esterification on Pyr-met-Chol and NBD-Chol
incorporation in PC-3 cells. PC-3 cells were incubated for 72 h in culture medium supple-
mented with 10% fetal calf serum in the presence of 5 μM Pyr-met-Chol (panels A and C) or of
5 μMNBD-Chol (panels B and D), in the absence or presence of 1 μMTMP-153 (NT, non-
treated control cells). Panels A and B: TPE microscopy imaging was performed as in Fig 3A.
Scale bar corresponds to 10 μm. Panels C and D: Pyr-met-Chol and NBD-Chol cellular
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fluorescence emissions were quantified as in Fig 2. p<5% (�) indicates a statistically significant
difference.
(TIF)

S4 Fig. Staining of PC-3 cells by filipin. PC-3 cells were incubated for 48 h in culture medium
supplemented with 10% fetal calf serum. Cells were fixed and treated with 70 μM filipin for 30
minutes at room temperature, and then observed by TPE fluorescence microscopy. Scale bar
corresponds to 10 μm.
(TIF)

S5 Fig. Monochannel images corresponding to the merge images presented in Fig 5C and
5F. Red channel reports on Cy3 fluorescence emission; cyan channel reports on Pyr-met-Chol
fluorescence emission. Panels A and B: Lamp-1 detection by Cy3-labelled Abs; Panels C and D:
CD63 detection by Cy3-labelled Abs; Panels A and C: PC-3 cells incubation with Pyr-met-
Chol-labelled purified LDL; Panels B and D: PC-3 cells incubation with Pyr-met-Chol-labelled
purified HDL.
(TIF)

S6 Fig. Localization of the fusion protein EGFP-SR-BI expressed in transfected cells Caco-
2/EGFP-SR-BI. The transfected Caco-2/EGFP-SR-BI cells were seeded onto glass slides and
cultured for 3 days, then induced by 1 μg/ml doxycycline for 1 day, then fixed and observed by
TPE fluorescence microscopy. The main image (« XY plane ») is obtained by a Z-cut plane of
the cellular monolayer; the rightest image is the YZ plane obtained by a X cut along the vertical
white dotted line (« X cut »); the lowest image is the XZ plane obtained by a Y cut along the
horizontal white dotted line (« Y cut »); the glass slide level corresponds to the origin of the Z
axis. Arrows point the apical side of the cells. Scale bar corresponds to 10 μm.
(TIF)
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