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Abstract. The Sum Colouring Problem is an NP-hard problem derived
from the well-known graph colouring problem. It consists in finding a
proper colouring which minimizes the sum of the assigned colours rather
than the number of those colours. This problem often arises in scheduling
and resource allocation. In this paper, we conduct an in-depth evalu-
ation of ILP and CP’s capabilities to solve this problem, with several
improvements. Moreover, we propose to combine ILP and CP in a tree de-
composition with a bounded height. Finally, those methods are combined
in a portfolio approach to take advantage from their complementarity.

1 Introduction

The Sum Colouring Problem (SCP) is an NP-hard problem derived from the
well-known graph colouring problem. It consists in finding a proper colouring (i.e.
an assignment of colours to vertices such that neighbour vertices have different
colours) which minimizes the sum of the assigned colours rather than the number
of those colours. This problem arises in a variety of real-world problems, especially
in scheduling and resources allocation [21]. Many incomplete approaches have
been proposed [12], whereas only few complete approaches have been proposed:
mainly Integer Linear Programming (ILP) in [12], Branch and Bound (B&B),
SAT and Constraint Programming (CP) in [22]. In this paper, we propose to
conduct a more in-depth evaluation of ILP and CP’s capabilities to solve the SCP,
with several improvements. Moreover, we use tree decomposition to improve the
solution process by decomposing SCPs into independent subproblems which are
solved by ILP and CP, with promising results. Finally, we show that a portfolio
approach can take advantage of the complementarity of the different approaches.

Section 2 defines the SCP and gives an overview of existing approaches.
Sections 3 and 4 introduce improvements for CP and ILP models. Section 5
explains how CP and ILP may be combined by means of a tree decomposition,
and Section 6 introduces a portfolio approach.

2 The sum colouring problem

An undirected graph G = (V,E) is defined by a set V of nodes and a set
E ⊆ V×V of edges. Each edge of G is an undirected pair of nodes. We note



deg(v) the degree of a vertex v, i.e. deg(v) = |
{
u ∈ V, {u, v} ∈ E

}
|, and ∆(G)

the largest degree in the graph, i.e. ∆(G) = max{deg(v), v ∈ V }.
A legal (or “proper”) k-colouring of a graph G = (V,E) is a mapping c : V →

[1, k] such that ∀{x, y} ∈ E, c(x) 6= c(y). Classic graph colouring aims at finding
a proper k-colouring that minimizes k, whereas the SCP aims at finding a proper
k-colouring that minimizes the sum of assigned colours, i.e.,

∑
x∈V c(x). The

lowest achievable sum for G is called the chromatic sum and is denoted Σ(G).

Existing bounds. In [30], it is shown that d
√

8|E|e ≤ Σ(G) ≤ b3(|E|+1)
2 c. In

[21], it is demonstrated that Σ(G) ≤ |V |+ |E|, and that an optimal sum colouring
will never use strictly more than ∆(G) + 1 colours. Finally, in [24,33] a lower
bound is defined with respect to a clique decomposition of the graph.

Definition 1. A clique is a subset of nodes which are all linked pairwise. A
clique decomposition of a graph is a partition C of its vertices such that, for each
set Ci ∈ C, the subgraph induced by Ci is a clique.

Given a clique decomposition C of G, we have Σ(G) ≥
∑

Ci∈C |Ci| ·(|Ci|+1)/2,
as all vertices in a same clique must have different colours.

Dominant colourings. Dominant colourings were discussed in [22]: a k-colou-
ring may be seen as an ordered partition on the vertices of the coloured graph,
such that the i-th set Si contains all vertices using colour i (with 1 ≤ i ≤ k).
A colouring is dominated when the vertex colour sum can be lowered simply
by reassigning the indices of these sets (i.e., swapping colours) without actually
altering the partition. The dominant colouring of a k-colouring c is the colouring
obtained by ordering the partition defined by c by decreasing size of sets, so that
S1 is the largest set, and Sk the smallest. This dominant colouring has the lowest
vertex colour sum among all possible colour swappings of c.

Incomplete approaches. Many incomplete approaches were used to find ap-
proximate solutions for the SCP. A review of most of these approaches may
be found in [12]. It classifies main contributions in three classes: greedy algo-
rithms [32,33], local search heuristics [3,7] and evolutionary algorithms [13,23,11].
None of these algorithms are able to reach all best known upper and lower bounds.
The percentage of instances on which the best known upper bound is reached
ranges from 46 % ([32,33]) to 90 % ([11]) on tested graphs. Such approaches can
prove the optimality of a solution if the lowest upper bound happens to reach the
highest lower bound. However, such proofs were only made on 21 instances out of
94, even when using all the bounds found by every methods in [12] simultaneously.

CP. A basic CSP model was proposed in [22]. For each node u ∈ V , this
model includes a variable xu whose domain is D(xu) = [1,∆(G) + 1]. There is a
disequality constraint for each edge of the graph, i.e., ∀{u, v} ∈ E, xu 6= xv. The



objective is to minimize the sum of all variables, i.e.,
∑

u∈V xu. This model was
evaluated using Choco [14]. The results were not competitive with state-of-the-art
approaches: solution times on rather easy instances were long [22].

B&B. In [22], a B&B approach is described. At each node of the search, a
lower bound is obtained by computing a clique decomposition C of the subgraph
induced by uncoloured vertices. However, instead of bounding the colour sum for
each clique Ci ∈ C by |Ci| · (|Ci|+1)/2 (as proposed in [24,33]) the authors bound
it by the sum of the |Ci| smallest available colours among the vertices of Ci. This
new bound is tighter since it takes – to some degree – the availability of colours
into account. Besides, each time a proper colouring is found, its corresponding
dominant colouring is computed to improve the bound. This approach obtains
better results than the basic CP model, but remains limited to small graphs.

SAT. Different SAT encodings for the SCP are described in [22]. They are
experimentally compared (using different SAT solvers) with B&B and CP, on
randomly generated graphs and on six DIMACS instances. On these instances,
the proposed B&B and CP approaches are not competitive with the SAT portfolio
ISAC [15], which obtains the best results. In this paper, we introduce new CP
models which are competitive with these SAT models, and an ILP model which
outperforms them on the six DIMACS instances for which results were given.

ILP. An ILP model was proposed in [31]. It associates a binary variable xuk
with every pair (u, k) ∈ V×[1,∆(G) + 1], so that xuk equals 1 iff node u uses
colour k. The objective is to minimize the sum of the integers corresponding
to used colours, i.e.

∑|V |
u=1

∑∆(G)+1
k=1 k · xuk so that each node u ∈ V is assigned

one colour, i.e.,
∑∆(G)+1

k=1 xuk = 1, and for each edge {u, v} ∈ E, u and v have
different colours, i.e., xuk+xvk ≤ 1,∀k ∈ [1,∆(G) + 1]. This model was evaluated
with CPLEX, showing that it is very efficient for small graphs, but that the
memory cost was too high for larger ones.

3 New CP models for the SCP

The CP model of [22] is very limited, as it only propagates binary difference
constraints, and bounds the objective function with the sum of minimal values
in domains. In this section, we propose and compare several improvements.

3.1 Initial domain reduction

Instead of using the same domain [1,∆(G) + 1] for all variables, we propose to
tighten domains by using the following property:

Property 1. For every optimal sum colouring c of a graph G = (V,E), we have
∀v ∈ V, c(v) ≤ deg(v) + 1.



To prove this property, let us suppose that it does not hold for a given optimal
colouring c of a graph G. It follows that there exists a vertex v in V such that
c(v) > deg(v) + 1. In such a case, there exists x ∈ [1,deg(v) + 1] such that every
neighbour of v has a colour different from x (since v only has deg(v) neighbours).
As a consequence, a better colouring than c can be obtained by colouring v with
x instead of c(x). Therefore, c is not optimal, which contradicts our initial claim.

Hence, we define D(xu) = [1,deg(u) + 1] for each u ∈ V . This is a minor but
natural improvement, with a negligible cost.

3.2 Dominant colourings

As pointed out in [22] and recalled in Section 2, colourings found during the
search may be dominated, and can be improved simply by swapping colours. This
makes the upper bound go down faster at a low computing cost. Besides, these
swappings break symmetries by forbidding, thanks to the update of the upper
bound, the computation of colourings that are dominated by the ones already
found.

3.3 AllDifferent constraints

Instead of using only binary disequality constraints to prevent neighbour vertices
from being assigned the same colour, we propose to use AllDifferent constraints.
This may be done in several different ways. A first possibility is to compute a
clique decomposition of the graph, as defined in Def. 1. In this case, we post a
global AllDifferent constraint for each clique, and a binary disequality constraint
for each edge such that no clique contains its two endpoints. A second possibility
is to compute a set of maximal cliques such that, for each edge, there exists at
least one clique that contains its two endpoints. In this case, we post a global
AllDifferent constraint for each maximal clique. This introduces redundancies in
AllDifferent constraints and may prune more values, but at a higher cost.

For both approaches, we may consider different heuristics to build cliques.
Several tests (not reported due to lack of space) showed us that a simple greedy
construction of maximal cliques yields a good tradeoff between the time spent
building the cliques, the time spent to propagate AllDifferent constraints, and
the reduction of the search space. More precisely, for each vertex of the graph,
we build a maximal clique in a greedy way: starting from a clique that contains
this vertex, we iteratively choose the vertex with the largest degree among the
vertices that can correctly extend the clique, until no such vertex exists. We then
post a global AllDifferent constraint for each of these maximal cliques.

3.4 Lower bound

The main drawback of the CP model proposed in [22] is due to the poor lower
bound, which is the sum of minimal values in domains. This lower bound does not
take into account the disequality constraints. A better lower bound is obtained



by using a clique decomposition C, as proposed in the B&B approach of [22]: it is
defined by the sum, for each clique Ci of C, of the sum of the |Ci| smallest values
in the union of the domains of the variables associated with vertices of Ci. This
new bound takes into account some disequality constraints (those between pairs
of variables that belong to a same clique). However, the sum of the |Ci| smallest
values may be a bad approximation of the chromatic sum of the subgraph induced
by Ci when variables of Ci have different domains. Let us consider for example a
clique Ci = {a, b, c} with D(a) = {1, 2, 3} and D(b) = D(c) = {7, 8}. The sum
of the 3 smallest values in D(a) ∪ D(b) ∪ D(c) is 1 + 2 + 3 = 6, whereas the
chromatic sum of the subgraph induced by {a, b, c} is 1 + 7 + 8 = 16.

Combining AllDifferent and sum constraints. Better bounds may be
computed by considering the global constraint that combines an AllDifferent
constraint with a sum constraint on the same set of variables [2]. In particular, [2]
proposed a bound consistency algorithm for this global constraint. The main idea
relies on the notion of “blocks” of variables, defined in such a way that, for a given
AllDifferent constraint, variables of the same block are interchangeable. Each
block also has a set of values. An initial lower bound is computed in O(n log(n)),
where n is the number of variables in the AllDifferent contraint. During the
search, if a variable of a block is assigned with a value of this block, the lower
bound is left unchanged, otherwise, it is updated in O(1).

Note that the clique decomposition used to compute lower bounds is different
from the set of maximal cliques used to propagate disequality constraints as
proposed in Section 3.3. In the clique decomposition used to compute lower
bounds, some disequality constraints are missing (those between vertices that
belong to different cliques). Hence, the propagation of the conjunctions of All-
Different and sum global constraints (to compute the lower bound) does not
ensure a proper colouring. It must be combined either with binary disequality
constraints between neighbour vertices that belong to different cliques, or with
AllDifferent constraints as defined in Section 3.3.

Computation of the clique decomposition. We may consider different
heuristics to build clique decompositions, and different clique decompositions
may lead to different bounds. To build a clique decomposition, we consider
a basic greedy approach very similar to the one described in Section 3.3 to
compute a set of maximal cliques: the only difference is that each time a vertex
is added to a clique, it is removed from the graph so that it cannot be selected
for another clique. A key point to obtain a good tradeoff between the time spent
to compute bounds and the reduction of the search space lies in the frequency
of the computation of a clique decomposition. In the B&B approach of [22], a
new clique decomposition is computed at each node of the search tree, on the
subgraph induced by uncoloured vertices. This allows to compute more accurate
bounds, but clique decomposition computations are rather expensive. Hence, we
propose to compute a clique decomposition only once, at the root of the search
tree. This partition is then used at each node of the tree to compute a new bound.



Triggering of the bound computation. Trying too early to prune branches
with bound computations often leads to a loss of efficiency: when only a few
vertices are coloured, we do not have enough information as to how the colouring
will turn out. The computed lower bound is thus too low to be of any use. To
prevent unnecessary computations, we set a lower limit for the triggering of
the bound computation: if the distance between the sum of currently assigned
colours and the current upper bound amounts to more than gap %, we refrain
from computing the lower bound. In addition to this lower triggering limit, we
added an upper one: we refrain from using this bound when unc or less vertices
are uncoloured. The reason behind this is that when only a few vertices are left
uncoloured, it may be faster to explore what remains in this part of the search
space rather than using a bound to try to prune this very small branch.

3.5 Experimental comparison

Experimental setup and benchmark. Programs are executed on an Intel R©

Xeon R© CPU E5-2670 at 2.60 GHz processor, with 20,480 KB of cache memory
and 4 GB of RAM. We consider 126 instances which are classically used for sum
colouring, as in [31,12]. Some are from COLOR02/03/041, but most of them are
DIMACS instances designed for the classical colouring problem2. The timeout
was set to 24 hours. For each instance, the reference solution is the best known
upper bound, either available in the literature (mainly [31,12]), or previously
computed by one of our approaches. It gives an overview of the state of the
art. Tables also give detailed results for a set of ten instances that we chose to
highlight the peculiarities of each approach.

Configurations. We implemented CP models in Gecode (version 4.2.1) [29]. We
cannot report results for all possible combinations of the different improvements
described in Sections 3.1–3.4. We have chosen the following configurations:
– Base: Basic model, with binary disequality constraints, a lower bound defined

as the sum of smallest values in variable domains, and bound consistency ensured.
– AllDiff+Bound : Model with AllDifferent constraints (as defined in Section 3.3),

a lower bound defined by using a clique partition and computing for each clique Ci

the sum of the |Ci| smallest values in variables’ domains, and bound consistency
ensured. Parameters gap and unc are set to 20 % and 5, respectively. Experiments
not detailed in this paper showed these values offer the best compromise.
– AllDiff+Bound+Swap: Same as AllDiff+Bound, but with colour swapping.
– AllDiff+Bound+Swap+Dom: Same as AllDiff+Bound+Swap, but with domain

consistency instead of bound consistency.
– AllDiff+SumBound+Swap: Same as AllDiff+Bound+Swap, but lower bound

computation is done by using the bound consistency algorithm of [2]. gap and
unc are respectively set to 50 % and 0 (the best setting for this configuration).

1 http://mat.gsia.cmu.edu/COLOR02
2 ftp://dimacs.rutgers.edu/pub/challenge/graph/benchmarks/color/



Table 1. Comparison of CP models. The first ten lines detail results for ten representa-
tive instances: best upper bound found within the time limit (UB), time needed to find
UB (tUB) and to prove optimality (tproof), if optimality has been proven. The last three
lines give the average distance between UB and the reference solution (in percentage),
and the number of instances for which the reference solution has been found (# Ref.
sol.), and optimality has been proven (# Optim. proofs) for the 126 instances.

Base AllDiff+Bound AllDiff+Bound
+Swap

AllDiff+Bound
+Swap+Dom

AllDiff+SumBound
+Swap

Name Ref. sol. UB tUB tproof UB tUB tproof UB tUB tproof UB tUB tproof UB tUB tproof

DSJC250.5 3,210 3,598 24,823 3,580 16,179 3,591 840 3,540 51,076 3,577 9,505
DSJC1000.1 8,991 10,323 84,001 10,339 29,570 10,328 3,340 10,315 66,581 10,295 61,921
ash331GPIA 1,432 1,437 14,439 1,440 55,543 1,438 30,122 1,437 6,755 1,442 14,258
le450_5b 1,350 1,518 46,685 1,510 63,361 1,509 8,819 1,487 6,439 1,457 3,827
3-Insert._3 92 92 0 92 0 18,650 92 0 17,838 92 0 19,542 92 0
qg.order60 109,800 109,800 404 109,800 592 593 109,800 203 203 109,800 138 139 109,800 218 218
r125.1 257 258 4 257 1,472 4,193 257 1,561 4,797 257 1,570 4,713 258 0
inithx.i.3 1,986 1,988 17,571 1,988 84,043 1,986 142 1,986 463 1,987 4
school1 2,674 3,646 77,581 3,646 52,114 3,531 75,519 3,644 48,434 3,648 1,072
school1_nsh 2,392 3,067 1,329 3,139 42,737 3,031 1,047 3,031 2,604 2,992 13,581

Average dist. (%) 5.57 5.58 5.32 5.44 5.34
# Ref. sol. 43 45 49 48 45
# Optim. proofs 5 11 11 11 8

For these five configurations, the Branch and Bound (BAB) search engine
was selected. As the goal is to minimize the sum of the variables, the value
ordering heuristic chooses the smallest value. We have designed and compared
different variable ordering heuristics (including well-known ones such as Activity
and wDeg) and the best results are obtained with minElim, that chooses the
variable that has the smallest value in its domain, and break ties by choosing the
variable for which this smallest value would be removed from the fewest domains.
Luby was used as a restart policy, with a scale of 500.

Results. Table 1 compares CP models on 10 representative instances, and then
gives global results for the whole benchmark. AllDiff+Bound always outperforms
Base except on ash331GPIA, and adding colour swapping (+Swap) allows an overall
improvement of bounds and generally faster proofs. Replacing bound consistency
(in AllDiff+Bound+Swap) with domain consistency (in AllDiff+Bound+Swap-
+Dom) pays off on some instances, but degrades the solution process on some
others. Finally, using the global constraint that combines a sum and an AllDiffe-
rent constraint improves the solution process on some instances, but also often
degrades it. Actually, we noticed that, in many cases, all variables in the global
constraint have very similar domains. Therefore, the bound computed for their
sum is very close to the sum of the smallest values in the union of the domains.

As a conclusion, none of the proposed CP model appears to be competitive
with state-of-the-art incomplete approaches, as the best model (AllDiff+Bound-
+Swap) is able to reach the reference solution for only 49 instances.

Making proofs with CP. None of the configurations considered above are
good at proving optimality, as proofs were only made for 11 instances. This may
be due to the variable ordering heuristic minElim, which aims at quickly finding



good solutions. Hence, we conducted experiments with a new CP configuration,
designed to prioritize proof-making. It employs a hybrid restart policy, coupled
with a scheduled heuristic change. In this configuration, we use the same setting
as for AllDiff+Bound+Swap+Dom but we change the variable ordering heuristic
during the search: as soon as the search endured 50 consecutive restarts without
having improved the global upper bound, minElim is replaced by a heuristic that
aims at proving optimality (it chooses the variable that has the highest number
of uncoloured neighbours, and break ties by first choosing the variable that has
the smallest value in its domain, and then the smallest current domain). When
the variable ordering heuristic is changed, we also change the restart policy for a
geometric policy, with a scale value of 100 and a base of 2.

Using this configuration, we are able to prove optimality for 15 instances
instead of 11. Though this is an improvement of 36 %, this is still far from the
state of the art. For example, using all known bounds computed with heuristic
approaches, optimality was proven for 21 of the 94 instances considered in [12].

4 Integer Linear Programming

Two improvements introduced in the previous section for CP may be easily
adapted to ILP. Firstly, initial domain reduction is enacted simply by declaring
less variables and by removing difference constraints between nodes when the
considered colour is not in the domains of both nodes. Secondly, AllDifferent
constraints are modeled by adding the constraint

∑
v∈Ci

xvk ≤ 1, for each clique
Ci and each colour k (instead of binary disequalities).

Implementation. We used ILOG CPLEX (version 12.6.2) [4]. To help CPLEX
to avoid running out of memory, the two following parameters were added: Depth-
First Search was forced as a node selection strategy, and the cuts factor was set
to 1.5. Previous experiments showed us that these parameters did not significantly
lessen CPLEX’s ability to solve the instances we use.

Experimental results. Table 2 compares results of the initial ILP model
as proposed in [31], denoted ILP, with the ILP model that includes the two
improvements, denoted ILP+. The most notable improvement is due to domain
reduction, since reducing domains for ILP also removes variables and constraints.
Overall, improvements allowed us to increase the number of optimality proofs
from 61 to 65, and the number of times the reference solution has been found
from 66 to 73. Besides, the number of memory outs goes down from 28 to 23.

When comparing ILP+ to CP, we note that they perform very differently.
For four instances (DSJC* and school*), ILP+ ran out of memory. Therefore, the
best solution found is far from the reference solution, and from the best solution
found with CP models. For qg.order60, the best solution found by ILP is far from
optimality, whereas all CP models are able to reach the optimum, with two of them
even proving optimality. However, for the five remaining instances, ILP either



finds better solutions (ash331GPIA, le450_5b), proves optimality quicker (3-Insertions_3,
r125.1), or proves optimality while CP cannot (inithx.i.3). When considering global
results (on the whole benchmark), ILP+ is able to find reference solutions and to
prove optimality much more often than CP, but the average distance to reference
solutions is much larger, mostly because of the times it ran out of memory.

5 Combining CP and ILP

Experiments reported previously showed us that CP and ILP have complementary
abilities: ILP is very efficient to solve small instances, but it runs out of memory
for 23 instances; it never occurs with CP, but its solutions are often far from
the optimum, despite a rather good average distance. We therefore propose to
decompose the problem into smaller independent subproblems, and to combine
CP and ILP to solve these subproblems. The goal is to identify a subset Kr ⊆ V
of nodes, for which we compute all proper colourings with CP. From each of
these colourings, we derive an independent subproblem. Given the optimal sum
colouring of each of these independent subproblems, we deduce the optimal
solution of the original problem in a straightforward way. If the subproblems are
small enough, they can be solved with ILP. Furthermore, when instances are well
structured, we may choose the subset Kr so that, for each colouring of Kr, we
obtain several independent subproblems (instead of a single one), even easier to
solve with ILP. This idea is reminiscent of the approach called Backtracking on
Tree Decomposition (BTD) [9].

In Section 5.1, we recall the basic principles of BTD and show how to use it
to solve the SCP. In Section 5.2, we introduce a new decomposition, as well as a
way to use it. This approach is called BFD, and can be employed to combine CP
and ILP. Decomposition methods are experimentally compared in Section 5.3.

5.1 Tree decomposition

Definition 2. [27] A tree decomposition of a graph (V,E) is a couple (K,T )
where T = (I, F ) is a tree, and K : I → P(V ) is a function which associates a
subset of variables Ki ⊆ V (called a cluster) with every node i ∈ I such that the
following conditions are satisfied: (i) ∪i∈IKi = V ; (ii) for each edge (vj , vk) ∈ E,
there exists a node i ∈ I such that {vj , vk} ⊆ Ki; and (iii) for all i, j, k ∈ I, if k is
in a path from i to j in T , then Ki ∩Kj ⊆ Kk. The width of a tree decomposition
is maxi∈I |Ki| − 1. Intersections of neighbour clusters are called separators.

BTD is a generic approach that exploits a tree decomposition of the constraint
(hyper)graph of a CSP to identify independent subproblems which are solved
separately. More precisely, given a tree decomposition (K,T ) and a root node
r ∈ I, BTD first assigns the variables of the root cluster Kr. Then, BTD
recursively solves, for each child i of r, the independent subproblem that contains
all variables occurring in the clusters associated with the subtree rooted in i. To
avoid the repeated exploration of same parts of the search space, BTD records



structural (no)goods, that allow to reduce time complexity to O(ndw+1) with n
the number of variables, d the maximum domain size and w the width of T . The
space complexity is O(nsds) with s the size of the largest separator.

BTD may be used to solve optimization problems provided that the objective
function is decomposable, i.e., once all variables of a root cluster r are assigned,
the optimal solution that extends this partial assignment may be obtained by
computing separately, for each child of r, the optimal solution of the subproblem
associated with this child [9,5]. In this case, we have to record structural valued
goods, i.e., pairs composed by an assignment of the variables of a separator
and the optimal solution of the subproblem associated with this child for this
assigment. To avoid solving to optimality a subproblem if it is obvious its optimal
solution cannot be extended to a global solution, an upper bound is added to the
subproblem. As soon as it is proved that the optimal solution of the subproblem
cannot be lower than the upper bound, the solving of the subproblem is stopped.

BTD may be used to solve the SCP as its objective function is decomposable:
given a tree decomposition of the graph to colour, once the nodes of a root cluster
r are coloured, the best sum colouring that extends this partial colouring may
be obtained by searching separately the best sum colouring of each child of r.
Note that this is not the case, for example, of the classical colouring problem, as
we cannot colour children separately when the goal is to minimize the number of
used colours (as we must know the colours used by other clusters).

However, experiments on our 126 instances have shown us that many instances
are poorly structured: when computing a tree decomposition with MinFill [16],
65 instances are not decomposed at all (i.e., there is only one cluster, which
contains all variables), and 103 instances have at least one cluster that contains
more than 90 % of the variables. For these instances, BTD behaves poorly.

5.2 Backtracking with Flower Decomposition (BFD)

Even when the tree decomposition only contains one cluster, we may decompose
it into two subsets (Kr and V \Kr): we use CP to enumerate all proper colouring
of Kr, and then, for each of these colourings, we use ILP to find the optimal sum
colouring of V \Kr (given the colours assigned to Kr).

The idea of BFD is to exploit instance structure so that, for each colouring of
Kr, we may split V \Kr into several subsets that may be solved to optimality with
ILP independently. In other words, we propose to compute a tree decomposition
with a height of 1, composed of a root cluster Kr, and a set of leaf clusters which
are all children of Kr. The key point is to choose the nodes of Kr so that we
obtain leaves that are small enough to be solved to optimality with ILP. To
this end, we introduce a parameter l, that enforces a limit on the size of the
leaves. More precisely, for each leaf cluster Ki, we ensure that |Ki \Kr| ≤ l× |V |.
Besides this hard constraint on the leaf sizes, we also aim at favoring small roots
(as we have to enumerate all its proper colourings).

This flower decomposition is built as follows. We first build a tree decompo-
sition (K,T = (I, F )) of the graph G = (V,E) with MinFill. Let S be the set
of all separators, i.e., S = {Ki1 ∩Ki2 |{i1, i2} ∈ F}. Given a subset S′ ⊆ S, we



define a flower decomposition whose root is the cluster K ′r = ∪s∈S′s. The other
clusters of the flower (the leaves) are defined by the connected components of
the subgraph of G induced by V \ K ′r. Each leaf cluster K ′i is then extended
by adding to it any vertex of K ′r adjacent to a vertex of K ′i. A similar process
was employed in [10], where it was also demonstrated that it results in a correct
tree decomposition. Of course, the quality of the obtained flower decomposition
depends on the initial subset S′. The goal is to find the subset S′ such that
the resulting flower decomposition satisfies the size limit l on the leaf clusters
while minimizing the size of K ′r. We use Gecode to solve this problem. As it is
NP-hard, we limit the CPU time for computing it to 15 minutes, and use the
best flower decomposition computed within this time limit. If Gecode has not
found any flower decomposition that satisfies the size limit l on the leaf clusters,
we build a flower decomposition which only contains two clusters and such that
the root cluster contains the |V | × (1− l) vertices with largest degrees.

As with BTD, we also enforce a limit on the size of cluster separators. In the
context of BTD, this is done by merging clusters whose separators contain too
many variables. In our case, however, we keep the clusters as they are: the only
effect of the limit is that no valued good is recorded on the separators which
exceed the limit, since doing so would be very likely to consume a large amount
of memory. Moreover, if a separator corresponds to the full root cluster, there is
no need to record any valued good on it, since affectations on such a separator
cannot be produced more than once.

5.3 Experimental evaluation

We compare two approaches, denoted BTD and BFD. BTD refers to the classical
BTD approach. In this case, the tree decomposition is built using the MinFill
algorithm and CP is used to solve subproblems: leaf clusters are solved with
the Gecode configuration AllDiff+Bound+Swap (that uses restarts), whereas
non-leaf clusters are solved with the same configuration, but without restarts, as
we need to enumerate all solutions.

BFD refers to our new approach, based on a flower decomposition. CP (All-
Diff+Bound+Swap without restarts) is used to enumerate the solutions of the
non-leaf clusters and ILP+ to solve the subproblems induced by the leaves for
each assignment of the separators. The maximal size for the separators is set
to 30. We report results with two values for the “l” parameter (that limits the
size of leaf clusters): 75 % (denoted BFD 75) and 90 % (denoted BFD 90).

Table 2 reports experimental results of BTD, BFD 90 and BFD 75. When
looking at the detailed results on our ten representative instances, we note that
they have complementary results: BTD is better than BFD 90 and BFD 75 on
DSJC250.5 and school1, BFD 90 is better on ssh331GPIA, 3-Insertions_3, inithx.i.3 and
school1_nsh, and BFD 75 is better on DSJC1000.1, le450_5b, qg.order60 and r125.1. For
two of these instances (r125.1 and school1_nsh), the best results, over all considered
approaches, are actually obtained by BFD 90.

When looking at global results over the whole benchmark, BTD is able to
find the reference solution for only 17 instances (instead of 46 and 48 for BFD 90



Table 2. Comparison of ILP, ILP+, BTD, BFD 90 and BFD 75. The first ten lines
detail results for as many representative instances. “#M#” in tproof means a memory
out occurred. The last four lines give, for the 126 instances: the average distance from
UB to the reference solution (in percentage of the reference solution); the number
of instances for which the reference solution was found (# Ref. sol.); the number of
instances for which optimality was proved (# Optim. proofs); the number of times
search was aborted due to a lack of memory (# Out of memory).

ILP ILP+ BTD BFD 90 BFD 75

Name Ref. sol. UB tUB tproof UB tUB tproof UB tUB tproof UB tUB tproof UB tUB tproof

DSJC250.5 3,210 4,587 1 4,587 2 #M# 4,377 1 4,855 86,400 15,918 0 #M#
DSJC1000.1 8,991 12,892 0 #M# 12,892 8 #M# 12,879 62 50,629 0 #M# 12,467 86,400
ash331GPIA 1,432 1,458 7 1,432 30 1,767 13 1,448 86,400 1,528 1,894
3-Insert._3 92 92 0 1 92 0 0 92 25 1,796 92 261 331 92 857 1,007
le450_5b 1,350 1,450 54 1,398 23 2,227 16,237 1,914 86,400 1,883 86,400
qg.order60 109,800 216,000 0 #M# 116,520 86 110,453 4,193 115,259 86,400 110,198 86,400
r125.1 257 257 0 0 257 0 0 257 0 1 257 0 0 257 0 0
inithx.i.3 1,986 2,523 0 #M# 1,986 0 20 2,010 5 1,986 106 686 6,560 10,907
school1 2,674 5,723 8 #M# 5,769 0 #M# 5,556 82,466 19,480 0 #M# 19,480 0 #M#
school1_nsh 2,392 5,069 4 4,980 8 #M# 4,740 10,747 2,539 86,400 3,996 86,400

Average dist. (%) 73.36 63.89 24.42 83.40 85.05
# Ref. sol. 66 73 17 46 48
# Optim. proofs 61 65 13 39 26
# Out of memory 28 23 6 18 16

and BFD 75), and it proves optimality for 13 instances only (instead of 39 and
26). Actually, as pointed out previously, most instances have no structure at all,
or only a very poor structure, and BTD is generally outperformed on them by
the CP approaches introduced in Section 3.

BFD 90 and BFD 75 are able to find reference solutions and to prove optimality
for much more instances than BTD. Actually, even if the instance is not structured
at all (i.e., there is only one cluster in the tree decomposition, which happens 40
times for our 126 instances), BFD is still able to build a flower decomposition
with one root cluster (that contains |V | · (1− l) nodes) and one leaf (that contains
the remaining |V | · l variables). In this case, BFD often behaves much better
than BTD. However, BFD also suffers from a relatively high average distance
to reference solutions. Actually, on some instances, BFD spends a lot of time
to enumerate colourings for the root cluster which cannot be extended to good
solutions. However, for each of these colourings, BFD wastes a lot of time solving
to optimality useless subproblems.

Comparing BFD 90 and BFD 75 proves that allowing larger leaf clusters
increases the memory needs but also eases the computation of upper bounds, as
it makes the root cluster smaller (less enumeration) and gives ILP a more global
view of the problem, preventing it in some cases to spend too much time solving a
useless subproblem to optimality. When comparing BFD with the CP approaches
of Section 3, we note an increase in the number of proofs (39 and 26 instead
of 11), but the average distance to the reference solution is larger. Compared
with ILP+, BFD finds the reference solution less often, as with optimality proofs,
but there also are less failures due to memory. Actually, BFD and ILP+ have
complementary performance: BFD 90 (resp. BFD 75) performs strictly better
than CPLEX on 21 (resp. 28) instances, and strictly worse on 91 (resp. 85)
instances.



6 Portfolio approach

We have introduced different approaches for the SCP in the previous sections.
Some of them are dominated, in the sense that, for each instance, there is
always another approach that performs better on this instance (it finds the same
solution quicker, or a better solution). This is the case of the CP configurations
Base and AllDiff+Bound, as well as ILP, BTD and BFD 75. The five other
approaches (namely, the three remaining CP configurations, BFD 90 and ILP+)
are complementary, and we propose to combine them in a portfolio approach.

More precisely, given a solver portfolio [8,6], the per-instance algorithm
selection problem [26] consists in selecting the solver of the portfolio which is
expected to perform best on a given instance. Algorithm selection systems usually
build machine learning models to forecast which solver should be used in a
particular context. Using the predictions, one or more solvers from the portfolio
may be selected to be run sequentially or in parallel. In our SCP context, solver
performance is highly constrained by memory bandwidth, in particular for ILP.
Therefore, we cannot simply run our different solvers in parallel, and we consider
the case where exactly one solver is selected.

One of the most prominent and successful systems that employs this approach
is SATzilla [34], which defined the state of the art in SAT solving for a number
of years. Other application areas include constraint solving [25], the travelling
salesperson problem [19], subgraph isomorphism [20] and AI planning [28]. The
reader is referred to a survey [18] for additional information on algorithm selection.

The selection process is composed of two steps: given an SCP instance to be
solved, we first extract features from instances; then, we run algorithm selection
to choose a solver. Finally we run the selected solver on the instance.

Feature extraction. Given a graph G = (V,E) for which we are looking for
the chromatic sum, we compute the following features (a “*” denoting the use of
the minimum, maximum, mean and standard deviation): number of nodes |V |
and edges |E|, degrees of the vertices in V *, size of connected components in G*,
number of constraints and variables in the ILP+ model, number of AllDifferent
constraints (arity of more than 2) in the AllDiff+Bound CP model, arity of these
AllDifferent constraints*. We also added features computed from the largest
connected component G′ of G: density, theoretical upper and lower bounds of
Σ(G′), number of clusters in the tree decomposition computed with MinFill.
Moreover, this tree decomposition is used to compute a flower decomposition
(with l = 90), which gives additional features: size of the root cluster, Cartesian
product of the sizes of the domains in the root cluster, number of clusters, distance
between the theoretical upper and lower bounds of the root cluster, density of
the root cluster, density of leaf clusters*, number of proper variables in clusters*,
separator density*, separator sizes*, the distance between theoretical upper and
lower bounds on leaf clusters*, the number of binary variables* and constraints*
in the ILP+ model associated with leaf clusters.



Table 3. Detailed results, for the virtual best solver and our portfolio approach. tfeat.
is the time needed to compute the features. For each method, “Algo” gives the chosen
algorithm. Gec1 denotes AllDiff+Bound+Swap, Gec2 AllDiff+Bound+Swap+Dom, and
Gec3 AllDiff+SumBound+Swap. Times tUB and tproof for the portfolio include tfeat..

Virtual best solver Portfolio approach
Name Ref. sol. Algo UB tUB tproof tfeat. Algo UB tUB tproof

DSJC250.5 3,210 Gec2 3,540 51,076 6 Gec1 3,591 845
DSJC1000.1 8,991 Gec3 10,295 66,842 126 Gec1 10,328 3,466
ash331GPIA 1,432 ILP+ 1,432 30 20 ILP+ 1,432 50
3-Insert._3 92 ILP+ 92 0 0 0 ILP+ 92 0 0
le450_5b 1,350 ILP+ 1,398 23 4 ILP+ 1,398 27
qg.order60 109,800 Gec2 109,800 138 139 4,866 Gec1 109,800 5,070 5,070
r125.1 257 BFD 257 0 0 0 BFD 257 0 0
inithx.i.3 1,986 ILP+ 1,986 0 20 8 BFD 1,986 114 694
school1 2,674 Gec1 3,531 75,519 18 Gec3 3,648 1,149
school1_nsh 2,392 BFD 2,539 86,400 10 Gec3 2,992 14,166

Average dist. (%) 4.25 5.51
# Ref. sol. 83 76
# Optim. proofs 66 65
# Out of memory 0 0

Selection Model. We use Llama [17] to build our solver selection model.
Llama supports the most common algorithm selection approaches used in the
literature. We performed a set of preliminary experiments to determine the
approach that works best here, i.e., a pairwise regression approach with random
forest regression. This approach trains a model that predicts the performance
difference between every pair of solvers in the portfolio, similarly to what is done
in [34]: if the first solver is better than the second, the difference is positive,
otherwise negative. The solver with the highest cumulative performance difference
(i.e., the most positive difference over all other solvers) is chosen to be run. As this
approach already gives very good performance, we did not tune the parameters
of the random forest machine learning algorithm. It is possible that overall
performance can be improved by doing so, and we make no claims that the
particular solver selection approach we use in this paper cannot be improved.

Experimental results. We use leave-one-out cross-validation to determine the
performance of our portfolio approach, as we only have 126 instances in our
benchmark (which is not much for training a learning model): for each instance
i, we train the selection model on all instances but i, and evaluate it on i.

The set of features is computed in 5.4 minutes in average, with 110 of our
instances actually being under 5 minutes. Some instances, such as latin_square_10,
DSJC1000.9 or flat1000_50_0 take a prohibitive amount of time when computing our
set of features, mostly because of the two decompositions needed.

Table 3 shows us that our portfolio approach obtains results that are close
to those of the Virtual Best Solver (VBS), which considers the best solver for



each instance separately. It often selects either the best solver, or a solver which
behaves well. The VBS (resp. our portfolio approach) uses ILP+ for 67 (resp.
78) instances, BFD 90 for 10 (resp. 13) instances, AllDiff+Bound+Swap for 20
(resp. 11) instances, AllDiff+Bound+Swap+Dom for 14 (resp. 11) instances, and
AllDiff+SumBound+Swap for 15 (resp. 13) instances. Even when the portfolio
selects the best solver, the solving time is increased by the time needed to compute
features (which may be large on some instances). Note that the time needed by
the model to select a solver is negligible (0.15 seconds on average).

Our portfolio is able to prove optimality for more than half of the 126 instances.
In [12], best upper and lower bounds are reported for a set of state-of-the-art
heuristic approaches, on a subset of 92 instances. Using the best of these bounds
(computed with different heuristic approaches), they can prove optimality for 21
of these instances, whereas our portfolio approach is able to prove optimality
for 42 of these 92 instances, i.e., twice more. Finally, our portfolio approach has
improved (resp. reached) the best upper bounds reported in [12] for 2 (resp. 48)
of the 92 instances: for DSJR500.1 the new upper bound is 2,142 instead of 2,156,
and for le450_25b it is 3,349 instead of 3,365.

7 Conclusion and future work

We proposed some improvements for solving the SCP with CP and ILP, and
demonstrated that they have complementary advantages: ILP is efficient on
small instances, but fails to solve large instances due to its large memory needs;
CP never runs out of memory but is not able to compute as good solutions
as ILP on small instances. We proposed a CP/ ILP combination that may be
used as a compromise between CP and ILP. Besides, since it makes use of tree
decomposition, this combination is better than CP or ILP alone to solve some
well-structured instances. We combined those methods in a portfolio approach
which obtains results close to those of the virtual best solver. It has been able to
prove optimality for more than half of the considered instances. It has also been
able to improve the best known upper bounds for two instances.

In the future, the use of a dedicated decomposition algorithm might be studied,
in order to build a flower decomposition from scratch rather than resorting to an
initial tree decomposition. The goal would be to make it more straightforward to
obtain a balanced decomposition. Being able to automatically fine-tune BFD’s
parameters (l as well as the maximal size of separators) could also prove useful.

A major drawback of BFD is that some subproblems are solved to optimality
even if they are useless due to poor assignments in the root. An interesting
improvement that we shall investigate in further research would be to prevent
ILP from spending more that a set amount of time on a leaf cluster, and to ask
for a new assignment on the root if necessary. It could be seen as another form
of restarts, as seen in [1].
Acknowledgements This work has been supported by the ANR project SoLStiCe
(ANR-13-BS02-0002-01).
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