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Abstract. We propose and analyze a simplified version of a partial dif-
ferential equation (PDE) model for chronic myeloid leukemia (CML) de-
rived from an agent-based model proposed by Roeder et al. This model
describes the proliferation and differentiation of leukemic stem cells in
the bone marrow and the effect of the drug Imatinib on these cells. We
first simplify the PDE model by noting that most of the dynamics oc-
curs in a subspace of the original 2D state space. Then we determine the
dominant eigenvalue of the corresponding linearized system that con-
trols the long-term behavior of solutions. We mathematically show a
non-monotonous dependence of the dominant eigenvalue with respect to
treatment dose, with the existence of a unique minimal negative eigen-
value. In terms of CML treatment, this shows that there is a unique dose
that maximizes the decay rate of the CML tumor load over long time
scales. Moreover this unique dose is lower than the dose that maximizes
the initial tumor load decay. Numerical simulations of the full model
confirm that this phenomenon is not an artifact of the simplification.
Therefore, while optimal asymptotic dosage might not be the best one
at short time scales, our results raise interesting perspectives in terms of
strategies for achieving and improving long-term deep response.

Keywords: Chronic Myeloid Leukemia, Renewal model, Dominant eigen-
value, Structured population dynamic

1 Introduction

Chronic Myeloid Leukemia is a blood and bone marrow cancer that results in a
white blood cells overproduction. This disease is associated with the presence of
the Philadelphia chromosome, which is produced by a characteristic chromoso-
mal translocation. This mutation leads to a new gene BCR-ABL instead of the
original ABL.

The chimeric BCR-ABL gene codes for a tyrosine kinase, a protein that
stimulates abnormal white blood cell production, through ill-defined mechanisms
(Deininger et al. 2008). Unlike most cancers, CML is not detected by the presence
of a solid tumor, but by a blood test in which cancer progress can be estimated



by measuring the ratio of BCR-ABL gene expression compared to ABL gene
expression.

Leukemic cells proliferation process begins in the bone marrow by the activa-
tion of quiescent cancer stem cells. Once activated, these non-differentiated cells
divide, and then differentiate into blood cells. The small number and the low
basal activity of stem cells make any direct characterization of these cells diffi-
cult. Once committed for differentiation, leukemic cells will divide over twenty
times before being released in the blood. They are then generically called mature
cells (actually, in certain phases, immature cells can be released in the blood).
Circulating leukemic cells are not dividing anymore, and are cleared from the
blood within a few days, so the BCR-ABL/ABL rate represents evolution of the
disease in bone marrow, with a delay of few weeks.

The Tyrosine kinase inhibitor (TKI) Imatinib is the first treatment to have
specifically targeted the BCR-ABL gene in leukemic cells. It limits the leukemic
cells proliferation and promotes apoptosis (cell death) of leukemic cells. The
effect of TKI on healthy cells is negligible in case of treatment with standard
doses (Graham et al. 2002). TKI treatments have therefore excellent short-term
and long-term results (O’Brien et al. 2003). However the disease seems to per-
sist. After stopping treatment, most patients relapse. Yet recent clinical trials
have shown that a long TKI treatment duration could cause definitive remission
of patient after treatment withdrawal, even with residual leukemic stem cells
(Rousselot et al. 2007, Mahon et al. 2010, Preudhomme et al. 2010). In a recent
clinical trial, Hehlmann et al. (2014) compared different doses of Imatinib. They
have shown that a high-dose treatment leads to a deep response faster than a
standard dose. However, some patients do not tolerate Imatinib toxicity. Breccia
et al. (2010) have shown that low-dose Imatinib appears effective in patients
with intolerance to the standard dose.

Several mathematical models for the dynamics of CML co-exist in the liter-
ature. Michor et al. (2005) proposed a model that explains the failure to com-
pletely eradicate the disease under TKI treatment by the development of a re-
sistance to these inhibitors in leukemia cells. This model may not allow recovery
of the experimental results in case of combined treatments (Foo et al. 2009). Ko-
marova & Wodarz (2007) proposed a model that mixes the stem cells ability to
become quiescent and the development of resistance to treatment. The effect of
immune response was studied by Kim et al. (2008b) by adding an immune com-
partment to the model of Michor et al.. Recently, Clapp et al. (2015) proposed a
model that describes interactions between leukemic cells and immune response.
They explain clinically obtained oscillations by the competition between immune
response and immunosuppression .

Roeder et al. (2006) proposed an agent-based model (ABM) in which the
fate of each cell is stochastically determined according to its characteristics and
its environment. The model describes the competition of leukemic stem cells
versus healthy stem cells in the bone marrow, and the effect of TKI on this
competition. Leukemic and healthy stem cells are separated into two states,
proliferative and quiescent, structured by their progress in the cell cycle and



by their ability to differentiate. In addition, it is assumed that TKI treatment
does not affect healthy cells. Glauche et al. (2012) used this model to study
combined treatment effect, and found that the combination of a continuous dose
of TKI coupled with an intermittent dose of Interferon (a drug used to treat
CML before the development of TKIs) shows the best efficacy while limiting side
effects. Kim et al. (2008c) proposed to replace the ABM model by a system of
deterministic difference equations in order to reduce complexity. A PDE version
of the original ABM model was also proposed independently by the same authors
(Kim et al. 2008a) and by Roeder et al. (2009). Stability analysis of the resulting
model, under further simplifications, has been proposed by Doumic-Jauffret et al.
(2010).

In this paper, we propose a simplification of the PDE model presented by
Kim et al. (2008a). It is close to the model studied by Doumic-Jauffret et al.
(2010). We study asymptotic behavior and convergence speed to eradication of
the disease. We show that long-term TKI efficacy, as measured by the asymptotic
tumor growth rate, is non-monotonous with respect to dose.

The paper is organized as follows. In section 2, we present the ABM model
of Roeder et al. (2006), its PDE version given by Kim et al. (2008a) and the
simplification we choose to make. In section 3, we investigate existence and
uniqueness of a disease-free steady state. Then, we analyze the asymptotic be-
havior of solutions close to this steady state, by searching the linearized system
dominant eigenvalue. In section 4, we study the treatment dose effect on the
dominant eigenvalue that controls the asymptotic decay speed of solutions near
the disease-free steady state.

2 PDE reduction of the agent-based model

In this section, we outline the partial differential equations (PDE) version of
the ABM model, proposed by Kim et al. (2008a) and summarized by Doumic-
Jauffret et al. (2010).

The reduction of the agent-based model to partial differential equations
brings three significant changes: numerical simulations are faster and can process
arbitrarily large population densities, solutions are more regular since the PDE
model ignores stochastic effects, and mathematical analysis becomes feasible.

2.1 Description of the PDE model

The original ABM model describes the dynamics of leukemia in the bone mar-
row. It is useful to study the competition between leukemic and healthy stem
cells population, before differentiation. Leukemic and healthy differentiated and
mature cells populations are the model output, and evolve afterwards.

A stem cell is assumed to be able to self-renew when the body needs it, and
to differentiate prior to exiting the bone marrow. We distinguish two states in
the life of a leukemic or healthy stem cell before differentiation;

– proliferation,



– quiescence.

The proliferative state of the cell cycle is traditionally divided into four
phases: first gap (G1), synthesis (S), second gap (G2) and mitosis (M), at the
end of which the cell divides. It is assumed here that the dividing cell gives rise
to two identical daughter cells. We separate proliferative cells into two stages:
those in the G1 phase (stage 1) and those in S, G2 and M phases (stage 2).
Duration of these phases are assumed to be fixed: c1 for G1, and c2 for S-G2-M.
The entire cell cycle duration is then C = c1 + c2.

Stages 1 and 2 are structured by two variables: the cell cycle progress c, and
the affinity x, a variable that represents the tendency for cells to differentiate.

The cell cycle progress c is assumed to increase linearly as a function of time
(dc/dt = 1), from 0 to c1 in stage 1, and from 0 to c2 in stage 2. A cell in stage
1 with c = c1 directly enters stage 2 with c = 0. A cell in stage 2 with c = c2
divides and creates two cells in stage 1, with c = 0.

In the proliferative state, affinity x is assumed to increase linearly with time
from 0 to 1 (dx/dt = ρP > 0). When a cell reaches x = 1, it leaves the prolifer-
ative state and goes to differentiation.

The quiescent state is assumed to be structured only by affinity x, which
decreases linearly with time from 1 to 0 (dxdt = −ρQ if 0 < x 6 1) and stays at 0
when x = 0 (dx/dt = 0 if x = 0).

Quiescent cells can be activated and become proliferative with a transition
rate β. They enter the proliferative stage 2 with the same affinity x and are
assigned a cell-cycle progress c = 0. Only proliferative cells in stage 1 can de-
activate to quiescence, with a transition rate α. They enter the quiescent state
with the same affinity x.

We will denote Q = Q(t, x), x ∈ (0, 1] the quiescent cell density of affinity x
at time t; Q∗(t) the number of quiescent cells of affinity x = 0 at time t; Pi(t, x, c)
the proliferating cell density in stage i ∈ {1, 2} that transited from a quiescent
state with x > 0; and P ∗i (t, x) the cell density in stage i that transited from the
quiescent state with x = 0. The reason to distinguish cells that went through
x = 0 is that they accumulate and induce a singular mass (a Dirac mass) that
cannot be modeled as a flux balance.

The transition rates α and β depend on the affinity x and on the total amount
of quiescent and proliferative cells (leukemic and healthy) in the system, Qtot
and Ptot. Transition rates have the functional form:

α(x,Qtot) = ax f(Qtot; ν) and β(x, Ptot) = a1−x f(Ptot; ν)

where a is a small positive constant, and f is a sigmoidal function whose co-
efficient ν depends on the type (healthy or leukemic), the state (quiescent or
proliferative) and the treatment used (none or TKI). The function f is positive,
decreasing and bounded by 1 (Figure 1):

f(u) =
1

ν1 + ν2 exp(ν3
u
N )

+ ν4 (1)

Parameter values are summarized in Table 1.
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Fig. 1. Examples of transition functions fβ for three different individuals. The activa-
tion rate β is given by the formula β(x, Ptot) = a1−x fβ(Ptot).

Table 1. Parameter values and descriptions.

Param. Healthy CML / CML+TKI Unit Description

ξ 0 / 1 dose effect (ξ ∈ [0,+∞))
C 48 48 h cycle duration
c1 16 16 h cycle first phase duration
c2 32 32 h cycle second phase duration
nD 20 20 differentiated cell division number
tD 20 20 d time to release in blood
tM 8 8 d lifetime of mature cells
a 0.002 0.002 constant linked to transfer rates
ρP 0.0078 0.0078 h−1 affinity speed for proliferative cells
ρQ 0.0156 0.0156 h−1 affinity speed for quiescent cells
m 0 0 / 0.032 h−1 proliferative cell death rate
P eq
tot 19,689 0 cell Model IIc disease-free equilibrium
Q eq
tot 94,605 0 cell Model IIc disease-free equilibrium

N 105 105 cell population scaling factor

ν
(α)
1 1.9972 0.9992 h transition function (1)

ν
(α)
2 0.0028 0.0008 h transition function (1)

ν
(α)
3 8.7641 9.9558 transition function (1)

ν
(α)
4 0 0 h−1 transition function (1)

ν
(β)
1 1.6667 16.667 / 166.67 h transition function (1)

ν
(β)
2 0.3333 8.3333 / 83.333 h transition function (1)

ν
(β)
3 3.2189 1.3863 transition function (1)

ν
(β)
4 0 0.9600 / 0.9992 h−1 transition function (1)



2.2 The equations
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Fig. 2. Scheme of the PDE model. Proliferative and quiescent cell populations are
represented on the 2D space (x, c). On the left is a cut in the direction corresponding
to the cycle variable c. On the right, diagonal lines represent the place where ∗-cells
live. Blue and red arrows represent transition rates between proliferative and quiescent
populations.

The densities P ∗1 (t, x) and P ∗2 (t, x) and
∫ c1

0
P1(t, x, c)dc represent the same

type of quantities, cell densities of affinity x. Unlike in P1 and P2, in P ∗1 and
P ∗2 the cell cycle variable is directly determined by the equation c∗ = c1 + x∗

ρP
mod C.

This means that the density P ∗2 (x, t) is only defined on the union of intervals
on x:

I2 = [0, ρP c2) ∪ [ρPC, ρP (C + c2)) ∪ [2ρPC, ρP (2C + c2)),

and the density P ∗1 (t, x) is only defined on the union of intervals:

I1 = [ρP c2, ρPC) ∪ [ρP (C + c2), 2ρPC) ∪ [ρP (2C + c2), 1].

Proliferative and quiescent cells are available in two versions, one for healthy
cells and one for leukemia cells. They evolve simultaneously in the bone marrow,
and interact only through the dependence of transfer rates α and β on Ptot
and Qtot. When needed, variables and parameters for leukemic or healthy cells
will be indexed by l or h to avoid confusion. When not indexed, variables and
parameters are supposed to address both cases.



Model I (full PDE):

∂Q

∂t
− ρQ

∂Q

∂x
= −β(x, Ptot) Q

+α(x,Qtot)
( ∫ c1

0
P1(t, x, c)dc+ 1I1P

∗
1

)
∂Q∗

∂t
= ρQQ(t, 0)− β(0, Ptot) Q

∗(t)

∂P1

∂t
+ ρP

∂P1

∂x
+
∂P1

∂c
= −mP1 − α(x,Qtot) P1

∂P ∗1
∂t

+ ρP
∂P ∗1
∂x

= −mP ∗1 − α(x,Qtot) P
∗
1 on I1

∂P2

∂t
+ ρP

∂P2

∂x
+
∂P2

∂c
= −mP2

∂P ∗2
∂t

+ ρP
∂P ∗2
∂x

= −mP ∗2 on I2

(2)

The boundary conditions:

Q(t, 1) = 0

ρPP2(t, x, 0) = ρPP1(t, x, c1) + ρQβ(x, Ptot) Q(t, x)

ρPP
∗
2 (t, 0) = β(0, Ptot) Q

∗(t)

P ∗2 (t, ρP kC) = P ∗1 (t, ρP kC), k = 1, 2,

P1(t, x, 0) = 2P2(t, x, c2)

P ∗1 (t, ρP (c2 + kC)) = 2P ∗2 (t, ρP (c2 + kC)), k = 0, 1, 2.

where:

Qtot(t) =

∫ 1

0

Ql(t, x)dx+Q∗l (t) +

∫ 1

0

Qh(t, x)dx+Q∗h(t),

Ptot(t) =

∫ 1

0

∫ c2

0

P2,l(t, x, c)dcdx+

∫ 1

0

∫ c1

0

P1,l(t, x, c)dcdx

+

∫ 1

0

P ∗2,l(t, x)dx+

∫ 1

0

P ∗1,l(t, x)dx

+

∫ 1

0

∫ c2

0

P2,h(t, x, c)dcdx+

∫ 1

0

∫ c1

0

P1,h(t, x, c)dcdx

+

∫ 1

0

P ∗2,h(t, x)dx+

∫ 1

0

P ∗1,h(t, x)dx.

The term ρQQ(t, 0) in the second equation of Model I corresponds to the out-
going flux of quiescent cells reaching affinity x = 0. Numerical solutions of this
model are represented in figure 3.
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Fig. 3. Quiescent and proliferating cells progress over time in log10 scale, in the case of
a TKI treatment (introduced when BCR-ABL/ABL level reaches 99%), according to
Model I. Proliferative populations are the sum of corresponding population in phase 1
and 2 (P = P̄1 + P̄2). Parameters used are those from Table 1, and initial conditions
are chosen to represent the genesis of leukemia (few leukemic cells and a lot of healthy
cells), but are hidden by the high speed of the transient behavior.

Differentiated cells are counted in the flux D defined by:

D(t) = ρP
( ∫ c2

0

P2(t, 1, c)dc+

∫ c1

0

P1(t, 1, c)dc+ P ∗1 (t, 1)
)

Once differentiated, cells divide a fixed number of times nD in tD hours before
maturing and being detectable in the blood. The life duration of mature cells
in the blood is tM (see supplementary table 1 in the article by Roeder et al.
(2006)). The amounts of healthy and leukemic mature blood cells are thus given
by the formula, where time unit is in hours:

M(t) = 2nD
∫ t−tD

t−tD−tM
D(u)du (3)

Finally, BCR-ABL/ABL ratio representing the disease progress in the body, is
given by:

τ(t) =
Ml(t)

Ml(t) + 2 Mh(t)
. (4)

This formula takes into account the fact that there are two alleles of the ABL
gene in healthy cells, and only one allele of the BCR-ABL gene in leukemia cells
(Roeder et al. 2006, Glauche et al. 2012).

Coefficients ρP and ρQ, estimated by Roeder et al. (2006), verify the rela-
tionship ρQ = 1.95ρP . To simplify the numerical scheme, it is assumed that
ρQ = 2ρP . This assumption greatly simplifies the numerical scheme and speed
up computer simulations. This change in parameter values affects the asymptotic
speed for the simplified model by less than 0.1% (see Section 3).



2.3 Simplified model

Numerically, ∗-cells represent more than 90% of the cells in the proliferative
state (Figure 3). That phenomenon can be explained by noting that majority of
exchanges between quiescent and proliferating cells takes place for small values
of affinity. In fact, quiescent cells that activate before entering in Q∗, are likely to
differentiate after cycling (i.e do not return in quiescence), so they are negligible
in the long-term dynamic. This observation suggests that the effect of transition
rate β(x > 0) could be neglected. This means that quiescent cells necessarily
go through Q∗ before they activate, and that populations P1 and P2 vanish. In
practice, this simplification leads to a decrease in the number of differentiated
and mature cells (because ∗-cells differentiate less frequently than non ∗-cells),
but does not change the qualitative behavior of the BCR-ABL/ABL ratio.

Doumic-Jauffret et al. (2010) made the same simplification but added others
hypothesis. Their aim was to study the stability of the PDE model and its
dependence on parameters. Our aim is to study the dependence of the asymptotic
behavior on the treatment parameters, and we show that this analytic study is
still feasible with our weaker simplification.

Setting β(x > 0) = 0 and P1(t, x, c) = P2(t, x, c) = 0 leads to the simplified
model, denoted Model IIa

Model IIa:

∂Q

∂t
− ρQ

∂Q

∂x
= α̃(x,Qtot)P

∗

∂Q∗

∂t
= ρQQ(t, 0)− β(0, Ptot) Q

∗(t)

∂P ∗1
∂t

+ ρP
∂P ∗1
∂x

= −mP ∗1 − α(x,Qtot) P
∗
1

∂P ∗2
∂t

+ ρP
∂P ∗2
∂x

= −mP ∗2

(5)

The boundary conditions:

Q(t, 1) = 0

ρPP
∗
2 (t, 0) = β(0, Ptot) Q

∗(t)

P ∗2 (t, ρP kC) = P ∗1 (t, ρP kC), k = 1, 2,

P ∗1 (t, ρP (c2 + kC)) = 2P ∗2 (t, ρP (c2 + kC)), k = 0, 1, 2.

Numerical solutions of this model are represented in Figure 4.
The simplification lead to a much simpler system (7) because of the exact

knowledge of initial affinity x = 0.
In order to reduce the number of populations and equations in this model,

we merge populations P ∗1 and P ∗2 into a single population P ∗, defined for all
x ∈ [0, 1] by P ∗(t, x) = 1I1(x)P ∗1 (t, x) + 1I2(c)P ∗2 (t, x). To take into account
this modification in the model, we introduce the deactivation rate α̃ defined as a
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Fig. 4. Quiescent and proliferating cells evolution over time in log10 scale, in the case
of a TKI treatment (introduced when BCR-ABL/ABL level reaches 99%), according to
Model IIa. Proliferative populations are the sum of corresponding population in phase
1 and 2 (P = P̄1 + P̄2). Parameters used are those from Table 1, and initial conditions
are chosen to represent the genesis of leukemia (few leukemic cells and a lot of healthy
cells), but are hidden by the high speed of the transient behavior.

piece-wise function of affinity on [0, 1]: α̃(x,Qtot) = 1I1(x) α(x,Qtot). The model
then becomes:

Model IIb:

∂Q

∂t
− ρQ

∂Q

∂x
= −β(x, Ptot) Q+ α̃(x,Qtot)P

∗

∂Q∗

∂t
= ρQQ(t, 0)− β(0, Ptot) Q

∗(t)

∂P ∗

∂t
+ ρP

∂P ∗

∂x
= −mP ∗ − α̃(x,Qtot) P

∗

(6)

The boundary conditions:
Q(t, 1) = 0

ρPP
∗(t, 0) = β(0, Ptot) Q

∗(t)

P ∗(t, ρP (c2 + kC)) = 2P ∗(t, ρP (c2 + kC)), k = 0, 1, 2.

The boundary condition at x = ρP kC is not really needed. For cells in
P ∗ the (hidden) cell cycle variable could be directly linked to x by equation
x = ρP (c − c1 + kC), where k is the number of cycles the cell has performed
since its entrance in the proliferative compartment. This observation allows us
to express the simplified model (7) in an equivalent, but more straightforward
manner.

The variable k contains all the information on divisions, which are causing
discontinuities of P ∗ at points x = ρP (c2 + kC). Let us define the quantity



P̃ (t, x) as

P̃ (t, x) = 2−kP ∗(t, x) if x+ ρP c1 ∈ [ρP kC, ρP (k + 1)C)

The quiescent stem cells density Q and the activation rate β stay unchanged,
but deactivation rate α̃ depends now on the number of cycles the cell has per-
formed, that is to say the quantity k = bx+ρP c1

ρPC
c.

– We consider the continuous density P̃ .
– We denote:

χ1 = 2 1[ρP c2,ρPC] + 4 1[ρP (C+c2),2ρPC] + 8 1[ρP (2C+c2),1],

χ2 = 1[0,ρP c2] + 2 1[ρPC,ρP (C+c2)] + 4 1[2ρPC,ρP (2C+c2)],

– Total amount of proliferating cells are now:

P (t) =

∫ 1

0

(χ1 + χ2)(x) P̃ (t, x) dx.

To alleviate the notations, we choose, from now on, to remove the tilde off the
density P , since there is no possible confusion. This leads to what we will denote
Model IIc. Although it is formulated differently, it is technically equivalent to
Models IIa and IIb.

Model IIc: 

∂Q

∂t
− ρQ

∂Q

∂x
= χ1(x) α̃(x,Qtot) P

∂Q∗

∂t
= ρQQ(t, 0)− β(0, Ptot) Q

∗(t)

∂P

∂t
+ ρP

∂P

∂x
= −mP − α̃(x,Qtot) P

(7)

with boundary conditions:{
Q(t, 1) = 0

ρPP (t, 0) = β(0, Ptot) Q
∗(t)

The term χ1(x) α̃(x,Qtot)P (x) in the first equation comes from the fact that
divisions are counted in transition rate α̃ through the function χ1, instead of
being directly counted in density P .

3 Linear stability analysis of Model IIc

In this section we analyze the asymptotic behavior of the Model IIc. For sake
of simplicity, population P ∗ will be noted P , in this section, since there is no
ambiguity. In case of an effective treatment, we expect leukemic populations
to vanish and healthy to stabilize, as in Figure 4. So, we look for a disease-free

steady state
(
Qh, Q

∗
h, Ph, 0, 0, 0

)T
. Then, we will seek to obtain information on

the behavior of leukemic populations
(
Ql, Q

∗
l , Pl

)T
around zero. The system

that governs these populations depends on quantities Qtot and Ptot, so it is
necessary to study first the nonzero steady state of healthy populations.



3.1 Positive steady states of the healthy populations in the absence
of leukemic cells

Here, it is assumed that all leukemic populations vanish. Healthy cells are as-
sumed to behave autonomously. So, we will look for any nonzero stationary
solutions for healthy populations. We consider the case where αh and βh respec-
tively depend on Qh and Ph, and we are looking for time-independent positive
solutions. In order to alleviate the notation, we simply note βh = βh(0, Ph), and
α̃h(x) = α̃h(x,Qh).

The system of equations at equilibrium is reduced to an ordinary differential
equation (ODE) system in affinity x:

ρQ
∂Q

∂x
= −χ1(x) α̃h(x) P,

ρP
∂P

∂x
= −α̃h(x) P,

with boundary conditions:
βh Q

∗ = ρQ Q(0),

Q(1) = 0,

ρP P (0) = βh Q
∗.

The ODE system is solved directly taking into account boundary conditions
to yield the solution:

Ph(x) =
βh
ρP

Q∗h exp
(
−
∫ x

0

α̃h(s)

ρP
ds
)

Qh(x) =
βh
ρQ

Q∗h

[
1−

∫ x

0

χ1(y)
α̃h(y)

ρP
exp

(
−
∫ y

0

α̃h(s)

ρP
ds
)
dy
]

The boundary condition Qh(x = 1) = 0 provides a condition that must be
satisfied by the function x 7→ α̃h(x,Qtot) at equilibrium:∫ 1

0

[
χ1(y)

α̃h(y,Qtot)

ρP
exp

(
−
∫ y

0

α̃h(s,Qtot)

ρP
ds
)]
dy = 1 (8)

The conditions to obtain a unique positive steady state are summarized in
the following proposition.

Proposition 1 We set

J1 =

∫ ρPC

ρP c2

α̃h(s,Qtot)

ρP
ds,

J2 =

∫ 2ρPC

ρP (C+c2)

α̃h(s,Qtot)

ρP
ds,



J3 =

∫ 1

ρP (2C+c2)

α̃h(s,Qtot)

ρP
ds,

and

ϕ : Qtot 7→ eJ1+J2+J3 + 2eJ2+J3 + 4eJ3 − 8.

If fαh(∞) = 0 and ϕ(0) > 0, equation (8) has a unique strictly positive
solution.

Proof. Equation 8 can be expressed as

1 = 2

∫ ρPC

ρP c2

α̃h(x,Qtot)

ρP
e
−

∫ x
ρP c2

α̃h(s,Qtot)

ρP
ds
dx

+4e−J1
∫ 2ρPC

ρP (C+c2)

α̃h(x,Qtot)

ρP
e
−

∫ x
ρP (C+c2)

α̃h(s,Qtot)

ρP
ds
dx

+8e−J1−J2
∫ 1

ρP (2C+c2)

α̃h(x,Qtot)

ρP
e
−

∫ x
ρP (2C+c2)

α̃h(s,Qtot)

ρP
ds
dx,

= −2
[
e
−

∫ x
ρP c2

α̃h(s,Qtot)

ρP
ds]ρPC

ρP c2

−4e−J1
[
e
−

∫ x
ρP (C+c2)

α̃h(s,Qtot)

ρP
ds]2ρPC

ρP (C+c2)

−8e−J1−J2
[
e
−

∫ x
ρP (2C+c2)

α̃h(s,Qtot)

ρP
ds]1

ρP (2C+c2)
,

= −2e−J1 + 2− 4e−J1−J2 + 4e−J1 − 8e−J1−J2−J3 + 8e−J1−J2 ,

or

0 = 1 + 2e−J1 + 4e−J1−J2 − 8e−J1−J2−J3 .

By multiplying the last equation by eJ1+J2+J3 , we obtain the equation:

ϕ(Qtot) = 0

As α̃h is strictly decreasing with respect to Qtot, we have that the coefficients
J1, J2 and J3 are strictly decreasing depending with Qtot. This means that ϕ is
a strictly decreasing function of Qtot. Furthermore we have ϕ(∞) = −1 < 0
because J1 = J2 = J3 = 0 for Qtot = +∞, and ϕ(0) > 0 by hypothesis.

According to the intermediate values theorem, continuity of ϕ ensures the
existence of a zero in the interval (0,+∞). The uniqueness of this zero is given
by the strict monotonicity of ϕ.

One can notice that the steady state for Qtot does not depend on βh. The
condition fαh(∞) = 0 is always satisfied in the model. It reflects saturation of
the number of cells in the bone marrow. However it is not optimal, it is possible
to transform the proposition into a necessary and sufficient condition assuming
ϕ(∞) < 0.



Here we focus on the steady state when leukemic cells populations are all
zero. In this case we can write Qtot =

∫
Qh +Q∗h (at equilibrium).∫ 1

0

Qh(x)dx =
βh
ρQ

Q∗h

[
1−

∫ 1

0

∫ x

0

χ1(y)
α̃h(y)

ρP
exp

(
−
∫ y

0

α̃h(s)

ρP
ds
)
dydx

]
,

=
βh
ρQ

Q∗h

[
1−

∫ 1

0

(1− y) χ1(y)
α̃h(y)

ρP
exp

(
−
∫ y

0

α̃h(s)

ρP
ds
)
dy
]
,

=
βh
ρQ

Q∗h

∫ 1

0

y χ1(y)
α̃h(y)

ρP
exp

(
−
∫ y

0

α̃h(s)

ρP
ds
)
dy.

To ease the calculations, we introduce the notation:

L1(Qtot) =

∫ 1

0

y χ1(y)
α̃h(y,Qtot)

ρP
exp

(
−
∫ y

0

α̃h(s,Qtot)

ρP
ds
)
dy.

Since Qtot =
∫
Qh +Q∗h at equilibrium, we obtain an expression of Q∗h based

on Qtot and Ptot:

Q∗h =
Qtot

1 +
βh(Ptot)

ρQ
L1(Qtot)

.

Using Q∗h, we can find an equation for the steady state Ptot:

Ptot =

∫ 1

0

(χ1(x) + χ2(x)) P (x) dx,

=
βh
ρP

Q∗h

∫ 1

0

(χ1(x) + χ2(x)) exp
(
−
∫ x

0

α̃h(s)

ρP
ds
)
dx.

Setting

L2(Qtot) =

∫ 1

0

(χ1(x) + χ2(x)) exp
(
−
∫ x

0

α̃h(s,Qtot)

ρP
ds
)
dx,

we then find a condition for the existence and uniqueness of a steady state for
Ptot.

Proposition 2 Once Qtot is fixed, equation

Ptot =

βh(Ptot)

ρP
L2(Qtot)

1 +
βh(Ptot)

ρQ
L1(Qtot)

Qtot

has a unique strictly positive solution Ptot.

Proof. We need to show that there is a unique solution to the fixed point equation

x = F (x), x > 0



with F : x→ af(x)

1 + bf(x)
where a and b are positive constants, and f is a positive,

strictly decreasing differentiable function: F (0) > 0 and F ′(x) =
af ′(x)

(1 + bf(x))2
<

0 since f is strictly decreasing. Then, the fixed point equation has an unique
positive solution.

3.2 Local stability around the disease-free steady state

Here we look at the stability of the unique positive leukemic-free steady state(
Q eq
h , Q∗ eqh , P eq

h , 0, 0, 0
)T

with respect to a small disturbance.
The simplified system IIc linearized around the healthy steady state is:

∂Qh
∂t
− ρQ

∂Qh
∂x

= χ1(x) α̃h(x,Qtot) Ph

+χ1(x)
[ ∂α̃h
∂Qtot

(x,Qtot) (Ql +Q∗l +Qh +Q∗h) P eq
h

]
,

∂Q∗h
∂t

= ρQQh(0)− βh(0, Ptot) Q
∗
h−

∂βh
∂Qtot

(0, Ptot)(Pl + Ph) Q∗ eqh ,

∂Ph
∂t

+ ρP
∂Ph
∂x

= −
(
m+ α̃h(x,Qtot)

)
Ph

− ∂α̃h
∂Qtot

(x,Qtot) (Ql +Q∗l +Qh +Q∗h) P eq
h ,

∂Ql
∂t
− ρQ

∂Ql
∂x

= χ1(x) α̃l(x,Qtot) Pl,

∂Q∗l
∂t

= ρQQl(0)− βl(0, Ptot) Q∗l ,

∂Pl
∂t

+ ρP
∂Pl
∂x

= −
(
m+ α̃l(x,Qtot)

)
Pl.

The boundary conditions are

Ql(t, 1) = 0

Qh(t, 1) = 0

ρPPl(t, 0) = βl(0, Ptot) Q
∗
l (t)

ρPPh(t, 0) = βh(0, Ptot) Q
∗
h(t)

The last three differential equations are independent from the first three, the
linearized leukemic subsystem is decoupled from the healthy subsystem. We will
ignore the healthy cells and study leukemic populations around its steady state(
0, 0, 0

)T
.

The linearized subsystem preserves the positivity of solutions and the domi-
nant real eigenvalue dictates the long-term behavior of solutions.



We are looking for positive solutions in the form
Ql(x, t) = Q̂(x) eλt,

Q∗l (x) = Q̂∗ eλt,

Pl(x, t) = P̂ (x) eλt,

where λ is an arbitrary real eigenvalue and Q̂, Q̂∗ and P̂ are associated eigen-
vectors.

Equations on Q̂, P̂ et Q̂∗ are
λ Q̂− ρQ

∂Q̂

∂x
= χ1 α̃l(x,Qtot)P̂ ,

λ Q̂∗ = ρQQ̂(0)− βl(0, Ptot) Q̂∗,

λ P̂ + ρP
∂P̂

∂x
= −

(
m+ α̃l(x,Qtot)

)
P̂ .

To simplify the notations, we remove the hats from eigenvectors. We seek
a dominant real eigenvalue λ, as the differential eigensystem admits positive
solutions: 

λQ− ρQ
∂Q

∂x
= χ1(x) α̃l(x,Qtot) P,

λP + ρP
∂P

∂x
= −mP − α̃l(x,Qtot) P,

(9)

with boundary conditions
Q(1) = 0,

λQ∗ = ρQQ(0)− βl(0, Ptot) Q∗,

ρPP (0) = βl(0, Ptot) Q
∗.

We explicitly solve this system of ODE, taking into account boundary con-
ditions at x = 0:


P (x) =

βl
ρP

Q∗ exp(−λ+m

ρP
x) exp

(
−
∫ x

0

α̃l(s)

ρP
ds
)

Q(x) =
βl
ρQ

Q∗e
λ
ρQ

x
[λ+ βl

βl
−
∫ x

0

χ1(y)e
−(λ+mρP

+ λ
ρQ

)y α̃l(y)

ρP
e
−

∫ y
0

α̃l(s)

ρP
ds
dy
]

The boundary condition at x = 1, Q(1) = 0, provides an equation satisfied
by λ:

Proposition 3 Linearized leukemic subsystem around zero admits a unique real
dominant eigenvalue, which is the only real solution of the characteristic equa-
tion:

λ = βl

[ ∫ 1

0

χ1(y)e
−(λ+mρP

+ λ
ρQ

)y α̃l(y)

ρP
exp

(
−
∫ y

0

α̃l(s)

ρP
ds
)
dy − 1

]
(10)



The dominant eigenvalue determines the asymptotic behavior of leukemic
populations around zero when healthy cell populations are at steady state, and
so the asymptotic remission speed in case of effective treatment.

Proof. The right-hand-side is decreasing as a function of λ, while the left-hand-
side is increasing from −∞ to +∞. Thus there is one, and only one real solution
λ to this equation.

Let z be a complex solution, not real.

<(z) = βl

[
<(

∫ 1

0

χ1(y) e
−( z+mρP

+ z
ρQ

)y α̃l(y)

ρP
e
−

∫ y
0

α̃l(s)

ρP
ds
dy)− 1

]
< βl

[∣∣ ∫ 1

0

χ1(y) e
−( z+mρP

+ z
ρQ

)y α̃l(y)

ρP
e
−

∫ y
0

α̃l(s)

ρP
ds
dy
∣∣− 1

]
< βl

[ ∫ 1

0

χ1(y) e
−(
<(z)+m
ρP

+
<(z)
ρQ

)y α̃l(y)

ρP
e
−

∫ y
0

α̃l(s)

ρP
ds
dy − 1

]
So <(z) satisfies the inequality case of the characteristic equation. Since the

right term of this inequality is decreasing with <(z), <(z) is necessary lower than
λ, solution of the characteristic equation.

The flux of differentiated cells D is given by the formula D(t) = ρPP (t, 1),
so it admits the same asymptotic behavior as P . It follows that the quantity of
mature leukemic cells in blood also behaves like eλt. As the number of healthy
mature cells in the blood (computed with the formula (3)) converges to a positive
constant, the BCR-ABL/ABL ratio predicted by the model around the disease-
free steady state behaves asymptotically as eλt. Therefore, the solution of the
characteristic equation (10) can be interpreted as the asymptotic growth (if pos-
itive) or remission (if negative) rate of the disease in the blood. Independently of
the healthy population stability, characterizing how λ behaves with and without
treatment is crucial. In particular we want to show when λ is negative.

Knowledge of the function fαh gives the value of Qtot at equilibrium. We can
find Ptot based on Qtot and fβh . Then transfer rates αl and βl can be computed,
based on fαl , fβl , Qtot and Ptot. We finally deduce the value of λ, based on
αl, βl and m. This way, we can determine the speed of asymptotic decay of
the BCR-ABL/ABL ratio under treatment, according to the parameters of the
problem.

According to the model, if the dominant eigenvalue λ is negative, the treat-
ment works; the leukemic cell number goes to zero. Otherwise, it means that the
disease-free steady state is unstable, so that treatment can not eradicate CML.

4 Treatment

4.1 Treatment effects

Glauche et al. (2012) study the effect of TKI treatment in Roeder model. They
model TKI effect by the death of a constant percentage of leukemic proliferating



cells per unit time (death rate m = 3.2% per hour (Roeder et al. 2006)), and by
reducing the leukemic quiescent cells activation rate (βl lower). TKI treatments
are supposed to affect only leukemic stem cells (Figure 5).

Qhealth Phealth
�h(Pl+Ph)

x2 �h(Ql+Qh)

Qleuk Pleuk

�l(Pl+Ph)

�l(Ql+Qh) x2 

TKI

TKI
-

Differentiation

Differentiation

Fig. 5. Action of TKI on the Roeder et al. model. TKI treatment is supposed to affect
only leukemic stem cells, by killing proliferative ones and preventing quiescent ones
from activation.

We have shown in the previous section that a unique real eigenvalue λ drives
the long-term dynamics of the leukemic populations. Here we look at how λ
varies when treatment is taken into account.

Only some of the parameters are affected by the type of treatment considered.
It is thought that TKI treatments affect the proliferative cell death rate m and
the activation rate of the quiescent leukemic cells through the function fβl . TKI-
dependent parameters were estimated from experimental clinical data, obtained
on patients treated with a constant dose of TKI (Roeder et al. 2006). Parameters
values without and with treatment are given in Table 1. We will parameterize the
death ratem asm(ξ) such thatm(0) = m0 andm(1) = m1, wherem0 andm1 are
the death rates without and with treatment respectively. In the same way, we will
parameterize activation rate β(Ptot) as β(Ptot; ξ) such that β(Ptot; 0) = β0(Ptot)
and β(Ptot; 1) = β1(Ptot), where β0 and β1 are the activation rates without and
with treatment for leukemic cells respectively. The simplest way to proceed is to
assume a linear dependence of the death rate

m(ξ) = m0 + (m1 −m0)ξ.

When the drug has only one target, dose-response curves are typically mono-
tonous: the effect increases as the dose is increased. Here, the treatment has
two non-additive effects that can influence efficacy: increase in the proliferative
cell death rate and decrease in the activation rate of quiescent cells. In this
section, even if it is not biologically relevant, we allow heuristically the treatment
dose ξ to become infinite. An infinite dose corresponds to an infinite death rate
of proliferative cells and to the activation rate vanishing. In this situation all



proliferative cells vanish but quiescent cells stay safe from treatment, so we
expect the growth rate to vanish (λ(ξ =∞) = 0). As the treatment is assumed
to be non-effective at dose 0 and +∞, and effective for at least one positive dose,
this means that the growth rate λ could not be monotonous.

4.2 General dependence

Based on the linear stability analysis performed in Section 3.2, we can re-express
the characteristic equation 10 as follows. Let

Γ (λ, ξ) =

∫ 1

0

χ1(x) e
−(

λ+ξm1
ρP

+ λ
ρQ

)x
α̃l(x)/ρP e−

∫ x
0
α̃l/ρP ds dx.

The characteristic equation (10) becomes

λ(ξ) = β(ξ)
(
Γ (λ(ξ), ξ)− 1

)
. (11)

To keep the notation simple, we used the fact that m0 = 0.
We propose a wide class of function β that leads to a non-monotonous growth

rate λ.

Lemma 1 If β is a positive function that decreases towards zero, then λ is non-
monotonous and converges to 0 from below when ξ approaches ∞.

Proof. To simplify calculations we denote:
Γ (λ, ξ) =

∫ 1

0
f(λ, ξ, x)dx,

M1(λ, ξ) =
∫ 1

0
xf(λ, ξ, x)dx,

M2(λ, ξ) =
∫ 1

0
x2f(λ, ξ, x)dx.

Furthermore, we can compute easily,

∂λΓ = −
( 1

ρP
+

1

ρQ

)
M1 < 0,

∂ξΓ = −m1

ρP
M1 < 0,

∂2
ξΓ =

(m1

ρP

)2
M2 > 0,

∂ξ∂λΓ =
( 1

ρP
+

1

ρQ

)m1

ρP
M2 > 0,

∂2
λΓ =

( 1

ρP
+

1

ρQ

)2
M2 > 0.

The characteristic equation (11) is uniquely solvable and regularity of λ is
obtained by classical implicit function theorem. By differentiating with respect
to ξ, we find:

λ′ = β′ (Γ−1)+β ∂ξΓ+λ′ β ∂λΓ , that is to say, λ′ =
β′ (Γ − 1) + β ∂ξΓ

1− β ∂λΓ
.



Then

λ′ =

β′

β λ− β m1

ρP
M1

1 + β
( 1

ρP
+

1

ρQ

)
M1

. (12)

If λ is positive, as β is decreasing, λ′ < 0. So, the function λ is decreasing
as soon as λ > 0. If λ(0) > 0, λ stays bounded by λ(0). In this case, since Γ is
positive and is decreasing with λ, we can write:

− β(ξ) 6 λ(ξ) 6 β(ξ)
(
Γ (λ(0), ξ)− 1

)
(13)

Since Γ (λ(0), ξ) converges to 0 when ξ approaches ∞, the second right in-
equality of (13) assures that λ becomes negative in finite time and stays negative
until ∞. Then, as β converges to 0 when ξ approaches ∞, the left inequality of
(13) assures that λ converges to 0 from below when ξ approaches ∞.

The above calculation (equation (12)) also gives that λ′|λ=0 < 0. This in-
equality ensures that, once negative, λ can not become positive again. It remains
strictly negative from a certain value of ξ, denoted ξ1. So the result stays true if
λ(0) < 0.

The growth rate λ therefore is non-monotonous and allows a minimum at
ξ2 ∈

(
ξ1,+∞

)
.

Proposition 4 If m is linear of the form m(ξ) = m1ξ, and if β is a positive
log-concave function that decreases towards zero, then there is a unique ξ that
minimizes λ.

Proof. We keep the notations of the above lemma and we set B = log β and
g = B′λ − βm1M1/ρP , so that λ′ = g

d where d is a strictly positive function
(equation (12)). To determine the sign of λ, it is sufficient to study function g.

g′ = B′′λ+B′λ′ −m1/ρP (β′M1 + β(λ′∂1M1 + ∂2M1))

= B′′λ+B′λ′ −m1/ρPβ
′M1 +m1/ρPβ

(
λ′
( 1

ρP
+

1

ρQ

)
M2 +m1/ρPM2

)
= B′′λ+B′λ′ −m1/ρP β′M1 +m1/ρP β M2

(
λ′
( 1

ρP
+

1

ρQ

)
+m1/ρP

)

By assumption on β, the first and second derivatives B′ and B′′ are negative.
In addition, β′ is negative and M2 is strictly positive. Moreover we stand in the
interval (ξ1; +∞

)
, so λ is strictly negative. If λ′(ξ) = 0 for a given ξ, we have

g(ξ) = 0 and g′(ξ) > 0, so g is strictly positive on an interval of the form(
ξ; ξ + ε

)
. We deduce that λ can not be locally constant.

We consider now the case where λ′ is positive. We can write g′ = B′λ′ +K,

where K is a positive function. We have [λ′d]′ = g′ = B′λ′ + K =
B′

d
λ′d +

K >
B′

d
λ′d. As B′′ 6 0, B′ is decreasing. In particular, for every ξ > ξ2,



B′(ξ) 6 B′(ξ2). Similarly, for any ξ > ξ2, β(ξ) 6 β(ξ2). Since λ is assumed to
be strictly negative, Γ < 1. And, as M1 < Γ , we can set an upper bound on

function d with the constant 1 + β(ξ2)
( 1

ρP
+

1

ρQ

)
.

We denote c =
−B′(ξ2)

1 + β(ξ2)
( 1

ρP
+

1

ρQ

) > 0. We then have [λ′d]′ > −c λ′d.

Let ξ3 > ξ2 be such that λ′(ξ3) > 0. According to Gronwall Lemma,

∀ξ > ξ3, λ
′(ξ)d(ξ) > λ′(ξ3)d(ξ3) e−cξ.

As d is a positive function and λ′(ξ3) > 0, we obtain ∀ξ > ξ3, λ
′(ξ) > 0.

we have shown that λ is strictly decreasing and reaches a negative local
minimum at ξ = ξ2, and that once it is increasing it is increasing on all intervals
of the type

(
ξ3,+∞

)
. Since it can not be stationary, it must grow exactly on(

ξ2,+∞
)
, and therefore ξ2 is the unique minimum of λ on R+.

That kind of convexity result was treated in more general context (Clairam-
bault et al. 2011).

4.3 Examples of dose-dependence parameters

The modeling of treatment dose dependence on parameters is an open question.
While it seems intuitive to model a death rate by a linear function of dose, it is
not well understood how treatment dose could affect a transition rate. However
we proved in Proposition 4 that our result stands for a large class of functions
modeling the activation rate βl. In order to illustrate our result, we choose to
study two of them; a linear and a exponential dependence of the activation rate
βl. In fact, both can verify the conditions of the above Proposition 4. We denote
by β0 the activation rate without treatment (dose 0 in Table 1), m1 and β1 the
death rate and the activation rate with treatment (dose 1 in Table 1).

We computed the dose-response curve λ(dose) using the complete model,
the simplified model, or the characteristic equation (Figure 6 and 7). The dose-
response curves we obtained are not monotonous. This is unexpected since it
means that applied too much treatment is detrimental to its efficacy against
the disease, according to the model. Indeed there is a unique finite dose that
minimizes the value of λ, and therefore maximizes the long-term efficacy of
treatment with TKI.

Linear dose-dependence for activation rate (Figure 6) We linearly adjust
the activation rate depending on the TKI dose from 0 (no treatment) to 1 (full-
dose treatment, according to Roeder et al. (2006)). For a dose higher than 1 we
choose a smooth connection to 0 in order to respect Proposition 4 hypothesis.
We set β(ξ) = β0 − (β0 − β1)ξ if ξ ∈ [0, 1]

β(ξ) = β1 exp
(
− β0 − β1

β1
(ξ − 1)

)
if ξ > 1.



Function β is continuous, and two times differentiable with respect to ξ, and
log-concave. So it verifies Proposition 4 hypothesis.
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Fig. 6. Dependence of the asymptotic growth according to the TKI treatment inten-
sity. The theoretical curve represents eigenvalue of system linearized around 0, given by
the characteristic equation, while simulation curves represent the logarithmic deriva-
tive of solutions near to disease-free steady state. Effect of TKI dose is modeled as
β(ξ) = max

(
0, β0 + ξ (β1 − β0)

)
and m(ξ) = ξm1, where β0 is the activation rate

without treatment, m1 and β1 are the death rate and the activation rate with treatment
(corresponding to the standard dose, according to Roeder et al. (2006)).

Exponential dose-dependence for activation rate (Figure 7). In more
realistic settings β(ξ) depends geometrically on the dose ξ, of the form β(ξ) =

βξ1 β1−ξ
0 . This transition rate β verifies log(β)′′ = 0, so it represents the limit

case of Proposition 4.

4.4 Comparison with standard parameters.

Figures 6 and 7 highlight the idea that there could be optimal treatments at doses
lower than the one used by default (Roeder et al. 2006). Using these parameters,
both cases leads to non-monotonous function λ(ξ), with a minimum that occurs
for a dose lower than 1. Here, we show that it is a more general result, using
numerical simulations with standard parameters.

Proposition 5 If the minimum of λ occurs at a dose lower than 1 in the case
where β(ξ) = βξ1 β

1−ξ
0 , then for any log-concave positive and decreasing to zero

parametrization of β that satisfies β(0) = β0 and β(1) = β1, the minimum of λ
occurs at a dose lower than 1.
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Fig. 7. Dependence of the asymptotic growth according to the TKI treatment intensity.
The theoretical curve represents eigenvalue of system linearized around 0, given by the
characteristic equation, while simulation curves represent the logarithmic derivative of
solutions near to disease-free steady state. Effect of TKI dose is modeled as β(ξ) =
βξ1 β

1−ξ
0 and m(ξ) = ξm1, where β0 is the activation rate without treatment, m1 and

β1 are the death rate and the activation rate with treatment (corresponding to the
standard dose, according to Roeder et al. (2006))

Proof. We denote β̄(ξ) = βξ1 β
1−ξ
0 . Numerically, this exponential parametrization

leads to a a minimum for λ̄ that occurs for a dose lower than 1 (Figure 7).
Let β be a log-concave parametrization verifying β(0) = β0 and β(1) = β1.

As β is log-concave,

β′(1)

β(1)
= (log(β))′(1) 6

log(β(1))− log(β(0))

1− 0
=

log(β1)− log(β0)

1− 0

= (log(β̄))′(1)

=
β̄′(1)

β̄(1)
.

Then, as λ(1) = λ̄(1) < 0,

λ′(1) =

β′(1)
β(1) λ(1)− β m1

ρP
M1

1 + β
( 1

ρP
+

1

ρQ

)
M1

>

β̄′(1)

β̄(1)
λ̄(1)− β̄ m1

ρP
M1

1 + β̄
( 1

ρP
+

1

ρQ

)
M1

= λ̄′(1).

We have shown that if λ̄′(1) > 0, then λ′(1) > 0. So, the existence of a
minimum in (0, 1) for λ̄ induces the existence of a minimum in (0, 1) for λ.

Numerically, we stand in the case of Proposition 5. So we have shown that,
for a large class of functions modeling the treatment effect on activation rate, the
asymptotic decay is not monotonous, and admits a minimum at a dose smaller
than 1, corresponding to the standard dose, according to Roeder et al. (2006).



5 Discussion and conclusion

We proposed a simplification of the Roeder et al. model. The formulation of the
model as a PDE system makes it possible to simulate solutions much faster than
with an ABM, and to consider the cell populations as continuous time-dependent
densities. In addition, we have seen numerically, that the simplification of the
PDE system by partial integration and the restriction of the cell densities on
well-chosen characteristics, maintained the behavior of the solutions. However
the simplification could be less relevant for studying other scenarios, such as
combination or pulsed therapies or for exploring short-term effects. The simplifi-
cation allowed the analysis of the long-term dynamics of the system. We proved
the existence and uniqueness of a healthy steady state, then the existence and
uniqueness of a real dominant eigenvalue for this steady state. We then inves-
tigated the dependence of this eigenvalue on the treatment dose, and we found
a condition for this dependence not to be monotonous. The simplification we
made is weaker than the one made by Doumic-Jauffret et al. (2010), and the
analysis remains feasible. In addition, on the basis of their work, we could study
the dependence of the response depending on other parameters, and draw bifur-
cation graph and stability regions. It was anticipated that the simplified model
would possess an unique positive disease-free steady states. It corresponds to
the asymptotic solution when treatment is effective. Whether leukemic cell pool
completely vanishes under treatment is now a biological open question (Chu
et al. 2011, Ross et al. 2010). Our analysis of the remission rate (decay rate of
leukemic cell populations) yielded an unexpected result about treatments using
tyrosine kinase inhibitors. Figures 6 and 7 highlight the idea that there could be
optimal treatments at doses lower than the one used by default (Roeder et al.
2006). This counter-intuitive result is not due to the simplification of the PDE
model; it is possible to observe the same phenomenon for full model. According
to this idea, decreasing default TKI dose could improve the long-term efficacy,
while increasing it could slow down the remission rate. The natural dynamics
have been rather the reverse.

The results we have obtained are about long-term dynamics that are not
correlated to short-term dynamics. The optimal long-term treatment dose we
have identified probably does not ensure an optimal short-term response in a
clinical setting. Rather it could improve the remission speed of patients who
already reached a low level of leukemic cells.

Here, we consider a single leukemic clone. It could be interesting to deal
with several clones (Stiehl et al. n.d., Valent 2008), with different treatment
sensitivity, for instance. Our results would apply to each clone individually.

The Roeder et al. model provides results that are coherent with clinical data.
However, it remains too complex to provide theoretical results on cellular dy-
namics. The simplification we have introduced allows a mathematical analysis
and provides results on asymptotic dynamics. The non monotonous effect of TKI
treatment suggests the existence of an optimal treatment strategy, by balancing
the cytotoxic and the antiproliferative effects of TKIs. This strategy could be
clinically testable since it induces a treatment dose reduction, which is patient-
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friendly as it decreases the occurrence of side effects (Figure 8). It remains co-
herent with clinical results on TKI dose (Breccia et al. 2010, Hehlmann et al.
2014).

Glauche et al. (2012) simulated different drug combination regimens and
found that alternating the treatment between TKI and interferon alpha leads to
a better long-term treatment than TKI alone. Our result suggest that a better
response could be obtained by a reduced TKI dose alone. Alternating treatments
are expected to be even more effective by allowing quiescent cells to be period-
ically activated. The existence of a mechanism in TKI action against leukemia
that allows a non-monotonous dose response curve opens up interesting perspec-
tive for treatment optimization by drug combination and dose adjustment.
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