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Abstract—The clinical context of this study is the predic-
tion of cardiovascular risk by analyzing ultrasound images
of the common carotid artery. The principal methodological
contribution of the present work is the implementation of
image processing algorithms to characterize the pattern
of the artery-wall spatio-temporal trajectory during the
cardiac cycle. Normalized signals corresponding to the tra-
jectory of the biological tissues were gathered via an initial
phase of motion tracking based on Kalman filtering. The
originality of the present work is the introduction of three
complementary statistical approaches to interrogate these
signals. First, a Machine Learning strategy was carried
out with the AdaBoost algorithm to automatically identify
healthy and at-risk subjects. Second, the Dynamic Time
Wrapping method was applied to measure the pairwise
similarity between signals and identify clusters. Third, a
Principal Component Analysis was performed to randomly
generate unseen patterns using Point Distribution Model-
ing. A total of 84 subjects (42 healthy volunteers and 42 at-
risk patients) were involved in this study. Two significantly
different profile archetypes could be reconstructed from the
two populations, showing the effect of the atherosclerosis
pathology on the artery. Results demonstrate that the
healthy and at-risk signals can successfully be classified
with an accuracy of 73%. Quantification of the pairwise
distance between all signals indicated that healthy patterns
are more similar to each other, whereas there is a wider
variability between at-risk patterns. Finally, new signals
were generated using a statistical model, possibly hinting
towards new patterns characteristics.

Keywords: Motion Analysis; Machine Learning; Dy-
namic Time Wrapping; Statistical Shape Modeling; Ul-
trasound; Carotid Artery; Cardiovascular Risk

I. INTRODUCTION

Cardiovascular diseases are the first cause of human
mortality worldwide [1]. Cardiovascular risk prediction
is therefore a major public health issue as well as a

particularly challenging task. Atherosclerosis, the prin-
cipal disease that affects the arteries, is often quali-
fied of being a “silent killer”, because its progression
and evolution are tremendously complex, leading to
a very high number of fatal events occurring without
any premonitory sign [2]. This is extremely problematic
because the performance of current methods to evaluate
cardiovascular risk are limited [3], resulting in a total
of 40 % of the population whose cardiovascular risk is
unclear [4]. There is therefore a pressing need for novel
indicators to improve cardiovascular risk prediction.

A number of algorithms and methodologies have been
developed to analyze medical images in the objective to
assess cardiovascular risk. More specifically, the common
carotid artery (CCA) has been extensively investigated
using B-mode ultrasound (US) imaging. To be clini-
cally applicable and effective in the screening process,
these methods must present the following qualities. First,
(fully-)automatic processes are necessary to deal with
large datasets and overcome the pitfalls inherent to man-
ual (or visual) human analysis, which is cumbersome,
extremely time-consuming, and subject to variability
between different analysts. Second, these algorithm have
to be accurate, robust, and fully reproducible. Third, the
proposed approaches must be capable of detecting very
early presence of the atherosclerotic disease in asymp-
tomatic subjects (i.e., years prior to the formation of the
atheromathous plaque) in order to allow an appropriate
preventive care strategy.

In the past decade, a few pioneering studies have
started to explore the mechanical deformation of the
arterial wall in the direction parallel to the blood flow [5]
using a variety of motion tracking algorithms [6], [7], [8],
[9], [10]. This pulsatile phenomenon, hereafter referred



to as “longitudinal kinetics” (LOKI, Fig. 1), corresponds
to the shearing motion of the arterial tissues during
the cardiac cycle [11]. This parameter has a colossal
clinical potential, as it has been reported in several recent
findings that LOKI was associated with cardiovascular
risk factors [12], [13], [14], [15]. It is today hypothesized
that LOKI is a strong candidate to become a valuable
image-based biomarker for improved cardiovascular risk
prediction at very early stage of the disease.

Most of the investigation efforts in the field of LOKI
have been focused on the quantification of the peak-
to-peak amplitude of the wall motion, corresponding to
the total amount of displacement of the tissues during
the cardiac cycle. The analysis of this parameter was
successful, as a significant difference could be validated
between healthy volunteers and at-risk patients [12].
Nevertheless, this approach is hindered by several limita-
tions. First of all, LOKI amplitude has been demonstrated
to be subject to a substantial variability along the length
of the vessel [16], making local measurements irrelevant.
Then, the peak-to-peak amplitude is a scalar parameter
that does not reflect the pattern (speed, acceleration,
direction) of the temporal trajectory. Finally, the motion
amplitude may not be stable in time, as it depends on
other physiological parameters such as pulse pressure.

The aim of this study is to perform an amplitude-
independent analysis of LOKI by considering the pattern
of the temporal trajectory of the arterial tissues during
the cardiac cycle. This approach is strengthened by
previous findings [17] demonstrating that the motion
pattern is a reproducible parameter stable in time. A
methodological framework based on statistical analysis
is presented to process a collection of uni-dimensional
signals that correspond to the normalized trajectory of
the arterial wall. To validate our approach, the proposed
method is applied in vivo on 84 subjects.

II. METHODS

This section is organized as follows. First, the pre-
processing stage is detailed to describe the motion track-
ing algorithm as well as the spatio-temporal normaliza-
tion process. Then, three methodological contributions
and their respective applications are presented: 1) Ma-
chine Learning is used for classification between healthy
and at-risk subjects; 2) Dynamic Time Wrapping is used
for quantifying the similarity between the signals from
two subjects; and 3) Principal Component Analysis is
used to discover new patterns. Finally, the data collection
protocol that was used to acquire in vivo ultrasound
images from 84 subjects is described.

A. Pre-processing

For each subject, LOKI was assessed by extracting
the trajectory of the far wall using a previously validated
motion tracking algorithm based on Kalman filtering [9].
This method has been implemented in a graphical user
interface and is publicly available (https://www.creatis.
insa-lyon.fr/carolab/). The electrocardiogram signal was
used to determine the time points corresponding to the
systole and extract a cropped signal corresponding to
exactly one cardiac cycle, as depicted in Figure 2a,b. The
peak-to-peak amplitude was measured pre-normalization
and stored for further analysis.

In order to compare only the pattern between different
signals without taking into consideration their amplitude
or length, each individual signal was normalized both
spatially and temporally (Fig. 2c). Spatial normalization
was performed by shifting the amplitude of the signal so
that the minimum and maximum values become 0 and 1,
respectively. Temporal normalization was performed by
re-sampling the signal so that its length becomes equal
to 100 time units. For each signal, the area under the
curve was calculated to quantify the relative amount of
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Fig. 1. Longitudinal kinetics (LOKI) of the arterial wall. (a) Temporal sequence (movie clip of several images) of the common carotid artery
in B-mode ultrasound. (b) Detailed region of (a), showing LOKI (red arrow) taking place in the intima and media layers, while the adventitia
layer remains quasi-static (red rake). (c) Schematic representation of LOKI in three dimensions.



displacement (RAD), as illustrated in Figure 3. Finally,
two different statistical models of arterial motion were
generated by averaging separately the healthy and at-risk
signals, respectively.

B. Statistical pattern analysis

1) Machine Learning: The adaptive boosting predic-
tive algorithm AdaBoost [18] was implemented for fully-
automatic classification of healthy and at-risk subjects.
Briefly, the underlying principle of AdaBoost consists in
iteratively adapting the weights of simple weak classifiers
in the aim to finally generate a strong classifier that is
well correlated with the ground truth annotations (i.e. the
binary healthy or at-risk label corresponding to
each signal). In the present framework, the features corre-
sponding to each subject were generated by aggregating
all the time points of the normalized signal, therefore
resulting in a total of 100 features per subject. A leave-
one-out scheme was then performed: a statistical model
was first generated using 83 subjects (all but one), and
the AdaBoost classification was subsequently applied to
the remaining subject using the generated model. This

operation was repeated through the entire cohort, and
the labels resulting from the classification were stored.

2) Dynamic Time Wrapping: Dynamic Time Wrap-
ping (DTW) is a technique used to determine the sim-
ilarity between two time series [19]. In the present
study, this approach was used to quantify the pairwise
difference between all signals. Briefly, we developed
a wrapping algorithm based on dynamic programming.
The best match between two signals corresponds to the
shortest path in a cumulated cost function generated from
the relative difference between the coordinates of each
sample of the signals (Fig. 4a). The similarity of the two
compared signals is finally determined by the value of
the cumulated cost map in the lower-right corner. An
example of DTW result is presented in Figure 4b. It is
noteworthy that DTW is conducted post-normalization,
in the objective to fully capture the similarities between
different patterns, while not being influenced by the
amplitude or length of the analyzed signals.

3) Principal Component Analysis: A statistical shape
model was generated for both healthy and at-risk motion,
using an approach based on Point Distribution Modeling
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Fig. 2. Signal normalization from longitudinal kinetics (LOKI). (a) Longitudinal component of the wall trajectory, during several cardiac cycles.
The diastole is indicated by the vertical dashes. (b) Signal corresponding to LOKI during one single cardiac cycle, indicated in (a) by the gray
region. The pre-normalization peak-to-peak amplitude is represented by the red arrow. (c) Same signal after spatio-temporal normalization.
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Fig. 3. Motion of the arterial wall during the cardiac cycle. Up and
down displacements correspond to a motion in the direction of the
heart and the head, respectively. The relative amount of displacement
(RAD) can be quantified by the area under the curve (gray region).
The spatio-temporal domain is normalized.

(PDM) [20]. The following procedure was performed
independently for the two cohorts. The covariance matrix
of the zero-centered data was first calculated, and the
most significant eigenvalues were kept. Here, it appeared
that more than 99% of the information could be repre-
sented by only 12 coefficients out of 100, which is the
length of the original signals. Then, a collection of new
artificial signals were generated by randomly modifying
these 12 principal component coefficients within the
values authorized by real in vivo signals.

C. Data collection

1) Study population: Forty-two young healthy volun-
teers (mean age 37±14 y.o., 17 males) as well as 42 older
diabetic patients (mean age 57± 7 y.o., 27 males) were
involved in this study. The inclusion criterion for the at-
risk patients was the presence of one of the following
diseases diagnosed at least 1 year before: metabolic
syndrome, or type 1 or 2 diabetes. No other criterion,
including clinical characteristics, was used to select these
subjects. The healthy volunteers were cardiovascular risk
factor-free (tobacco use, hypercholesterolemia, diabetes,
hypertension or particular family history) as assessed by
an oral questionnaire. Informed consent was obtained
from all subjects. The study was conducted in compli-
ance with the requirements of our institutional review
board and the ethics committee.

2) Image acquisition: Longitudinal B-mode in vivo
image sequences of the left CCA were acquired for all
subjects. Image acquisition was performed in the Uni-
versity Hospital of Lyon (France), with a medical ultra-
sound scanner (Antares, Siemens, Erlangen, Germany),

equipped with a 7.5–10 MHz linear array transducer. The
pixel size was 30 µm and the frame rate was 26 Hz. After
a 15 minutes rest, the subjects were examined in the
supine position with the neck extended and rotated 45◦

to the contralateral side. The transducer was centered on
the CCA, in the longitudinal plane, 2 cm distant from
the carotid bulb. The absence of atheromatous plaques
in the imaged area was assessed by a medical doctor. To
avoid the influence of the movement due to breathing, the
subjects performed a breath hold during the acquisition.
Images were recorded through at least two consecutive
full cardiac cycles.

D. Statistical analysis

The Mann–Whitney U test was used to compare the
value of the extracted parameters between healthy vol-
unteers and at-risk patients. Statistical significance was
assumed for p < 0.05. The accuracy, specificity, and
sensibility were defined as (TP+TN)/(TP+TN+FP+FN),
TN/(TN+FP), and TP/(TP+FN), with TP, TN, FP, and FN
the amount of true positive, true negative, false positive,
and false negative, respectively. Here, “negative” and
“positive” correspond to the detection of healthy and at-
risk subjects, respectively.

III. RESULTS

The longitudinal motion was extracted from the in
vivo temporal image sequences of all the 84 subjects.
Illustration of typical patterns of the resulting trajectories
are presented in Figure 5.

The two statistical models, resulting from averaging
separately the healthy and at-risk signals, are displayed
in Figure 6. Two different archetypes can be clearly
observed. On one hand, the healthy profile starts with a
gentle slope, then quickly returns to the initial position.
This dynamic behavior is likely to reflect the elasticity
of the tissues smoothly absorbing the initial mechanical
force and freely recovering the starting position. On
the other hand, the at-risk profile begins with a steep
slope, then slowly returns to the initial position. This is
hypothesized to correspond to stiffer tissues coping with
the mechanical force by an abrupt deformation followed
by a weak elastic recoil.

The results of the machine learning classification using
the AdaBoost algorithm were the following. A total of 61
subjects out of 84 were correctly classified (healthy
or at-risk). More precisely, the rate of correct classi-
fication was 29/42 for healthy volunteers, and 32/42 for
at-risk patients. This corresponds to an accuracy of 73%,
a sensitivity of 78%, and a specificity of 74%.

The intra- and inter-class analysis, resulting from the
pairwise DTW measurements, is presented in Figure 7. It



appears that the pattern dispersion is more clustered for
healthy volunteers, showing that these signals are quite
similar to each others. On the opposite, the pattern dis-
persion for at-risk patients is more scattered, indicating a
greater irregularity in these signals, which is presumably
caused by the effect of the atherosclerosis pathology.

When quantifying the RAD by analyzing the area un-
der the curve (Fig. 3), a significant augmentation was ob-
served in at-risk patients compared to healthy volunteers,
as presented in Figure 8. This result indicates that along
the entire trajectory of the wall during the cardiac cycle,
the relative motion of the tissues with respect to their
original position is larger in at-risk patients compared to
healthy volunteers, possibly indicating stiffer tissues. Let

us remind that since the motion amplitude is normalized,
this finding does not indicate that the absolute motion is
greater in these subjects.

Examples of new artificial signals generated via PDM
are displayed in Figure 9. Although these two signals
bear a strong resemblance with real in vivo signals
(Fig. 5), this approach has also potential to discover novel
patterns archetypes that are present within the data but
remain unseen due to the very wide number of possible
combinations.

Finally, the peak-to-peak amplitude of the longitu-
dinal motion was significantly reduced in at-risk pa-
tients compared to healthy volunteers (459 ± 258 µm
vs 797± 294 µm, p < 0.0001, Fig. 10). This result is a
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Fig. 4. Example of the proposed Dynamic Time Wrapping algorithm between two signals. (a) Extraction of the shortest path (pink line) to
determine the optimal similarity points between two signals. (b) Co-registration of two signals. The green (signal 1) and orange (signal 2) profiles
correspond to a healthy volunteer and a at-risk patient, respectively. The black lines indicate the optimal matching between the two signals. The
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Fig. 5. Representative examples of patterns corresponding to the longitudinal kinetics of the artery, showing a clear difference between healthy
volunteers (top row) and at-risk patients (bottom row). It is also visible that the relative amount of displacement is superior for at-risk patients.
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proof of concept in accordance with previous findings
that indicate that LOKI amplitude is associated with
cardiovascular risk factors [12], [13], [14], [15].

IV. DISCUSSION

The main contribution of this study is a methodolog-
ical framework based on statistical analysis, presented
here for the first time, to characterize the pattern of the
trajectory of the arterial tissues during the cardiac cycle.
Applied in vivo on a cohort of 84 subjects, this method
demonstrated that the motion profile was clearly different
between healthy volunteers and at-risk patients.

Three complementary methods have been introduced.
The AdaBoost classifier demonstrated that Machine
Learning is a powerful tool to identify healthy and at-
risk subjects. The Dynamic Time Wrapping algorithm
could successfully assess the pairwise similarity between
two signals, paving the way for quantitative evaluation.
Finally, the generation of new random signals has been
explored by means of Principal Component Analysis, in
the objective to discover unseen patterns.

The analysis of in vivo tissue motion is of tremendous
importance for a great number of clinical and biomechan-
ical applications. The motion of the arterial wall along
the axis of the vessel (dubbed as LOKI for “longitudinal
kinetics”) is speculated to be directly associated with
arterial stiffness [11], a major indicator of cardiovascular
risk. The pattern of the motion assessed in this study
(Fig. 6) is likely to reflect the elastic properties of the
biological tissues. More precisely, the back-and-forth
motion during the cardiac cycle is hypothesized to play
the role of a damping mechanism that cope with the

mechanical forces induced (e.g. blood friction, blood
pressure). Healthy arteries are more elastic and there-
fore better suited to handle the biomechanical stresses,
whereas diseased arteries are stiffer, which contributes to
the development of the atherosclerosis pathology [21].

LOKI is a recently discovered parameter [5]. Due to
the very small amplitude of the motion (approximately
0.5 mm), it only became possible to observe LOKI
with the development of modern US scanners with high
spatial definition. To the best of our knowledge, US
imaging is the only modality capable of capturing this
phenomenon in vivo. Despite the fact that LOKI has
been investigated in a number of studies during the past
decade, this phenomenon is still relatively unexplored
and remains not fully characterized. The non-uniform
motion within the arterial layers reflects a very rich and
complex physiological behavior. The factors provoking
this phenomenon are probably multiples, however one
of the principal cause is hypothesized to be the apical
traction of the aortic valve annulus in late systole. A
comprehensive analysis of LOKI is not available to-
day, however a great collection of parameters (such as
the peak-to-peak amplitude [12], [13], [14], [15], the
intramural shear stress [22], the longitudinal stretching
rate [16], and the pattern [23], [24], [25]) have been
identified to characterize this phenomenon.

In this study, the focus was set on detection of
the atherosclerosis at a very early stage of the pathol-
ogy, namely before the formation of the atherosclerotic
plaque. The context of this work is indeed inspired by
the saying “An ounce of prevention is worth a pound
of cure”. Rather than determining the threat level of one
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specific rupture-prone plaque, the objective is to improve
cardiovascular risk prediction by detecting subjects that
are likely to develop atherosclerosis. This question is
currently a major research challenge worldwide [4], [26].
Enhanced risk classification will permit medical doctors
to provide patients with more appropriate treatments.
First, identification of high-risk patients will lead to
effective therapy, thus reducing mortality, disability, and
deterioration in quality of life. Second, identification of
low-risk individuals will avoid unnecessary and iatro-
genic lifetime drug therapy.
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V. CONCLUSION

A methodological approach based on image processing
was presented here for the first time to characterize the
pattern of the spatio-temporal trajectory of the carotid
artery during the cardiac cycle. Using statistical analy-
sis, a significant difference was found between healthy
volunteers and at-risk patients. Features extracted from
the motion of the biological tissues have great potential
to build a novel image-based biomarker that may improve
cardiovascular risk prediction.
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