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Abstract

This paper presents a general methodology for nonparametric estimation of a function s
related to a nonnegative real random variable X, under a constraint of type s(0) = c. When
a projection estimator of the target function is available, we explain how to modify it in
order to obtain an estimator which satisfies the constraint. We extend risk bounds from the
initial to the new estimator, and propose and study adaptive procedures for both estimators.
The example of cumulative distribution function estimation illustrates the method for two
different models: the multiplicative noise model (Y = XU is observed, with U following a
uniform distribution) and the additive noise model (Y = X + V is observed where V is a
nonnegative nuisance variable with known density).

Keywords. Adaptive estimation, constrained estimator, Laguerre basis, nonparametric pro-
jection estimator

AMS Classification. 62G05-62G07

1 Introduction

In this work we focus on a function s related to a nonnegative real random variable X which
satisfies s(0) = c. The idea is to take into account this additional knowledge in a new nonpara-
metric procedure of estimation. Indeed, if s is a survival function supported on R+, it must
satisfy the constraint with c = 1; there are also examples where densities should be constrained
by c = 0. This starting value is subject to side effects and often badly estimated. Thus, including
the constraint in the procedure is likely to improve the estimator.

1.1 Main motivation

In the statistical literature, different types of global constraints have been studied from non-
parametric functional estimation point of view, such as convexity or monotonicity constraints.
Specific procedures have been proposed to obtain for instance decreasing density estimators, see
[17], [4]. We may also mention the proposal of [10] where an estimator of a weakly increasing
function is modified to get a weakly increasing estimator, with no influence on the risk value.

We are interested in a different question, namely: given an estimator built in an orthonormal
basis (denoted by ŝm), can we coherently modify it in order to fix its value in one specific point?
By coherently, we mean that we look for a global correction of the estimator, and not a single
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discontinuous change at the point. Indeed, correcting the value at 0 only automatically induces
a discontinuity of the new estimator.

More precisely, consider a square integrable function s with support R+, as this currently
occurs for lifetimes densities or survival functions in survival analysis, reliability and actuar-
ial sciences. When s is square integrable, a natural idea is to consider its development in an
orthonormal basis (ϕj)j≥0 with support I = R+ or I = [0, a]. In other words, we write that
s =

∑
j≥0 aj(s)ϕj with aj(s) = 〈s, ϕj〉. Next we consider that observations Y1, . . . , Yn related to

s are available and allow us to build a projection estimator ŝm of s: ŝm =
∑m−1

j=0 âjϕj where âj for
j = 0, . . . ,m−1 are known functions of the observations. Moreover we assume that E[âj ] = aj(s)
and call ŝm a projection estimator of s as it is an unbiased estimator of sm =

∑m−1
j=0 aj(s)ϕj , the

orthogonal projection of s on the m-dimensional space Sm = span(ϕ0, . . . , ϕm−1).
Now, instead of correcting the value in zero only, one may consider a new estimator defined by

ŝm−ŝm(0)+s(0). This time the estimator is entirely modified and keeps its regularity: it is simply
translated. The resulting squared integrated bias of this estimator for (ϕj)j the trigonometric
basis on [0, a] (see Section 2.1 for its definition) is the one of ŝm plus (1/a)(

∑
j≥m+1 aj)

2: this
is made obvious by Figure 1. This simple fact motivates the work hereafter and shows the need
for new ideas.
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Figure 1: Example of survival function estimation for n = 100, zoom on [0, 4]. Plain bold black
line: true survival function for a Gamma distribution. Dotted blue lines: 4 projection estimators
of the survival function. Left: plain red lines: translated projection estimators. Right: plain red
lines: proposed estimators.

1.2 Main contribution

To coherently modify the projection estimator ŝm into, say s̃m, such that s̃m(0) = c (when
s(0) = c) we propose a general definition of the constrained estimator and prove that its global
mean-square integrated risk on R+ is comparable to the risk of ŝm. The idea is to write the
projection estimator ŝm as a minimum contrast estimator and then to modify this contrast by
standard Lagrange multiplier strategy. Then, if a model selection procedure of a relevant choice
of m is available for ŝm, a modification is proposed, ensuring also a relevant choice of m for s̃m,
under simple conditions.

2



Compared to the rearrangement procedure of [10], this procedure only preserves the speed
of convergence of the original estimator (obtained without constraint). It does not improve it in
the general case because the additional information is only in one point, and not global, contrary
to monotonicity.

The procedure is described in full generality, but also illustrated through two examples. First,
the multiplicative censoring model is considered, introduced by [22] and related to the field of
survival analysis for example, see [21]. In this model, the observations are the Yi = XiUi with
Xi and Ui independent and Ui following a uniform distribution on [0, 1]. The random variables
(Xi)1≤i≤n are independent and identically distributed (i.i.d.) and so are the (Ui)1≤i≤n. We
observe an i.i.d. sample of Yi’s while we are interested in the survival function of X.

This problem is studied as an inverse problem in [3]; projection wavelet estimators of the
density of X are studied by [1]; kernel estimators of the density and the survival function are
proposed in [8] and Laguerre projection estimators of the density are considered in [5]. Here, we
propose and study a new projection estimator of the survival function in two different bases: the
Fourier basis and the Laguerre basis. We obtain bounds for both estimators, without and with
constraint correction, which are also new.

A second example is the convolution model, Yi = Xi + Vi, where all variables are nonneg-
ative, i.i.d., and V is a nuisance process with known density; the function of interest is the
survival function of Xi while only the Yi’s are observed. The convolution model has been widely
investigated, mainly with a Fourier approach [see 9, 16, 19, for example]. Recently, projection
estimators of the density and the survival function supported by R+ are proposed in [18]. This
approach relies on a Laguerre projection estimator and can be used in the present work to deduce
a constrained estimator.

1.3 Organization of the paper

The paper is organized as follows. In Section 2 the general method is presented. The projection
estimator in the Fourier or Laguerre basis is constructed, and its constrained version is deduced,
their risks are compared. The conditions to obtain a model selection result for ŝm and s̃m are
given. Section 3.1 is dedicated to the multiplicative noise model case. The procedure is applied
to the additive model in Section 3.2. A short simulation study is then provided. A last, Section 5
shows that the procedure may be extended to other frameworks, but is then also more intricate:
the example of least-squares estimation of the survival function for interval censored data is
shortly presented.

2 A general strategy

2.1 Notations

Let I ⊂ R+. The space L2(I) is the space of square integrable functions on I. The associated
L2-norm is denoted ‖t‖2 =

∫
I |t(x)|2dx and 〈t, u〉 =

∫
I t(x)u(x)dx for t, u ∈ L2(I). Finally, the

supremum norm of a bounded function t is denoted by ‖t‖∞ = sup
x∈I
|t(x)|.

In the following we focus on two orthogonal bases. First, the Laguerre basis is defined by

I = R+, ϕ0(x) =
√

2e−x, ϕk(x) =
√

2Lk(2x)e−x for k ≥ 1, Lk(x) =
k∑
j=0

(−1)j
(
k

j

)
xj

j!
.
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where Lk are the Laguerre polynomials Indeed, the Laguerre basis is orthonormal for the in-
tegral scalar product on R+, 〈s, t〉 =

∫ +∞
0 s(x)t(x)dx. It satisfies the orthonormality property

〈ϕj , ϕk〉 = δj,k where δj,k is the Kronecker symbol, equal to 1 if j = k and to zero otherwise.
The following properties are used in the sequel:

∀j ≥ 0, ϕj(0) =
√

2, and ‖ϕj‖∞ ≤
√

2 (2.1)

[see 2]. Any function of L2(R+) can be decomposed on this basis.
Secondly, the Fourier basis (or trigonometric basis) on I = [0, a] is defined by

ϕ0(x) = a−1/2, j ≥ 1, ϕ2j−1(x) =
√

2/a cos(2πjx/a), ϕ2j(x) =
√

2/a sin(2πjx/a).

Note that

ϕ0(0) = a−1/2, ∀j ≥ 1, ϕ2j−1(0) =
√

2/a, ϕ2j(0) = 0, ∀j ≥ 0, ‖ϕj‖∞ ≤
√

2/a. (2.2)

For these two bases, we set
Sm = span{ϕ0, ϕ1, . . . , ϕm−1}.

2.2 Estimation method and assumptions

Let us denote the sample of observations: (Yi)1≤i≤n related to the variables of interest (Xi)1≤i≤n.
All along the paper our strategy is a L2-projection strategy requiring that the following condition
holds:

(A1)(s) s ∈ L2(I).

Under (A1)(s), the development s =
∑

j≥0 aj(s)ϕj with aj(s) = 〈s, ϕj〉, holds in L2(I). As
ϕj(0) is constant for the two bases described above, the following condition ensures that s(0)
exists and defines the constraint:

(A2)(s)
∑

`≥0 |a`(s)| < +∞ and s(0) = c.

Note that, by (2.1)-(2.2), (A2)(s) implies that s is continuous, bounded, and satisfies ‖s‖∞ ≤
c
∑

`≥0 |a`(s)| < +∞ with c =
√

2 (Laguerre) or c =
√

2/a (Fourier).
We assume that we can build an estimator ŝm of s on the subspace Sm as follows:

ŝm =
m−1∑
j=0

âjϕj , where ∀j ∈ N, E[âj ] = aj(s), aj(s) := 〈s, ϕj〉,

with âj computed from a known transformation of the observations Y1, . . . , Yn. This clearly im-
plies that E[ŝm] = sm =

∑m−1
j=0 aj(s)ϕj , where sm is the orthogonal projection of s on Sm. Thus

ŝm is an unbiased estimator of sm and is called a projection estimator of s. As a consequence,
the following decomposition of the MISE (Mean Integrated Squared Error) holds:

E
[
‖ŝm − s‖2

]
= ‖sm − s‖2 + E[‖ŝm − sm‖2].

The estimator ŝm can usefully be described as a minimum contrast estimator with respect
to the contrast

γn(t) = ‖t‖2 − 2〈t, ŝm〉, for t ∈ Sm. (2.3)
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This can be seen by noticing that γn(t) = ‖t− ŝm‖2 − ‖ŝm‖2.
Now in order to propose an estimator s̃m such that s̃m(0) = c, we consider the Lagrange

multiplier method and the contrast

γ̃n(t, λ) = γn(t)− λ(t(0)− c) = ‖t‖2 − 2〈t, ŝm〉 − λ(t(0)− c), for t ∈ Sm.

Minimizing γ̃n(t, λ) with respect to t ∈ Sm, and λ ∈ R leads to the estimator

s̃m =
m−1∑
j=0

ãj,mϕj , ãj,m = âj − K̂mϕj(0), (2.4)

with

K̂m :=
ŝm(0)− c∑m−1
`=0 ϕ2

` (0)
=
ω

m

(
m−1∑
`=0

â`ϕ`(0)− c

)
, (2.5)

and ω = 1/2 for the Laguerre basis, ω = a for the Fourier basis and odd m. Note that when
m = 1, ã0,1 = c

√
ω and s̃1(x) = c

√
ωϕ0(x), that is s̃1(x) = ce−x1R+(x) in the Laguerre case and

s̃1(x) = c1[0,a](x) in the Fourier case. The estimator can also be written

s̃m := ŝm − K̂m

m−1∑
j=0

ϕj(0)ϕj , (2.6)

with K̂m given by (2.5). Clearly, if ŝm(0) = c i.e. directly satisfies the constraint, then K̂m = 0
and s̃m = ŝm. Otherwise, the new estimator has null risk at 0, i.e. s̃m(0) = s(0), while ŝm
does not satisfy the constraint. Our aim is to compare the risk bound on s̃m to the one on ŝm,
globally.

2.3 Risk bound on the constrained estimator

As, under (A1)-(A2)(s), s(0) = c =
∑

`≥0 a`(s)ϕ`(0), we get E[K̂m] = −(ω/m)
∑

`≥m a`(s)ϕ`(0).
Therefore, the new estimator is, in mean, a modification of sm such that E[s̃m] = sm +
E[K̂m]

∑m−1
j=0 ϕj(0)ϕj .

To evaluate the quality of this new estimator we prove the following result.

Proposition 2.1. Under (A1)-(A2)(s), the MISE of the estimator s̃m of s, given by Equation
(2.4) satisfies,

E
[
‖s̃m − s‖2

]
= E[‖ŝm − s‖2] +Bm − Vn,m, (2.7)

where

Bm :=
ω

m

∑
`≥m

a`(s)ϕ`(0)

2

, Vn,m :=
ω

m
Var

m−1∑
j=0

âjϕj(0)

 . (2.8)

The proof of Proposition 2.1, as well as most other proofs, is relegated to Section 6.
Equation (2.7) implies that the MISE of s̃m has the same order as the risk of ŝm up to two terms:

- Bm which depends only on m and increases the bias,

- Vn,m which is of variance type and decreases the variance.
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The two terms correspond to the pointwise bias and variance of ŝm at 0, divided by m. For
well-chosen m, they should have the same order and thus compensate each other, making the
risks of s̃m and ŝm essentially equal.

We provide hereafter a general study showing that, under mild assumptions, the additional
bias term Bm has the same order as ‖s− sm‖2, and thus does not change the order of the global
bias (while correcting the bias at 0).

2.4 Bias order on Sobolev spaces

Sobolev regularity spaces are generally of type

Wα(I, L) =

p : I → R, p ∈ L2(I),
∑
k≥0

kcαa2
k(p) ≤ L < +∞

 with α ≥ 0, cα ≥ 0 (2.9)

where ak(p) = 〈p, ϕk〉. These spaces have been introduced for Laguerre basis, I = R+ and cα = α
in [6] and the link with the coefficients of a function on a Laguerre basis was studied by [13]. For
the Fourier developments, where I = [0, a] and cα = 2α, they correspond to standard regularity
spaces, see [20].

Now for s ∈Wα(I, L) defined by (2.9), we have

‖s− sm‖2 =
∞∑
k=m

a2
k(s) =

∞∑
k=m

a2
k(s)k

cαk−cα ≤ Lm−cα .

If in addition, cα > 1, by Cauchy-Schwarz Inequality, under (A2)(s), it comes

Bm =
1

m

∑
`≥m

a`(s)

2

≤ 1

m

∑
`≥m

`−cα
∑
`≥m

`cαa2
` (s) ≤

L

cα − 1
m−cα ,

using that
∑

`≥m `
−cα ≤ m1−cα/(cα − 1). Therefore, the additional bias term Bm has the same

order in m as the standard bias term. The following Corollary summarizes this finding.

Corollary 2.2. Assume that (A1)-(A2)(s) hold, and moreover that s ∈ Wα(I, L) for cα > 1,
then the MISE of the estimator s̃m of s, given by Equation (2.4) satisfies,

E
[
‖s̃m − s‖2

]
≤ 2cα

cα − 1
Lm−cα + E[‖ŝm − sm‖2]. (2.10)

The consequence is that the order of the upper risk bounds of s̃m and ŝm are the same, and
thus, both estimators have the same rates of convergence. Therefore, the procedure improves
the estimator at 0 without degrading the rate of convergence.

2.5 Model selection

Let us describe now the empirical criterion used for selecting a relevant m, that is a value of
m leading to a data-driven squared bias-variance tradeoff. We start with a standard procedure
associated with ŝm and explain how to extend it to s̃m.

With the bases we presented, the spaces Sm are nested and, to select an adequate dimension,
we look for m in a finite set

Mn = {1, . . . ,mmax},
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where, in any case, mmax ≤ n. In the examples, mmax is specifically defined in each context and
can depend on n. The contrast function defined by (2.3) can thus be written, for any t ∈ Sm,

γn(t) = ‖t‖2 − 2〈t, ŝmmax〉. (2.11)

This definition has the advantage that it no longer depends on m.
A selection procedure is generally defined for the estimator ŝm, by replacing in its risk decom-

position the squared bias term ‖s−sm‖2 and the variance bound E[‖ŝm−sm‖2] ≤ V (m) by esti-
mators. For the first term, according to Pythagoras Theorem, we have: ‖s−sm‖2 = ‖s‖2−‖sm‖2.
The constant ‖s‖2 is dropped out, and −‖sm‖2 is estimated by −‖ŝm‖2. For the second term,
it is estimated by V̂ (m) and a quantity p̂en1(m) = κV̂ (m) is plugged in the criterion, for a
numerical constant κ. Note that V̂ (m) is taken equal to V (m), when all terms in the variance
bound are known. We get the following model choice:

m̂ = argmin
m∈Mn

{−‖ŝm‖2 + p̂en1(m)},

For the new estimator, we introduce an additional term of penalization p̂en2 which can also
be computed from the observations, and takes the constraint into account as follows:

p̃en(m) := p̂en1(m) + p̂en2(m), p̂en2(m) :=
m

2ω
K̂2
m =

ω

2m

(
m−1∑
`=0

â`ϕ`(0)− c

)2

. (2.12)

Heuristically, p̂en2 contains both Bm and Vn,m, as given in (2.7)-(2.8). Indeed, we have

E[2p̂en2(m)] =
ω

m
E

m−1∑
`=0

(â` − a`(s))ϕ`(0)−
∑
`≥m

a`(s)ϕ`(0)

2 = Bm + Vn,m. (2.13)

Then we set
m̃ = argmin

m∈Mn

{−‖ŝm‖2 + p̃en(m)}. (2.14)

Therefore, the estimate of the bias of ŝm given by −‖ŝm‖2 is increased by the Bm term contained
in pen2(m), and thus we get an estimate of the bias of s̃m. The Vn,m contribution increases the
variance part, but in a negligible way in most specific cases studied hereafter.

Now we can provide general conditions ensuring that both estimators are adaptive in the
sense that they automatically realize the squared bias-variance tradeoff.

Theorem 2.3. Assume that (A1)-(A2)(s) hold. Assume moreover that the centered empirical
process defined, for t ∈ Sm, by

νn(t) := 〈t, ŝmmax − smmax〉. (2.15)

satisfies, for some a ∈ {0, 1, 2},

E

(
sup

t∈Bm,m̂
ν2
n(t)− 1

4
pen1(m ∨ m̂)

)
+

≤ C loga(n)

n
, (2.16)

where C is a constant, Bm,m̂ := {t ∈ Sm∨m̂, ‖t‖ = 1}, and pen1(m) is such that

E[p̂en1(m)] ≤ 2pen1(m) and E
[
(pen1(m̂)− p̂en1(m̂))+

]
≤ C ′ loga(n)

n
. (2.17)
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Then
E[‖ŝm̂ − s‖2] ≤ 3 inf

m∈Mn

{
‖s− sm‖2 + 2pen1(m)

}
+ C ′′

loga(n)

n
, (2.18)

where C ′′ is a constant depending on s but not on m or n.
Moreover, the final estimator s̃m̃ defined by (2.4) and (2.14) satisfies the oracle-type inequality:

E
[
‖s̃m̃ − s‖2

]
≤ 2 inf

m∈Mn

{
3‖s− sm‖2 + 6pen1(m) + E[p̂en2(m)]

}
+ C ′′′

loga(n)

n
, (2.19)

where C ′′′ is a constant which does not depend on n and a ∈ {0, 1, 2}.

Inequality (2.18) means that the classical projection estimator ŝm̂ is adaptive and realizes
the compromise between the bias term ‖s− sm‖2 and the variance bound pen1(m).

The last inequality (2.19) in Theorem 2.3 states the same result for s̃m̃, taking into account the
additional terms associated with the risk bound of s̃m. To see this, we can provide a general rough
bound on E[2p̂en2(m)] following from the fact that, by Schwarz inequality, Vn,m ≤ E[‖ŝm−sm‖2],
and from (2.13):

E[2p̂en2(m)] ≤ E[‖ŝm − sm‖2] +
ω

m

∑
`≥m

a`(s)ϕ`(0)

2

= E[‖ŝm − sm‖2] +Bm. (2.20)

Thus, the terms in the infimum of (2.19) are the ones involved in the risk of s̃m and the bound
states the automatic trade-off resulting from the model selection strategy.

Both results are up to a negligible residual term loga(n)/n. Note that if p̂en1(m) is deter-
ministic, then we take pen1(m) = p̂en1(m) and condition (2.17) is automatically fulfilled.

3 Examples of applications

In this section, we show how the previous procedure applies to two different models. After a
short presentation of the context, the definition of the projection estimator is given, together
with its constrained version, with notation (âj , ãj) for the coefficients of the estimator on the
Laguerre or Fourier basis. Then a specific risk bound is provided in each example.

3.1 Survival function estimation in the multiplicative noise model

In this section a multiplicative noise model is considered. The common unknown density and
survival function of i.i.d. Xi’s are denoted by f and S (S(x) = P(X > x)) respectively, but we
observe

Yi = XiUi, i = 1, . . . , n, (3.1)

where the Ui’s follow a uniform distribution on [0, 1]: Ui ∼ U([0, 1]), the (Xi)1≤i≤n and the
(Ui)1≤i≤n being independent. Our aim is to estimate the survival function S associated with f
from observations (Yi)1≤i≤n, when the Xi’s are assumed to be nonnegative (lifetimes data).

The common density fY of the i.i.d. observations (Yi)1≤i≤n is given by

fY (y) =

∫ +∞

y

f(x)

x
dx, y ∈]0,+∞[. (3.2)

Moreover, another useful property, implied by the model, see [8], is that for t : I → R a bounded,
derivable function, it holds

E[t(Y1) + Y1t
′(Y1)] = E[t(X1)]. (3.3)
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For any t ∈ L2(R+), the following bound also holds [see 13]:

E[(Y1t(Y1))2] ≤ ‖t‖2E[X1]. (3.4)

Lastly, the key formula obtained from (3.2), is SY (y) = S(y) − yfY (y), where SY is the sur-
vival function of Y . Thus, the coefficients of this function on the Laguerre basis are such
that aj(S) = 〈S, ϕj〉 = E[Y ϕj(Y )] + 〈SY , ϕj〉. As a consequence, we estimate the projection
Sm =

∑m−1
j=0 aj(S)ϕj of S on Sm by

Ŝm =

m−1∑
j=0

âjϕj , âj =
1

n

n∑
i=1

[∫
R+

ϕj(x)1Yi≥xdx+ Yiϕj(Yi)

]
, (3.5)

which obviously satisfies E(âj) = aj . Then we can prove the following result.

Proposition 3.1. If E[X1] < +∞, the estimator Ŝm (3.5) is an unbiased estimator of Sm and
it satisfies

E
[∥∥∥Ŝm − S∥∥∥2

]
≤ ‖Sm − S‖2 + E [X1]

m+ 1

n
. (3.6)

In the case of the Laguerre basis, if E[X
3/2
1 ] < +∞, then, for any m ≥ 1,

E
[∥∥∥Ŝm − S∥∥∥2

]
≤ ‖Sm − S‖2 + c?E

[
X

3/2
1

] √m
n
, (3.7)

where c? is a constant depending on the basis.

Note that E[X1] < +∞ implies that S is integrable and thus S2 also so that (A1)(S) is
fulfilled. Moreover, as E[Y1] = E[X1]E[U1] = E[X1]/2, the integrability condition can be set
indifferently on X1 or Y1.

Inequality (3.6) is new; it can be compared to the result obtained in [8], where a kernel
estimator is studied. Inequality (3.7) is specific to the Laguerre basis and improves the bound on
the variance with respect to (3.6): it has order

√
m/n instead of m/n under a slightly stronger

moment condition
Then, using the steps described in Section 2, we can define a new estimator S̃m of S such

that S̃m(0) = 1, with (2.4) or (2.6) and K̂m given by (2.5) with c = 1:

S̃m = Ŝm − K̂m

m−1∑
j=0

ϕj(0)ϕj , K̂m =
ω

m

(
m−1∑
`=0

â`ϕ`(0)− 1

)
.

Then S̃m satisfies Proposition 2.1 and we can moreover prove here:

Proposition 3.2. Assume that E[Y1] < +∞ and (A2)(S) holds. Then Vn,m ≤ 4E[Y1]/n and

E[‖Ŝm − S‖2] +Bm −
4E[Y1]

n
≤ E

[∥∥∥S̃m − S∥∥∥2
]
≤ E[‖Ŝm − S‖2] +Bm,

where Bm and Vn,m are defined in (2.8).

If S ∈Wα(I, L), then it follows from Section 2.4 that, using bound (3.6) under E[X1] < +∞
in the Fourier case and bound (3.7) under E[X

3/2
1 ] < +∞ in the Laguerre case, the adequate

choice of the projection space is mn = O(n1/(2α+1)) in the Fourier case and mn = O(n2/(2α+1))
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in the Laguerre case (see the values of cα in Section 2.4). The rate of convergence of S̃mn to S
is thus of order n−2α/(2α+1) in both cases.

For the selection procedure, we consider the Fourier basis case. We can prove that

m̂ = arg min
m∈Mn

{−‖Ŝm‖2 + p̂en1(m)}, p̂en1(m) = 2κ1Ȳnm/n, Mn = {1, . . . , n}, (3.8)

defines an estimate Ŝm̂ which makes a data driven bias variance trade-off.
This implies that the procedure of Section 2.5 can be applied to select m̃ and build the final
estimator S̃m̃ defined by (2.12)-(2.14).

Theorem 3.3. Assume that (A1)-(A2)(S) hold and that E[X4
1 ] < +∞. Let Ŝm̂ be defined by

(3.5) and (3.8). Then there exists a constant κo1 such that for any κ1 ≥ κo1, we have

E[‖Ŝm̂ − S‖2] ≤ 3 inf
m∈Mn

{
‖S − Sm‖2 + 2pen1(m)

}
+ C

log2(n)

n
,

where pen1(m) = κ1E[Y1]m/n and C is a constant depending on E[X4
1 ]. Moreover

E[‖S̃m̃ − S‖2] ≤ C1 inf
m∈Mn

{
‖S − Sm‖2 +Bm + pen1(m)

}
+ C2

log2(n)

n
,

where Bm is defined in (2.8), C1 is a numerical constant and C2 is a constant depending on
E[X4

1 ].

The proof of Theorem 3.3 relies on the study of the empirical process

νn(t) =
1

n

n∑
i=1

∫
t(x)1Yi≥xdx+ Yit(Yi)− E

[∫
t(x)1Yi≥xdx+ Yit(Yi)

]
which satisfies Assumption (2.16) with pen1(m) = 2κ1E[Y1]m/n. Moreover, pen1 and p̂en1

satisfy Assumption (2.17) with a = 2.
The results can be adapted to the Laguerre withm replaced by

√
m and Ȳn by n−1

∑n
i=1 Y

3/2
i

in the penalty. The numerical constant in the penalty is denoted κ2.

3.2 Laguerre survival function estimator in the convolution model

Now we explain briefly that the constrained strategy also applies to the convolution model

Yi = Xi + Vi, i = 1, . . . , n (3.9)

where the (Xi)1≤i≤n and the (Vi)1≤i≤n are two independent sequences of i.i.d. nonnegative
random variables. The Xi’s still have unknown density denoted by f and unknown survival
function denoted by S, while the Vi’s have known density g. Here, the key property of the
Laguerre basis [see 2] is:

ϕk ? ϕj(x) =

∫ x

0
ϕk(u)ϕj(x− u)du =

1√
2

(ϕk+j(x)− ϕk+j+1(x)) , (3.10)

i.e., the convolution of two basis functions has a linear expression in function of two other basis
functions.

10



For the survival function estimation, it is noticed in [18] that SY is the survival function for
Y and SV for V . Using relation (3.10), the convolution equation can be used to write, on the
one hand:

SY (x)− SV (x) = S ? g(y) =

+∞∑
j=0

+∞∑
k=0

aj(S)ak(g)ϕj ? ϕk(x)

=

∞∑
k=0

ϕk(x)

k∑
`=0

2−1/2 (ak−`(g)− ak−`−1(g))a`(S). (3.11)

On the other hand,

SY (x)− SV (x) =
∞∑
k=0

(ak(SY )− ak(SV ))ϕk(x).

Therefore, if we define the matrix Gm = ([Gm]i,j)1≤,i,j≤m, by

[Gm]i,j = 2−1/2 (ai−j(g)− ai−j−1(g)) if j ≥ i, 0 otherwise,

and convention ϕj ≡ 0 if j < 0, we have

Gm
−−−→
(SX)m =

−−→
(SY )m −

−−→
(SV )m,

where
−−→
(SZ)m = t(a0(SZ), . . . , am−1(SZ)) for Z = Y, V, U and SX = S. The matrix Gm is known

as g is known. An important feature of Gm is to be lower triangular and Toeplitz. As the
diagonal elements a0(g) =

√
2E[e−Y ] > 0, the matrix Gm has nonzero determinant and can be

inverted. Therefore −−−→
(SX)m = G−1

m

(−−→
(SY )m −

−−→
(SV )m

)
.

In view of this and as aj(SY ) = 〈SY , ϕj〉 = E[(Iϕ)j(Y1)] where (Iϕ)j(y) :=
∫ y

0 ϕj(x)dx, the
proposed estimator is

Ŝm =
m−1∑
j=0

âj(S)ϕj , with
−̂→
S m = G−1

m

(
(̂
−→
SY )m −

−−→
(SV )m

)
,

where
−̂→
S m = t(â0, . . . , âm−1) and (̂

−→
SY )m = t(â0(Y ), . . . , âm−1(Y )),

[(̂
−→
SY )m]j = âj−1(Y ) =

1

n

n∑
i=1

(Iϕ)j−1(Yi), j = 1, . . . ,m.

The estimator Ŝm is an unbiased estimator of Sm satisfying the following MISE bound. If S
satisfies (A1)(S) and E[Y1] < +∞, then [see Proposition 3.3 in 18]

E[‖Ŝm − S‖2] ≤ ‖S − Sm‖2 +
E[Y1]

n
‖G−1

m ‖2op.

Clearly,

S̃m = Ŝm − K̂m

√
2
m−1∑
j=0

ϕj with K̂m = (2m)−1(
m−1∑
`=0

√
2â` − 1)
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satisfies the bound in Proposition 2.1. Here we can also prove

Vn,m =
1

m
Var

(
m−1∑
`=0

â`

)
≤
‖G−1

m ‖2FE[Y1]

nm
. (3.12)

In the case of a Gamma noise, i.e. if g ∼ γ(p, θ), it is known [see 11] that ‖G−1
m ‖2F /m =

O(m2p−1) while ‖G−1
m ‖2op = O(m2p) so that the bound (3.12) is such that Vn,m is negligible with

respect to the variance.
Survival function estimation in the additive convolution model [see 18] relies on the study of

the empirical process νn(t) = 〈t, Ŝmmax − Smmax〉 with Ŝm̂ defined by

p̂en1(m) =
2κ3Ȳn
n
‖G−1

m ‖2op log(n)

and m̂ = arg minm∈Mn{−‖Ŝm‖2 + p̂en1(m)} for Mn = {m, ‖G−1
m ‖2op log(n)/n ≤ 1}. The

empirical process fulfills (2.16) and the penalties pen1 and p̂en1(m) satisfy condition (2.17) with
a = 0. Thus, here again the procedure of Section 2.5 can be applied to S̃m.

4 Numerical illustrations

4.1 Description of the practical procedure

In this section, we compare the new constrained estimator to the standard adaptive projection
estimator in different cases. We illustrate the two cases of survival function reconstruction
presented in Section 3. The samples size is n = 100 or n = 1000. The variable of interest X is
simulated from two different distributions:

• X ∼ χ2(10)/
√

20 (denoted X ∼ χ2),

• X ∼ 0.5Γ(2, 0.4) + 0.5Γ(11, 0.5) (denoted X ∼MΓ)

and in the additive model (3.9), we choose to illustrate

• V ∼ Γ(2, 1/
√

8) (denoted V ∼ Γ),

• V ∼ exp(2).

First, a preliminary calibration step is conducted. The universal constants κi, i = 1, 2, 3 appear-
ing in each of the procedures are calibrated with a large choice of setups, different from the ones
of the simulation study. Empirical MISE are computed via 1000 Monte-Carlo experiments. In
the multiplicative noise model, the first penalty (p̂en1) is 2κ2(

∑n
i=1 Y

3/2
i )
√
m/n2 with κ2 = 1.

For the additive model, the penalty is 2κ3(
∑n

i=1 Yi)‖G−1
m ‖2op log(n)/n with κ3 = 0.001.

Then, we also illustrate the estimation of the density function in both cases with our proce-
dure. Indeed, the two densities have the constraint to be null in 0. We also illustrate the example
of the exponential density E(2) which is 2 in 0. In the densities examples, we assume that the
value at 0 is known, a case which may occur in physical experiments or in economics. For the
multiplicative case the density estimator is derived from [5] and from [18] for the additive case.
In the additive case we illustrate the case of an exponential noise density V ∼ E(2).
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4.2 Illustrations
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Figure 2: In black bold the true survival function SX , in dotted blue 5 estimators Ŝm̂, in red 5
estimators S̃m̃ with Laguerre basis and X ∼MΓ with n = 100. Left: multiplicative model (3.1).
Right: additive model (3.9) with V ∼ Γ.
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Figure 3: In black bold the true density fX , in dotted blue 5 estimators f̂m̂, in red 5 estimators
f̃m̃ with Laguerre basis, X ∼ E(2), n = 100. Left: multiplicative model (3.1). Right: additive
model with V ∼ Γ.
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Figure 4: In black bold, the true density fX , in dotted blue 5 estimators f̂m̂, in red 5 estimators
f̃m̃ with Laguerre basis, for X ∼MΓ, n = 100. Left: multiplicative model (3.1). Right: additive
model (3.9) with V ∼ E(2).

Figures 2, 3 and 4 illustrate the estimation procedure detailed in the paper for the multiplicative
model (left plots), see (3.1) and the additive noise model (right plots), see (3.9). Figure 2
illustrates the reconstruction of the survival function of X and Figures 3 and 4 show density
estimations. We compare estimated survival functions Ŝm̂ in dotted blue and corrected estimators
S̃m̃ in red on Figure 2, when X has a mixed Gamma distribution. These graphs show the typical
behavior of the procedures. For the additive noise model, all the estimators seem close to the
true function S in bold black, even if the sample size is not large (n = 100). Nevertheless, the
constrained estimator fits better the curve than the classical projection one, near zero. For the
multiplicative case (left graphs) the estimation seems harder. The correction clearly improves
the behavior of the estimators. These remarks are confirmed by Table 1 below.

Figure 3 presents estimated density functions f̂m̂ in dotted blue and corrected estimators
f̃m̃ in red, when X follows an exponential distribution (f(0) = 2); the case of X following a
mixed-gamma distribution (f(0) = 0) is given in Figure 4. On these graphs, the improvement
brought by the estimator f̃m̃ for two different densities with two different noise distributions,
appears clearly.

4.3 Detailed study

X ∼ χ2 X ∼MΓ

n 100 1000 100 1000

Ŝmult
m̂ 1.993 0.194 3.721 0.455
S̃mult
m̃ 1.966 0.185 3.556 0.423
Ŝadd
m̂ 0.915 0.075 1.539 0.247
S̃add
m̃ 0.955 0.064 1.494 0.244

Table 1: Survival function estimation with Laguerre basis. MISE ×100 with 1000 repetitions.
Ŝmult
m̂ , S̃mult

m̃ : survival function estimators in the multiplicative model. Ŝadd
m̂ , S̃add

m̃ : survival
function estimators in the additive case, with V ∼ Γ.
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X ∼ χ2 X ∼MΓ

n 100 1000 100 1000

f̂mult
m̂ 3.705 0.515 3.719 0.442
f̃mult
m̃ 3.315 0.442 2.678 0.384
f̂add
m̂ 0.635 0.185 1.438 0.260
f̃add
m̃ 0.532 0.189 0.821 0.248

Table 2: Density function estimation with Laguerre basis. MISE ×100 with 1000 repetitions.
f̂mult
m̂ , f̃mult

m̃ : density estimators in the multiplicative case. f̂add
m̂ , f̃add

m̃ : density estimators in the
additive case, with noise V ∼ E(2).

Table 1 gives the empirical MISE multiplied by 100, for the survival function estimators computed
in the Laguerre basis. As expected, increasing the sample size improves the results: the larger n,
the smaller the MISE. Nevertheless, we can see that the new procedure gives better results in most
cases: indeed, the estimator S̃m̃ has smaller risks than the uncorrected projection estimator Ŝm̂.
The improvement is not large, but it is systematic. Table 2 gives the empirical MISE multiplied
by 100, for the density function estimators computed in the Laguerre basis. The same conclusion
can be drawn here, with a more pronounced improvement, for example in the bi-modal mixed
gamma distribution. This confirms the theoretical result which states that the rate of convergence
for the constrained and the non-constrained strategy should have the same order (see Corollary
2.2). But this numerical study goes further and claims that the new estimator performs better
and gives a better fit of the estimated function than the unconstrained one.
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2.5 5.0 7.5 10.0 2.5 5.0 7.5 10.0

2.5 5.0 7.5 10.0 2.5 5.0 7.5 10.0
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Figure 5: Curves m 7→ ‖S̃m − S‖2 for ten simulated samples, with n = 10 (top-left), n = 100
(top right), n = 200 (bottom left), n = 500 (bottom right). The selected m̃ is in red. S is the
survival function for X ∼MΓ in the multiplicative noise case.
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Figure 6: Curves m 7→ −‖S̃m‖2 + p̂en(m) for ten simulated samples, with n = 10 (top-left),
n = 100 (top right), n = 200 (bottom left), n = 500 (bottom right). The selected m̃ is in red. S
is the survival function estimation for X ∼MΓ in the multiplicative noise case.
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Figure 7: Left: Empirical MISE for the survival function estimation in the multiplicative noise
case, for X ∼MΓ, with different values of n. Right: boxplots of the m̃ for the survival function
estimation in the multiplicative noise case, for X ∼ MΓ, with different values of n and 1000
repetitions.

Let us look more precisely at the selection procedure. In Figure 5, m 7→ ‖S̃m − S‖2 is
plotted, for 10 samples from the multiplicative model (3.1), with X ∼ MΓ, the four picture
correspond to different values of n ∈ {10, 100, 200, 500}. The red points correspond to the
selected dimension for each of the 10 simulations. In comparison, Figure 6 shows the penalized
criterion behavior. We see that the criterion has the same behavior as ‖S̃ − Sm‖2 and the
minimizer of the penalized criterion is often the oracle. This is what was expected. Figure 7-left
shows m 7→ E[‖S̃m − S‖2], where the expectation is computed as mean over 1000 Monte-Carlo
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repetitions (mean behavior of the individual one, shown on Figure 5), each curve corresponds
to a value in n ∈ {10, 100, 200, 500}. Figure 7-righ shows the boxplots for the selected values of
m, for the same 4 values of n. The illustrated case is the multiplicative model (3.1), where X
is distributed according to the mixed gamma distribution. The oracle of the L2-risk is m∗ = 3
according to the left graph of Figure 7 for n = 10 the trajectory of the MISE is easy to minimize
and the selection procedure chooses most of the time m̃ = 2 or 3. Note that for n = 100 and
n = 500, flat boxes mean that the selected dimension is almost always equal to 4, the oracle
value.

5 Extension to regression setting: the example of interval cen-
sored data

We mention in this section that the question may be studied for projection estimators in regres-
sion framework. In this context, the estimator is built in a different way and is not an unbiased
estimator of the projection. To be more precise, we present a specific example: the problem of
survival function estimation for interval censored data.

In this model, the variable of interest is still denoted by X, with unknown survival function S
and density f . Now, the observations are (Ui, δi)1≤i≤n where δi = 1Xi≤Ui and both (Xi)1≤i≤n and
(Ui)1≤i≤n are i.i.d., the two sequences being independent. Relying on the equality E[1− δi|Ui] =
S(Ui), a least-squares regression contrast has been proposed in [7] to define a projection estimator
of S:

Ŝm = arg min
t∈Sm

γn(t), γn(t) =
1

n

n∑
i=1

t2(Ui)−
2

n

n∑
i=1

(1− δi)t(Ui).

We find that Ŝm =
∑m−1

j=0 âjϕj with

−̂→
S m =

 â0
...

âm−1

 =
(
tΦ̂mΦ̂m

)−1
tΦ̂m
−−−→
1− δ, Φ̂m = (ϕj(Ui))1≤i≤n,0≤j≤m−1

and
−−−→
1− δ = t(1− δ1, . . . , 1− δn), provided that tΦ̂mΦ̂mis invertible a.s. Let us define two norms

specific to this problem:

‖t‖2n =
1

n

n∑
i=1

t2(Ui) and ‖t‖2U =

∫
t2(u)fU (u)du

where fU is the common density of the Ui’s. Then, it is easy to prove [see 7] that

E[‖Ŝm − S‖2n] ≤ inf
t∈Sm

‖t− S‖2U +
1

4

m

n
. (5.1)

Note that the risk is computed with respect to the empirical norm ‖.‖n, and the bias refers to
the weighted norm ‖.‖U .

As previously, to obtain an estimator satisfying S̃m(0) = 1 (i.e. c = 1), we can define

S̃m = argmin
t∈Sm,λ∈R

{γn(t)− λ(t(0)− 1)}.
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Then we obtain, denoting by
−−→
ϕ(0) = t(ϕ0(0), . . . , ϕm−1(0)),

ãm = âm − K̂m

(
tΦ̂mΦ̂m

)−1−−→
ϕ(0), K̂m =

t
−−→
ϕ(0)

−̂→
S m − 1

t
−−→
ϕ(0)

(
tΦ̂mΦ̂m

)−1−−→
ϕ(0)

. (5.2)

Note that all additional terms in S̃m involve the matrix
(
tΦ̂mΦ̂m

)−1
, and this makes a clear

difference with respect to the setting of Sections 2 and 3. We can prove a similar result to
Proposition 2.1, but with more technicalities:

Proposition 5.1. Assume that (A1)-(A2)(S) hold, that tΦ̂mΦ̂m is a.s. invertible, and that fU
is bounded. Then for any m ≤ n/ log2(n),

E[‖S̃m − S‖2n] ≤ 2E[‖Ŝm − S‖2n] + 2
E[(Ŝm(0)− S(0))2]

m
+
c

n

where c is a positive constant depending on ‖fU‖∞.

Proposition 5.1 shows that we recover a bound of the same type as before, but in a less
accurate way: the risk of the constrained estimator S̃m is bounded by the risk of Ŝm plus the
attenuated risk at point 0, E[(Ŝm(0) − S(0))2]/m = Bm + Vn,m, see inequality (2.7)-(2.8) in
Proposition 2.1. Therefore, the global correction of Ŝm should not deteriorate the rate.

However, the norms involved in the result are empirical norms, leading to weighted integrated
norms when taking expectations. This is what makes the context different from the one presented
in Section 2. Moreover, the point-wise risk is also more difficult to handle in this framework.

Model selection is left for further research but would be much more intricate than in the
previous class of examples [see 15, for a description of the steps.]

6 Proofs

6.1 Proof of Proposition 2.1

We have the general equality

E
[
‖s̃m − s‖2

]
= ‖E[s̃m]− s‖2 + E

[
‖s̃m − E[s̃m]‖2

]
. (6.1)

For the bias term, we have E[s̃m] = sm + (ω/m)
(∑

`≥m a`(s)ϕ`(0)
)∑m−1

j=0 ϕj(0)ϕj . As a conse-
quence

‖E[s̃m]− s‖2 =
∑
j≥m

a2
j (s) +

( ω
m

)2

∑
`≥m

a`(s)ϕ`(0)

2(
m−1∑
k=0

ϕ2
j (0)

)

=
∑
j≥m

a2
j (s) +

ω

m

∑
`≥m

a`(s)ϕ`(0)

2

. (6.2)

For the variance term, we have

s̃m − E[s̃m] =

m−1∑
j=0

[
âj − aj(s)−

ωϕj(0)

m

m−1∑
`=0

(â`ϕ`(0)− a`(s)ϕ`(0))

]
ϕj
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and thus

‖s̃m − E[s̃m]‖2 =

m−1∑
j=0

[
âj − aj(s)−

ωϕj(0)

m

m−1∑
`=0

(â` − a`(s))ϕ`(0)

]2

=

m−1∑
j=0

(âj − aj(s))2 +

m−1∑
j=0

ω2ϕ2
j (0)

m2
(

m−1∑
`=0

(â` − a`(s))ϕ`(0))2 − 2ω

m

(
m−1∑
`=0

(âj − aj(s))ϕj(0)

)2

=

m−1∑
j=0

(âj − aj(s))2 − ω

m

(
m−1∑
`=0

(â` − a`(s))ϕ`(0)

)2

.

This yields E
[
‖s̃m − E[s̃m]‖2

]
=
∑m−1

j=0 Var(âj)− ω
mVar

(∑m−1
`=0 â`ϕ`(0)

)
, and plugging this and

(6.2) into (6.1) gives equality (2.7). �

6.2 Proof of Theorem 2.3

We consider the estimator ŝm as a minimum contrast estimator associated with γn defined by
(2.11). It satisfies γn(ŝm) = −‖ŝm‖2, ŝm = argmin

t∈Sm
γn(t). For νn(·) defined by (2.15), it yields

the relation for any m,m′ ∈Mn and t ∈ Sm, u ∈ Sm′ ,

γn(t)− γn(u) = ‖t− s‖2 − ‖u− s‖2 + 2〈t− u, s〉 − 2〈t− u, ŝmmax〉
= ‖t− s‖2 − ‖u− s‖2 − 2νn(t− u). (6.3)

According to the relation: s̃m = ŝm− K̂m
∑m−1

j=0 ϕj(0)ϕj our strategy is to prove a result on the
estimator ŝm̃ and to deduce one for s̃m̃. Notice that the definitions of m̃ and ŝm give that, for
all m ∈Mn,

γn(ŝm̃) + p̃en(m̃) ≤ γn(ŝm) + p̃en(m) ≤ γn(sm) + p̃en(m).

Therefore, γn(ŝm̃)− γn(sm) ≤ pen(m)− pen(m̃) and with (6.3) we get

‖ŝm̃ − s‖2 − ‖s− sm‖2 − 2νn(s̃m̃ − sm) ≤ p̃en(m)− p̃en(m̃).

Therefore, denoting by Bm,m′ = {t ∈ Sm∨m′ , ‖t‖ = 1}, we have

‖ŝm̃ − s‖2 ≤ ‖s− sm‖2 + p̃en(m) + 2νn(ŝm̃ − sm)− p̂en1(m̃)− p̂en2(m̃)

≤ ‖s− sm‖2 + p̃en(m) +
1

4
‖ŝm̃ − sm‖2 + 4 sup

t∈Bm,m̃
ν2
n(t)− p̂en1(m̃)− p̂en2(m̃).

Writing that ‖ŝm̃ − sm‖2 ≤ 2‖ŝm̃ − s‖2 + 2‖s− sm‖2 and gathering the terms implies

1

2
‖ŝm̃ − s‖2 ≤ 3

2
‖s− sm‖2 + p̃en(m) + 4 sup

t∈Bm,m̃

(
ν2
n(t)− 1

4
pen1(m̃ ∨m)

)
+

+pen1(m̃ ∨m)− p̂en1(m̃)− p̂en2(m̃)

≤ 3

2
‖s− sm‖2 + p̃en(m) + 4 sup

t∈Bm,m̃

(
ν2
n(t)− 1

4
pen1(m̃ ∨m)

)
+

+ pen1(m̃)

+pen1(m)− p̂en1(m̃)− p̂en2(m̃)
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as pen1(m̃ ∨m) ≤ pen1(m̃) + pen1(m). Now taking expectation and using Assumption (2.16)
and E[p̂en1(m)] ≤ 2pen1(m) we get, ∀m ∈Mn,

E[‖ŝm̃ − s‖2] ≤ 3‖s− sm‖2 + 6pen1(m) + 2E[p̂en2(m)] +
8C

n
+2E[pen1(m̃)− p̂en1(m̃)]− 2E[p̂en2(m̃)].

This result implies Inequality (2.18): indeed, for p̂en2(m) = 0, m̃ = m̂.
As for all m ∈ Mn, ‖s̃m − s‖2 ≤ 2‖ŝm − s‖2 + 2(m/ω)K̂2

m, taking m = m̃ with mK̂2
m/(2ω) =

p̂en2(m) leads to

E[‖s̃m̃ − s‖2] ≤ 2E[‖ŝm̃ − s‖2] + 4E [p̂en2(m̃)]

≤ 6‖s− sm‖2 + 12pen1(m) + 4E[p̂en2(m)] +
16C

n
+ 4E[(pen1(m̃)− p̂en1(m̃))+].

According to conditions (2.17) and (2.20), we get for any m ∈Mn the result of Theorem 2.3. �

6.3 Proof of Proposition 3.1

We study here the risk of the projection estimator of the survival function in the multiplicative
model. We have E[‖Ŝm − S]‖2] = ‖Sm − S‖2 + E[‖Ŝm − Sm]‖2], and we upper bound the term:
E[‖Ŝm − Sm]‖2].

E
[∥∥∥Ŝm − Sm∥∥∥2

]
=

m−1∑
j=0

Var(âj) =
1

n

m−1∑
j=0

Var

(∫
R+

ϕj(x)1Y1≥xdx+ Y1ϕj(Y1)

)

≤ 2

n

m−1∑
j=0

E
[
(Φj(Y1) + Y1ϕj(Y1))2

]

where Φj(x) =
∫ x

0 ϕj(u)du. Now write that E
[
(Φj(Y1) + Y1ϕj(Y1))2

]
= E[Φ2

j (Y1)+2Y1Φj(Y1)ϕj(Y1)]+

E[Y 2
1 ϕ

2
j (Y1)]. Now we note that, by Formula (3.3) applied to t = Φ2

j , the first rhs term is equal to
E[Φ2

j (X1)]. Moreover, it follows from (3.4) that E
[
(Y1ϕj(Y1))2

]
≤ E[X1]‖ϕj‖2 = E[X1]. There-

fore,

E
[∥∥∥Ŝm − Sm∥∥∥2

]
≤ 1

n

m−1∑
j=0

E

[(∫
R+

ϕj(x)1X1≥x(x)dx

)2
]

+
1

n

m−1∑
j=0

E[Y 2
1 ϕ

2
j (Y1)]

≤ 1

n
E

m−1∑
j=0

〈ϕj ,1X1≥·〉2
+

1

n

m−1∑
j=0

E[X1] ≤ 1

n
E
[
‖1X1≥·‖2

]
+ E[X1]

m

n
= E[X1]

m+ 1

n
.

This is the first result of Proposition 3.1.
From Lemma 8.2 in [14], specifically for the Laguerre basis, if E[Y

3/2
1 ] < +∞, then E[Y 2

1 ϕ
2
j (Y1)] ≤

cE[Y
3/2

1 ]/
√
j for c a constant. This implies that

∑m−1
j=0 E[Y 2

1 ϕ
2
j (Y1)] ≤ c′E[Y

3/2
1 ]
√
m and thus

the second result of Proposition 3.1. �

6.4 Proof of Proposition 3.2

We study here the additional variance term of the constrained estimator of the survival function
in the multiplicative model. As previously, we apply Formula (3.3) applied to t = (

∑m−1
j=0 Φj)

2
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(recall that Φj(x) =
∫ x

0 ϕj(u)du), and we find

Var

(
m−1∑
`=0

â`ϕ`(0)

)
≤ 1

n
E

(m−1∑
`=0

∫
R+

ϕ`(0)ϕ`(u)1X1≥udu

)2
+

1

n
E

(m−1∑
`=0

Y1ϕ`(Y1)ϕ`(0)

)2
 .

Now, we write by using Cauchy Schwarz and ‖
∑m−1

`=0 ϕ`(0)ϕ`‖2 = m/ω,(
m−1∑
`=0

∫
R+

ϕ`(0)ϕ`(u)1x≥udu

)2

≤
∫
R+

(
m−1∑
`=0

ϕ`(0)ϕ`(u)

)2

du

∫
R+

1x≥udu =
m

ω
x,

and we obtain n−1E[(
∑m−1

`=0

∫
R+ ϕ`(0)ϕ`(u)1X1≥udu)2] ≤ E[X1]m/(nω). Besides, we use the

property (3.4). It comes,

1

n
E

(Y1

m−1∑
`=0

ϕ`(0)ϕ`(Y1)

)2
 ≤ E[X1]

n

∥∥∥∥∥
m−1∑
`=0

ϕ`(0)ϕ`

∥∥∥∥∥
2

= E[X1]
m

nω
.

We obtain finally: Var(
∑m−1

`=0 â`ϕ`(0)) ≤ 2E[X1]m/(nω) = 4E[Y1]m/(nω), and thus the bound
given in Proposition 3.2. �

6.5 Proof of Theorem 3.3

Let us now prove the oracle-type inequality for the survival function estimator in the multi-
plicative noise context. We prove that Assumptions (2.16)-(2.17) are fulfilled. The first part of
Assumption (2.17) is obviously fulfilled as Ep̂en1(m) = 2pen1(m). The second part follows from
standard moment inequalities (see e.g. (iv) of Lemma 5.4 in [12]). Now we check (2.16). We set
p(m,m′) = pen(m ∨m′) and we write

E

[
sup

t∈Bm,m̂
ν2
n(t)− p(m, m̂)

]
+

≤ 3E

[
sup

t∈Bm,m̂
ν2
n,1(t)− p(m, m̂)

]
+

+3E

[
sup

t∈Bm,m̂
ν2
n,2(t)

]
+ 3E

 ∑
t∈Bm,m̂

R2
n(t)


+

where νn,1(t) =
1

n

n∑
i=1

(Yit(Yi)1Yi≤cn − E[Yit(Yi)1Yi≤cn ]),

νn,2(t) =
1

n

n∑
i=1

(Yit(Yi)1Yi>cn − E[Yit(Yi)1Yi>cn ]) ,

and Rn(t) =
1

n

n∑
i=1

(∫
t(x)1Yi≥xdx− E[

∫
t(x)1Yi≥xdx]

)
. First, as the models are nested,

E

[(
sup

t∈Bm,m̂
R2
n(t)

)
+

]
≤ E

mmax−1∑
j=1

(∫
ϕj(x)

1

n

n∑
i=1

(1Yi≥x − SY (x))dx

)2
 ≤ E[Y1]

n
.(6.4)
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Next we apply Talagrand’s inequality (Theorem A.1 in supplementary material) to νn,1 and to
that aim, we compute H2, v and M . Denoting m∗ = m ∨m′, we have E[supt∈Bm,m′ ν

2
n,1(t)] ≤

E[X1]m∗

n = 2E[Y1]m∗

n := H2. Clearly here, H2 can be obtained of order
√
m/n in the Laguerre

case, and the proof would hold. Next using (3.4), we get

sup
‖t‖=1

Var(Y1t(Y1)1Y1≤cn) ≤ sup
‖t‖=1

E[Y 2
1 t

2(Y1)] ≤ sup
‖t‖=1

E[X1]‖t‖2 = 2E[Y1] := v.

Lastly, sup‖t‖=1 supy∈R+ |yt(y)1y≤cn | ≤ cn
√

2m∗ = M. Then we obtain, by taking α = 1/4 in
Theorem A.1, that, for p(m,m′) = 3E[Y1]m∗/n

E

[(
sup

t∈Bm,m̂
ν2
n,1(t)− p(m, m̂)

)
+

]
≤

∑
m′∈Mn

E

[(
sup

t∈Bm,m′
ν2
n,1(t)− p(m,m)

)
+

]

≤ C

n

∑
m′∈Mn

(
E[Y1]e−bm

∗/4 + c2
n

m∗

n
e−c

′
√

E[Y1]
√
n/cn

)
where C and c′ are two numerical constants. Therefore, choosing cn = (c′/

√
2)
√

E[Y1]n/ log(n)
and using that card(Mn) ≤ n and m∗ ≤ n, yields

E

[(
sup

t∈Bm,m̂
ν2
n,1(t)− p(m, m̂)

)
+

]
≤ K2

n
. (6.5)

Now, E

[
sup

t∈Bm,m̂
ν2
n,2(t)

]
≤ E

m∨m̂∑
j=1

ν2
n,2(ϕj)

 ≤ E

mmax∑
j=1

ν2
n,2(ϕj)

 ≤ 1

n

mmax∑
j=1

Var (Y1ϕj(Y1)1Y1>cn)

≤ 2E[Y 2
1 1Y1>cn ] ≤ 2

E[Y 4
1 ]

c2
n

=
E[Y 4

1 ]

E[Y1]

log2(n)

n
. (6.6)

Finally gathering (6.4), (6.5), (6.6) leads to (2.16) and, by Theorem 2.3), to the result of Theorem
3.3. �

6.6 Proof of Inequality (3.12)

Let
−−→
(Iϕ)m = t((Iϕ)0(Y1), . . . , (Iϕ)m−1(Y1)). The result follows from:

nVar

(
m−1∑
`=0

â`

)
= Var

(
m−1∑
`=0

[
G−1
m

−−→
(Iϕ)m

]
`

)
≤ E

(m−1∑
`=0

[
G−1
m

−−→
(Iϕ)m

]
`

)2


≤ E

m−1∑
`=0

m−1∑
j=0

[G−1
m ]2`,j

m−1∑
`=0

(Iϕ)2
` (Y1)

 ≤ ‖G−1
m ‖2FE

[
m−1∑
`=0

(Iϕ)2
` (Y1)

]
≤ ‖G−1

m ‖2FE[Y1]. �

6.7 Proof of Proposition 5.1

It follows from the definition of the coefficients given in (5.2) that

‖S̃m − S‖2n ≤ 2‖Ŝm − S‖2n + 2
K̂2
m

n

n∑
i=1

m−1∑
j=0

[( tΦ̂mΦ̂m)−1−−→ϕ(0)]jϕj(Ui)

2

. (6.7)
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In the following, we denote by ‖~x‖Rp the euclidean norm of the vector ~x belonging to Rp.
We study the second term of the right hand side of (6.7),

n∑
i=1

m−1∑
j=0

[( tΦ̂mΦ̂m)−1−−→ϕ(0)]jϕj(Ui)

2

= ‖Φ̂m( tΦ̂mΦ̂m)−1−−→ϕ(0)‖Rn = t−−→ϕ(0)( tΦ̂mΦ̂m)−1−−→ϕ(0),

so, using the definition of K̂m in (5.2), we want to bound

E :=
K̂2
m

n

n∑
i=1

m−1∑
j=0

[( tΦ̂mΦ̂m)−1−−→ϕ(0)]jϕj(Ui)

2

= E

[
1

n

(Ŝm(0)− S(0))2

t
−−→
ϕ(0)( tΦ̂mΦ̂m)−1

−−→
ϕ(0)

]
.

Let us define, Ψm = (
∫
ϕjϕkfU )0≤j,k≤m−1 and Ψ̂m = (1/n) tΦ̂mΦ̂m, so that E[Ψ̂m] = Ψm, and let

‖M‖op denote the operator norm of the matrix M , that is ‖M‖op =
√
λmax( tMM) the square

root of the largest eigenvalue of tMM . Also, let

Ωm = {‖Ψ̂m −Ψm‖op ≤ ‖Ψm‖op/2}.

Our assumptions imply that Ψ̂m is invertible, so that this matrix and its inverse are symmetric
positive definite. We have

n t−−→ϕ(0)( tΦ̂mΦ̂m)−1−−→ϕ(0) ≥ λmin(Ψ̂−1
m )‖
−−→
ϕ(0)‖2Rm =

1

λmax(Ψ̂m)
‖
−−→
ϕ(0)‖2Rm . (6.8)

First, has the vector basis ϕj are bounded,

λmax(Ψ̂m) = sup
‖~x‖Rm=1

t~xΨ̂m~x =
1

n
sup

‖~x‖Rm=1
‖Ψ̂m~x‖Rm

≤ 1

n
sup

‖~x‖Rm=1

n∑
i=1

m−1∑
j=0

xjϕj(Ui)

2

≤ 1

n

n∑
i=1

m−1∑
j=0

ϕ2
j (Ui) ≤

m

ω
.

On the other hand, as λmax(Ψm) = sup‖~x‖Rm=1
t~xΨm~x, we get

λmax(Ψm) = sup
‖~x‖Rm=1

∫
(

m−1∑
j=0

xjϕj(u))2fU (u)du ≤ ‖fU‖∞ sup
‖~x‖Rm=1

∫
(

m−1∑
j=0

xjϕj(u))2du = ‖fU‖∞.

Therefore

λmax(Ψ̂m) = ‖Ψ̂m‖op = ‖Ψ̂m‖op1Ωcm + ‖Ψ̂m‖op1Ωm

≤ m

ω
1Ωcm + (‖Ψ̂m −Ψm‖op + ‖Ψm‖op)1Ωm

≤ m

ω
1Ωcm +

3

2
‖Ψm‖op1Ωm ≤

m

ω
1Ωcm +

3

2
‖fU‖∞1Ωm (6.9)

Therefore, using that ‖
−−→
ϕ(0)‖2Rm = m/ω for our two bases, we get by plugging (6.9) into (6.8)

that
n t−−→ϕ(0)( tΦ̂mΦ̂m)−1−−→ϕ(0) ≥ 1Ωcm +

2

3‖fU‖∞
m

ω
1Ωm .
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With (Ŝm(0)− S(0))2 ≤ 2(Ŝm(0))2 + 2, this implies that

E ≤ 2E

[
(Ŝm(0))2

t
−−→
ϕ(0)Ψ̂−1

m
−−→
ϕ(0)

1Ωcm

]
+ 2P(Ωc

m) +
3ω‖fU‖∞

2

E
[
(Ŝm(0)− S(0))2

]
m

. (6.10)

Next, we have

(Ŝm(0))2 = [ t
−−→
ϕ(0)( tΦmΦm)−1 tΦm

−−−→
1− δ]2 ≤ ‖( tΦmΦm)−1/2−−→ϕ(0)‖2Rm‖( tΦmΦm)−1/2 tΦm

−−−→
1− δ‖2Rn

≤ t−−→ϕ(0)( tΦmΦm)−1−−→ϕ(0) t
−−−→
1− δΦm( tΦmΦm)−1/2 tΦm

−−−→
1− δ

≤ t−−→ϕ(0)( tΦmΦm)−1−−→ϕ(0)‖
−−−→
1− δ‖2Rn ≤ n t−−→ϕ(0)( tΦmΦm)−1−−→ϕ(0) = t−−→ϕ(0)Ψ̂−1

m

−−→
ϕ(0),

where we used that ‖Φm( tΦmΦm)−1/2 tΦm‖op = 1 as it is a projection matrix. Therefore, we get
from (6.10),

E ≤ 4P(Ωc
m) +

3ω‖fU‖∞
2

E
[
(Ŝm(0)− S(0))2

]
m

. (6.11)

Now, using Proposition 3.1 in [15], we get that

P(Ωc
m) ≤ P(‖Ψ̂m −Ψm‖op > ‖fU‖∞/2) ≤ c

n

for m ≤ n/ log2(n). Plugging this in (6.11) and then in (6.7) implies the result. �

A Integrated Talagrand’s inequality

The following result follows from the Talagrand concentration inequality (see Klein and Rio (2005)).

Theorem A.1. Consider n ∈ N∗, F a class at most countable of measurable functions, and
(Xi)i∈{1,...,n} a family of real independent random variables. Define, for f ∈ F , νn(f) =
(1/n)

∑n
i=1(f(Xi) − E[f(Xi)]), and assume that there are three positive constants M , H and

v such that sup
f∈F
‖f‖∞ ≤ M , E[sup

f∈F
|νn(f)|] ≤ H, and sup

f∈F
(1/n)

∑n
i=1 Var(f(Xi)) ≤ v. Then for

all α > 0, setting C(α) = (
√

1 + α− 1) ∧ 1, and b = 1/6,

E

[(
sup
f∈F
|νn(f)|2 − 2(1 + 2α)H2

)
+

]

≤ 4

b

(
v

n
exp

(
−bαnH

2

v

)
+

49M2

bC2(α)n2
exp

(
−
√

2bC(α)
√
α

7

nH

M

))
.

References

[1] M. Abbaszadeh, C. Chesneau, and H.I Doosti. Multiplicative censoring: estimation of a
density and its derivatives under the l-p risk. Revstat Statistical Journal, 11:255–276, 2013.

[2] M. Abramowitz and I. A Stegun. Handbook of mathematical functions. Applied Mathematics
Series, 1966.

[3] K.E. Andersen and M.E. Hansen. Multiplicative censoring: density estimation by a series
expansion approach. Journal of Statistical Planning and Inference, 98(1–2):137 – 155, 2001.

24



[4] Fadoua Balabdaoui and Jon A. Wellner. Estimation of a k-monotone density: limit distri-
bution theory and the spline connection. Ann. Statist., 35(6):2536–2564, 2007.

[5] D Belomestny, F. Comte, and V Genon-Catalot. Nonparametric laguerre estimation in the
multiplicative censoring model. Electron. J. Statist., 10(2):3114–3152, 2016.

[6] B. Bongioanni and J. L Torrea. What is a Sobolev space for the Laguerre function systems?
Studia Math., 192(2):147–172, 2009.

[7] E. Brunel and F. Comte. Cumulative distribution function estimation under interval cen-
soring case 1. Electron. J. Stat., 3:1–24, 2009.

[8] E. Brunel, F. Comte, and V. Genon-Catalot. Nonparametric density and survival function
estimation in the multiplicative censoring model. TEST, 25(3):570–590, 2016.

[9] R. Carroll and P Hall. Optimal rates of convergence for deconvolving a density. Journal of
the American Statistical Association, 83(404):1184–1186, 1988.

[10] V. Chernozhukov, I. Fernández-Val, and A. Galichon. Improving point and interval estima-
tors of monotone functions by rearrangement. Biometrika, 96(3):559–575, 2009.

[11] F. Comte, C.-A. Cuenod, M. Pensky, and Y. Rozenholc. Laplace deconvolution and its appli-
cation to dynamic contrast enhanced imaging. J.R.Stat.Soc.Ser.B.Stat.Methodol., 79(1):69–
94, 2017.

[12] F. Comte and C Dion. Nonparametric estimation in a multiplicative censoring model with
symmetric noise. Journal of Nonparametric Statistics, 28:1–34, 2016.

[13] F. Comte and V Genon-Catalot. Adaptive laguerre density estimation for mixed poisson
models. Electronic Journal of Statistics, 9:1113–1149, 2015.

[14] F. Comte and V Genon-Catalot. Laguerre and hermite bases for inverse problems. Journal
of the Korean Statistical Society, 47:273–296, 2018.

[15] F. Comte and V Genon-Catalot. Regression function estimation on non compact support
as a partly inverse problem. The Annals of the Institute of Mathematical Statistics, page To
appear, 2019.

[16] J Fan. On the optimal rates of convergence for nonparametric deconvolution problems. Ann.
Statist., 19(3):1257–1272, 1991.

[17] Jian Huang and Jon A. Wellner. Estimation of a monotone density or monotone hazard
under random censoring. Scand. J. Statist., 22(1):3–33, 1995.

[18] G Mabon. Adaptive deconvolution on the nonnegative real line. Scandinavian Journal of
Statistics, 44(3):707–740, 2017.

[19] M. Pensky and B Vidakovic. Adaptative wavelet estimator for nonparametric density de-
convolution. Ann. Statist., 27(6):2033–2053, 1999.

[20] A.B. Tsybakov. Introduction to nonparametric estimation. Springer Series in Satistics.
Springer, New York. Revised and extended from the 2004 French original, Translated by
Vladimir Zaiats, 2009.

25



[21] B. van Es, C. A. J. Klaassen, and K Oudshoorn. Survival analysis under cross-sectional
sampling: length bias and multiplicative censoring. J. Statist. Plann. Inference, 91(2):295–
312, 2000.

[22] Y Vardi. Multiplicative censoring, renewal processes, deconvolution and decreasing density:
Nonparametric estimation. Biometrika, 76(4):751–761, 1989.

26


	Introduction
	Main motivation
	Main contribution
	Organization of the paper

	A general strategy
	Notations 
	Estimation method and assumptions
	Risk bound on the constrained estimator
	Bias order on Sobolev spaces
	Model selection

	Examples of applications
	Survival function estimation in the multiplicative noise model
	Laguerre survival function estimator in the convolution model

	Numerical illustrations
	 Description of the practical procedure
	Illustrations
	Detailed study

	Extension to regression setting: the example of interval censored data
	Proofs
	Proof of Proposition 2.1
	Proof of Theorem 2.3
	Proof of Proposition 3.1
	Proof of Proposition 3.2
	Proof of Theorem 3.3
	Proof of Inequality (3.12)
	Proof of Proposition 5.1

	Integrated Talagrand's inequality

