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Abstract

A stochastic optimal control problem driven by an abstract evolution
equation in a separable Hilbert space is considered. Thanks to the iden-
tification of the mild solution of the state equation as ν-weak Dirichlet
process, the value processes is proved to be a real weak Dirichlet process.
The uniqueness of the corresponding decomposition is used to prove a
verification theorem.

Through that technique several of the required assumptions are milder
than those employed in previous contributions about non-regular solutions
of Hamilton-Jacobi-Bellman equations.
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1 Introduction

The goal of this paper is to show that, if we carefully exploit some recent de-

velopments in stochastic calculus in infinite dimension, we can weaken some of

the hypotheses typically demanded in the literature of non-regular solutions of

Hamilton-Jacobi-Bellman (HJB) equations to prove verification theorems and

optimal syntheses of stochastic optimal control problems in Hilbert spaces.

As well-known, the study of a dynamic optimization problem can be linked,

via the dynamic programming to the analysis of the related HJB equation, that

is, in the context we are interested in, a second order infinite dimension PDE.

When this approach can be successfully applied, one can prove a verification

theorem and express the optimal control in feedback form (that is, at any time,

as a function of the state) using the solution of the HJB equation. In this case

the latter can be identified with the value function of the problem.

In the regular case (i.e. when the value function is C1,2, see for instance

Chapter 2 of [16]) the standard proof of the verification theorem is based on

the Itô formula. In this paper we show that some recent results in stochastic

calculus, in particular Fukushima-type decompositions explicitly suited for the

infinite dimensional context, can be used to prove the same kind of result for

less regular solutions of the HJB equation.

The idea is the following. In a previous paper ([17]) the authors introduced

the class of ν-weak Dirichlet processes (the definition is recalled in Section 2,

ν is a Banach space strictly associated with a suitable subspace ν0 of H) and

showed that convolution type processes, and in particular mild solutions of infi-

nite dimensional stochastic evolution equations (see e.g. [8], Chapter 4), belong

to this class. By applying this result to the solution of the state equation of a

class of stochastic optimal control problems in infinite dimension we are able

to show that the value process, that is the value of any given solution of the

HJB equation computed on the trajectory taken into account1, is a (real-valued)

weak Dirichlet processes (with respect to a given filtration), a notion introduced

in [14] and subsequently analyzed in [30]. Such a process can be written as

the sum of a local martingale and a martingale orthogonal process, i.e. having

zero covariation with every continuous local martingale. Such decomposition is

unique and in Theorem 3.7, we exploit the uniqueness property to characterize

the martingale part of the value process as a suitable stochastic integral with

respect to a Girsanov-transformed Wiener process which allows to obtain a sub-

stitute of the Itô-Dynkin formula for solutions of the Hamilton-Jacobi-Bellman

equation. This is possible when the value process associated to the optimal con-

trol problem can be expressed by a C0,1([0, T [×H) function of the state process,

with however a stronger regularity on the first derivative. We finally use this

expression to prove the verification result stated in Theorem 4.12.

1The expression value process is sometime used for denoting the value function computed
on the trajectory, often the two definition coincide but it is not always the case.

2A similar approach is used, when H is finite-dimensional, in [29]. In that case things are
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We think the interest of our contribution is twofold. On the one hand we

show that recent developments in stochastic calculus in Banach spaces, see for

instance [11, 12], from which we adopt the framework related to generalized

covariations and Itô-Fukushima formulae, but also other approaches as [6, 32, 41]

may have important control theory counterpart applications. On the other

hand the method we present allows to improve some previous verification results

weakening a series of hypotheses.

We discuss here this second point in detail. There are several ways to in-

troduce non-regular solutions of second order HJB equations in Hilbert spaces.

They are more precisely surveyed in [16] but they essentially are viscosity so-

lutions, strong solutions and the study of the HJB equation through backward

SDEs. Viscosity solutions are defined, as in the finite-dimensional case, us-

ing test functions that locally “touch” the candidate solution. The viscosity

solution approach was first adapted to the second order Hamilton Jacobi equa-

tion in Hilbert space in [33, 34, 35] and then, for the “unbounded” case (i.e.

including a possibly unbounded generator of a strongly continuous semigroup

in the state equation, see e.g. equation (6)) in [40]. Several improvements of

those pioneering studies have been published, including extensions to several

specific equations but, differently from what happens in the finite-dimensional

case, there are no verification theorems available at the moment for stochastic

problems in infinite-dimension that use the notion of viscosity solution. The

backward SDE approach can be applied when the mild solution of the HJB

equation can be represented using the solution of a forward-backward system.

It was introduced in [38] in the finite dimensional setting and developed in sev-

eral works, among them [9, 19, 20, 21, 22]. This method only allows to find

optimal feedbacks in classes of problems satisfying a specific “structural condi-

tion”, imposing, roughly speaking, that the control acts within the image of the

noise. The same limitation concerns the L2
µ approach introduced and developed

in [1] and [24].

In the strong solutions approach, first introduced in [2], the solution is de-

fined as a proper limit of solutions of regularized problems. Verification results

in this framework are given in [25, 26, 27, 28]. They are collected and refined

in Chapter 4 of [16]. The results obtained using strong solutions are the main

term of comparison for ours both because in this context the verification results

are more developed and because we partially work in the same framework by

approximating the solution of the HJB equation using solutions of regularized

problems. With reference to them our method has some advantages 3: (i) the

assumptions on the cost structure are milder, notably they do not include any

continuity assumption on the running cost that is only asked to be a measur-

simpler and there is not need to use the notion of ν-weak Dirichlet processes and and results
that are specifically suited for the infinite dimensional case. In that case ν0 will be isomorphic
to the full space H.

3Results for specific cases, as boundary control problems and reaction-diffusion equation
(see [4, 5]) cannot be treated at the moment with the method we present here.
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able function; moreover the admissible controls are only asked to verify, together

with the related trajectories, a quasi-integrability condition of the functional,

see Hypothesis 3.3 and the subsequent paragraph; (ii) we work with a bigger set

of approximating functions because we do not require the approximating func-

tions and their derivatives to be uniformly bounded; (iii) the convergence of

the derivatives of the approximating solution is not necessary and it is replaced

by the weaker condition (17). This convergence, in different possible forms, is

unavoidable in the standard structure of the strong solutions approach and it is

avoided here only thanks to the use of Fukushima decomposition in the proof.

In terms of the last just mentioned two points, our notion of solution is weaker

than those used in the mentioned works, we need nevertheless to assume that the

gradient of the solution of the HJB equation is continuous as an D(A∗)-valued

function.

Even if it is rather simple, it is itself of some interest because, as far as we

know, no explicit (i.e. with explicit expressions of the value function and of the

approximating sequence) example of strong solution for second order HJB in

infinite dimension are published so far.

The paper proceeds as follows. Section 2 is devoted to some preliminary

notions, notably the definition of ν-weak-Dirichlet process and some related

results. Section 3 focuses on the optimal control problem and the related HJB

equation. It includes the key decomposition Theorem 3.7. Section 4 concerns

the verification theorem. In Section 5 we provide an example of optimal control

problem that can solved by using the developed techniques.

2 Some preliminary definitions and result

Consider a complete probability space (Ω,F ,P). Fix T > 0 and s ∈ [0, T [.

Let {F s
t }t≥s be a filtration satisfying the usual conditions. Each time we use

expressions as “adapted”, “martingale”, etc... we always mean “with respect to

the filtration {F s
t }t≥s”.

Given a metric space S we denote by B(S) the Borel σ-field on S. Consider

two real Hilbert spaces H and G. By default we assume that all the processes

X : [s, T ]×Ω→ H are Bochner measurable functions with respect to the product

σ-algebra B([s, T ]) ⊗ F with values in (H,B(H)). Continuous processes are

clearly Bochner measurable processes. Similar conventions are done forG-valued

processes. We denote by H⊗̂πG the projective tensor product of H and G, see

[39] for details.

Definition 2.1. A continuous real process X : [s, T ] × Ω → R is called weak

Dirichlet process if it can be written as X =M+A, where M is a continuous

local martingale and A is a martingale orthogonal process in the sense that

A(s) = 0 and [A,N ] = 0 for every continuous local martingale N .

The following result is proved in Remarks 3.5 and 3.2 of [30].
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Theorem 2.2. 1. The decomposition described in Definition 2.1 is unique.

2. A semimartingale is a weak Dirichlet process.

The notion of weak Dirichlet process constitutes a natural generalization of

the one of semimartingale. To figure out this fact one can start by considering

a real continuous semimartingale S = M + V , where M is a local martingale

and V is a bounded variation process vanishing at zero. Given a function f :

[0, T ]× R → R of class C1,2, Itô formula shows that

f(·, S) =Mf + Af (1)

is a semimartingale where Mf
t = f(0, S0) +

∫ t

0
∂xf(r, Sr)dMr is a local martin-

gale and Af is a bounded variation process expressed in terms of the partial

derivatives of f . If f ∈ C0,1 then (1) still holds with the same Mf , but now

Af is only a martingale orthogonal process; in this case f(·, S) is generally no

longer a semimartingale but only a weak Dirichlet process, see [30], Corollary

3.11. For this reason (1) can be interpreted as a generalized Itô formula.

Another aspect to be emphasized is that a semimartingale is also a finite

quadratic variation process. Some authors, see e.g. [36, 13] have extended the

notion of quadratic variation to the case of stochastic process taking values

in a Hilbert (or even Banach) space B. The difficulty is that the notion of

finite quadratic variation process (but also the one of semimartingale or weak

Dirichlet process) is not suitable in several contexts and in particular in the

analysis of mild solutions of an evolution equations that cannot be expected to

be in general neither a semimartingale nor a finite quadratic variation process.

A way to remain in this spirit is to introduce a notion of quadratic variation

which is associated with a space (called Chi-subspace) χ of the dual of the

tensor product B⊗̂πB. In the rare cases when the process has indeed a finite

quadratic variation then the corresponding χ would be allowed to be the full

space (B⊗̂πB)∗.

We recall that, following [10, 12], a Chi-subspace (of (H⊗̂πG)
∗) is defined as

any Banach subspace (χ, | · |χ) which is continuously embedded into (H⊗̂πG)
∗

and, following [17], given a Chi-subspace χ we introduce the notion of χ-

covariation as follows.

Definition 2.3. Given two process X : [s, T ] → H and X : [s, T ] → G, we say

that (X,Y) admits a χ-covariation if the two following conditions are satisfied.

H1 For any sequence of positive real numbers ǫn ց 0 there exists a subsequence

ǫnk
such that

sup
k

∫ T

s

|J(X(r + ǫnk
)− X(r)) ⊗ (Y(r + ǫnk

)− Y(r))|χ∗

ǫnk

dr <∞ a.s.,

(2)

where J : H⊗̂πG −→ (H⊗̂πG)
∗∗ is the canonical injection between a space

and its bidual.
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H2 If we denote by [X,Y]ǫχ the application











[X,Y]ǫχ : χ −→ C([s, T ])

φ 7→

∫ ·

s

〈

φ,
J ((X(r + ǫ)− X(r)) ⊗ (Y(r + ǫ)− Y(r)))

ǫ

〉

χ χ∗

dr,
(3)

the following two properties hold.

(i) There exists an application, denoted by [X,Y]χ, defined on χ with

values in C([s, T ]), satisfying4

[X,Y]ǫχ(φ)
ucp

−−−−→
ǫ−→0+

[X,Y]χ(φ), (4)

for every φ ∈ χ ⊂ (H⊗̂πG)
∗.

(ii) There exists a Bochner measurable process [̃X,Y]χ : Ω× [s, T ] −→ χ∗,

such that

• for almost all ω ∈ Ω, [̃X,Y]χ(ω, ·) is a (càdlàg) bounded variation

process,

• [̃X,Y]χ(·, t)(φ) = [X,Y]χ(φ)(·, t) a.s. for all φ ∈ χ, t ∈ [s, T ].

If (X,Y) admits a χ-covariation we call [̃X,Y] χ-covariation of (X,Y). If

[̃X,Y] vanishes we also write that [X, Y ]χ = 0. We say that a process X admits

a χ-quadratic variation if (X,X) admits a χ-covariation. In that case [̃X,X]
is called χ-quadratic variation of X.

Definition 2.4. Let H and G be two separable Hilbert spaces. Let ν ⊆ (H⊗̂πG)
∗

be a Chi-subspace. A continuous adapted H-valued process A : [s, T ] × Ω →

H is said to be ν-martingale-orthogonal if [A,N]ν = 0, for any G-valued

continuous local martingale N.

Lemma 2.5. Let H and G be two separable Hilbert spaces, V : [s, T ]× Ω → H

a bounded variation process.

For any any Chi-subspace ν ⊆ (H⊗̂πG)
∗, V is ν-martingale-orthogonal.

Proof. We will prove that, given any continuous process Z : [s, T ] × Ω → G

and any Chi-subspace ν ⊆ (H⊗̂πG)
∗, we have [V,Z]ν = 0. This will hold in

particular if Z is a continuous local martingale.

By Lemma 3.2 of [17] it is enough to show that

A(ε) :=

∫ T

s

sup
Φ∈ν,

‖Φ‖ν≤1

∣

∣

∣

〈

J
(

(V(t+ ε)− V(t))⊗ (Z(t+ ε)− Z(t))
)

,Φ
〉∣

∣

∣
dt

ε→0
−−−→ 0

4Given a separable Banach space B and a probability space (Ω, P) a family of processes
Zǫ : Ω× [0, T ] → B is said to converge in the ucp (uniform convergence on probability) sense
to Z : Ω× [0, T ] → B, when ǫ goes to zero, if limǫ→0 supt∈[0,T ] |Z

ǫ
t − Zt|B = 0 in probability

i.e. if, for any γ > 0, limǫ→0 P
(

supt∈[0,T ] |Z
ǫ
t − Zt|B > γ

)

= 0.
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in probability (the processes are extended on ]T, T +ε] by defining, for instance,

Z(t) = Z(T ) for any t ∈]T, T + ε]). Now, since ν is continuously embedded in

(H⊗̂πG)
∗, there exists a constant C such that ‖ · ‖(H⊗̂πG)∗ ≤ C‖ · ‖ν so that

A(ε) ≤ C

∫ T

s

sup
Φ∈ν,

‖Φ‖(H⊗̂πG)∗≤1

∣

∣

∣

〈

J
(

(V(t+ ε)− V(t)) ⊗ (Z(t+ ε)− Z(t))
)

,Φ
〉
∣

∣

∣
dt

≤ C

∫ T

s

∥

∥

∥
J
(

(V(t+ ε)− V(t))⊗ (Z(t+ ε)− Z(t))
)∥

∥

∥

(H⊗̂πG)∗∗
dt

= C

∫ T

s

∥

∥

∥

(

(V(t+ ε)− V(t))⊗ (Z(t+ ε)− Z(t))
)∥

∥

∥

(H⊗̂πG)
dt

= C

∫ T

s

‖(V(t+ ε)− V(t))‖H ‖(Z(t+ ε)− Z(t))‖G dt, (5)

where the last step follows by Proposition 2.1 page 16 of [39]. Now, denoting

t 7→ |||Y|||(t) the real total variation function of an H-valued bounded variation

function Y defined on the interval [s, T ] we get

‖Y(t+ ε)− Y(t)‖ =

∥

∥

∥

∥

∫ t+ε

t

dY (r)

∥

∥

∥

∥

≤

∫ t+ε)

t

d|||Y |||(r).

So, by using Fubini’s theorem in (5),

A(ε) ≤ Cδ(Z; ε)

∫ T+ε

s

d|||V|||(r),

where δ(Z; ε) is the modulus of continuity of Z. Finally this converges to zero

almost surely and then in probability.

Definition 2.6. Let H and G be two separable Hilbert spaces. Let ν ⊆ (H⊗̂πG)
∗

be a Chi-subspace. A continuous H-valued process X : [s, T ]× Ω → H is called

ν-weak-Dirichlet process if it is adapted and there exists a decomposition

X = M+ A where

(i) M is an H-valued continuous local martingale,

(ii) A is an ν-martingale-orthogonal process with A(s) = 0.

The theorem below was the object of Theorem 3.19 of [17]: it extended

Corollary 3.11 in [30].

Theorem 2.7. Let ν0 be a Banach subspace continuously embedded in H. De-

fine ν := ν0⊗̂πR and χ := ν0⊗̂πν0. Let F : [s, T ]×H → R be a C0,1-function.

Denote with ∂xF the Fréchet derivative of F with respect to x and assume

that the mapping (t, x) 7→ ∂xF (t, x) is continuous from [s, T ] × H to ν0. Let
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X(t) = M(t) + A(t) for t ∈ [s, T ] be an ν-weak-Dirichlet process with finite χ-

quadratic variation. Then Y (t) := F (t,X(t)) is a real weak Dirichlet process

with local martingale part

R(t) = F (s,X(s)) +

∫ t

s

〈∂xF (r,X(r)), dM(r)〉 , t ∈ [s, T ].

3 The setting of the problem and HJB equation

In this section we introduce a class of infinite dimensional optimal control prob-

lems and we prove a decomposition result for the strong solutions of the related

Hamilton-Jacobi-Bellman equation. We refer the reader to [42] and [8] respec-

tively for the classical notions of functional analysis and stochastic calculus in

infinite dimension we use.

3.1 The optimal control problem

Assume from now that H and U are real separable Hilbert spaces, Q ∈ L(U),

U0 := Q1/2(U). Assume that WQ = {WQ(t) : s ≤ t ≤ T } is an U -valued

F t
s -Q-Wiener process (with WQ(s) = 0, P a.s.) and denote by L2(U0, H) the

Hilbert space of the Hilbert-Schmidt operators from U0 to H .

We denote by A : D(A) ⊆ H → H the generator of the C0-semigroup etA

(for t ≥ 0) on H . A∗ denotes the adjoint of A. Recall that D(A) and D(A∗) are

Banach spaces when endowed with the graph norm. Let Λ be a Polish space.

We formulate the following standard assumptions that will be needed to

ensure the existence and the uniqueness of the solution of the state equation.

Hypothesis 3.1. b : [0, T ]×H×Λ → H is a continuous function and satisfies,

for some C > 0,
|b(s, x, a)− b(s, y, a)| ≤ C|x− y|,

|b(s, x, a)| ≤ C(1 + |x|),

for all x, y ∈ H, s ∈ [0, T ], a ∈ Λ. σ : [0, T ] × H → L2(U0, H) is continuous

and, for some C > 0, satisfies,

‖σ(s, x)− σ(s, y)‖L2(U0,H) ≤ C|x− y|,

‖σ(s, x)‖L2(U0,H) ≤ C(1 + |x|),

for all x, y ∈ H, s ∈ [0, T ].

Given an adapted process a = a(·) : [s, T ] × Ω → Λ, we consider the state

equation

{

dX(t) = (AX(t) + b(t,X(t), a(t))) dt+ σ(t,X(t)) dWQ(t)

X(s) = x.
(6)
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The solution of (6) is understood in the mild sense: an H-valued adapted

process X(·) is a solution if

P

{

∫ T

s

(

|X(r)| + |b(r,X(r), a(r))| + ‖σ(r,X(r))‖2L2(U0,H)

)

dr < +∞

}

= 1

and

X(t) = e(t−s)Ax+

∫ t

s

e(t−r)Ab(r,X(r), a(r)) dr +

∫ t

s

e(t−r)Aσ(r,X(r)) dWQ(r)

(7)

P-a.s. for every t ∈ [s, T ]. Thanks to Theorem 3.3 of [23], given Hypothe-

sis 3.1, there exists a unique (up to modifications) continuous (mild) solution

X(·; s, x, a(·)) of (6).

Proposition 3.2. Set ν̄0 = D(A∗), ν = ν̄0⊗̂πR, χ̄ = ν̄0⊗̂π ν̄0. The process

X(·; s, x, a(·)) is ν-weak-Dirichlet process admitting a χ̄-quadratic variation with

decomposition M + A where M is the local martingale defined by M(t) = x +
∫ t

s σ(r,X(r)) dWQ(r) and A is a ν-martingale-orthogonal process.

Proof. See Corollary 4.6 of [17].

Hypothesis 3.3. Let l : [0, T ]×H×Λ → R (the running cost) be a measurable

function and g : H → R (the terminal cost) a continuous function.

We consider the class Us of admissible controls constituted by the adapted

processes a : [s, T ] × Ω → Λ such that (r, ω) 7→ l(r,X(r, s, x, a(·)), a(r)) +
g(X(T, s, x, a(·))) is dr ⊗ dP- is quasi-integrable. This means that, either its

positive or negative part are integrable.

We consider the problem of minimizing, over all a(·) ∈ Us, the cost functional

J(s, x; a(·)) = E

[
∫ T

s

l(r,X(r; s, x, a(·)), a(r)) dr + g(X(T ; s, x, a(·)))

]

. (8)

The value function of this problem is defined, as usual, as

V (s, x) = inf
a(·)∈Us

J(s, x; a(·)). (9)

As usual we say that the control a∗(·) ∈ Us is optimal at (s, x) if a∗(·) min-

imizes (8) among the controls in Us, i.e. if J(s, x; a∗(·)) = V (s, x). In this case

we denote by X∗(·) the process X(·; s, x, a∗(·)) which is then the corresponding

optimal trajectory of the system.
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3.2 The HJB equation

The HJB equation associated with the minimization problem above is















∂sv + 〈A∗∂xv, x〉 +
1
2Tr

[

σ(s, x)σ∗(s, x)∂2xxv
]

+ infa∈Λ

{

〈∂xv, b(s, x, a)〉+ l(s, x, a)
}

= 0,

v(T, x) = g(x).

(10)

In the above equation ∂xv (respectively ∂2xxv) is the first (respectively second)

Fréchet derivatives of v with respect to the x variable. Let (s, x) ∈ [0, T ]×H ,

∂xv(s, x) it is identified (via Riesz Representation Theorem, see [42], Theorem

III.3) with elements of H . ∂2xxv(s, x) which is a priori an element of (H⊗̂πH)∗ is

naturally associated with a symmetric bounded operator on H , see [18], state-

ment 3.5.7, page 192. In particular, if h1, h2 ∈ H then 〈∂2xxv(s, x), h1 ⊗ h2〉 ≡

∂2xxv(s, x)(h1)(h2). ∂sv is the derivative with respect to the time variable.

The function

FCV (s, x, p; a) := 〈p, b(s, x, a)〉+l(s, x, a), (s, x, p, a) ∈ [0, T ]×H×H×Λ, (11)

is called the current value Hamiltonian of the system and its infimum over a ∈ Λ

F (s, x, p) := inf
a∈Λ

{〈p, b(s, x, a)〉+ l(s, x, a)} (12)

is called the Hamiltonian. We remark that F : [0, T ] ×H × H → [−∞ + ∞[.

Using this notation the HJB equation (10) can be rewritten as

{

∂sv + 〈A∗∂xv, x〉+
1
2Tr

[

σ(s, x)σ∗(s, x)∂2xv
]

+ F (s, x, ∂xv) = 0,

v(T, x) = g(x).
(13)

We introduce the operator L0 on C([0, T ]×H) defined as

{

D(L0) :=
{

ϕ ∈ C1,2([0, T ]×H) : ∂xϕ ∈ C([0, T ]×H ;D(A∗))
}

L0(ϕ)(s, x) := ∂sϕ(s, x) + 〈A∗∂xϕ(s, x), x〉 +
1
2Tr

[

σ(s, x)σ∗(s, x)∂2xxϕ(s, x)
]

,
(14)

so that the HJB equation (13) can be formally rewritten as

{

L0(v)(s, x) = −F (s, x, ∂xv(s, x))

v(T, x) = g(x).
(15)

Recalling that we suppose the validity of Hypothesis 3.3 we consider the two

following definitions of solution of the HJB equation.

Definition 3.4. We say that v ∈ C([0, T ]×H) is a classical solution of (15)

if

10



(i) v ∈ D(L0)

(ii) The function
{

[0, T ]×H → R
(s, x) 7→ F (s, x, ∂xv(s, x))

is well-defined and finite for all (s, x) ∈ [0, T ]×H and it is continuous in

the two variables

(iii) (15) is satisfied at any (s, x) ∈ [0, T ]×H.

Definition 3.5. Given g ∈ C(H) we say that v ∈ C0,1([0, T [×H)∩C0([0, T ]×

H) with ∂xv ∈ UC([0, T [×H ;D(A∗)) 5 is a strong solution of (15) if the

following properties hold.

(I) The function (s, x) 7→ F (s, x, ∂xv(s, x)) is finite for all (s, x) ∈ [0, T [×H,

it is continuous in the two variables and admits continuous extension on

[0, T ]×H.

(II) There exist three sequences {vn} ⊆ D(L0), {hn} ⊆ C([0, T ] × H) and

{gn} ⊆ C(H) fulfilling the following.

(i) For any n ∈ N, vn is a classical solution of the problem

{

L0(vn)(s, x) = hn(s, x)

vn(T, x) = gn(x).
(16)

(ii) The following convergences hold:







vn → v in C([0, T ]×H)

hn → −F (·, ·, ∂xv(·, ·)) in C([0, T ]×H)

gn → g in C(H),

where the convergences in C([0, T ]×H) and C(H) are meant in the

sense of uniform convergence on compact sets.

Remark 3.6. The notion of classical solution as defined in Definition 3.4 is

well established in the literature of second-order infinite dimensional Hamilton-

Jacobi equations, see for instance Section 6.2 of [7], page 103. Conversely the

denomination strong solution is used for a certain number of definitions where

the solution of the Hamilton-Jacobi equation is characterized by the existence of

a certain approximating sequence (having certain properties and) converging to

the candidate solution. The chosen functional spaces and the prescribed conver-

gences depend on the classes of equations, see for instance [2, 4, 26, 27, 37]. In

this sense the solution defined in Definition 3.5 is a form of strong solution of

5The space of uniformly continuous functions on each ball of [0, T [×H with values in
D(A∗).
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(15) but, differently to all other papers we know6 we do not require any form of

convergence of the derivatives of the approximating functions to the derivative

of the candidate solution. Moreover all the results we are aware of use sequences

of bounded approximating functions (i.e. the vn in the definition are bounded)

and this is not required in our definition. All in all the sets of approximating se-

quences that we can manage are bigger than those used in the previous literature

and so the definition of strong solution is weaker.

3.3 Decomposition for solutions of the HJB equation

Theorem 3.7. Suppose Hypothesis 3.1 is satisfied. Suppose that v ∈ C0,1([0, T [×H)∩

C0([0, T ] × H) with ∂xv ∈ UC([0, T [×H ;D(A∗)) is a strong solution of (15).

Let X(·) := X(·; t, x, a(·)) be the solution of (6) starting at time s at some x ∈ H

and driven by some control a(·) ∈ Us. Assume that b is of the form

b(t, x, a) = bg(t, x, a) + bi(t, x, a), (17)

where bg and bi satisfy the following conditions.

(i) σ(t,X(t))−1bg(t,X(t), a(t)) is bounded (being σ(t,X(t))−1 the pseudo-inverse

of σ);

(ii) bi satisfies

lim
n→∞

∫ ·

s

〈∂xvn(r,X(r)) − ∂xv(r,X(r)), bi(r,X(r), a(r))〉 dr = 0 ucp on [s, T0],

(18)

for each s < T0 < T .

Then

v(t,X(t))− v(s,X(s)) = v(t,X(t))− v(s, x) = −

∫ t

s

F (r,X(r), ∂xv(r,X(r))) dr

+

∫ t

s

〈∂xv(r,X(r)), b(r,X(r), a(r))〉 dr+

∫ t

s

〈∂xv(r,X(r)), σ(r,X(r)) dWQ(r)〉 , t ∈ [s, T [.

(19)

Proof. We fix T0 in ]s, T [. We denote by vn the sequence of smooth solutions of

the approximating problems prescribed by Definition 3.5, which converges to v.

Thanks to Itô formula for convolution type processes (see e.g. Corollary 4.10 in

6Except [29], but there the HJB equation and the optimal controls are finite dimensional.
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[17]), every vn verifies

vn(t,X(t)) = vn(s, x) +

∫ t

s

∂rvn(r,X(r)) dr

+

∫ t

s

〈A∗∂xvn(r,X(r)),X(r)〉 dr +

∫ t

s

〈∂xvn(r,X(r)), b(r,X(r), a(r))〉 dr

+
1

2

∫ t

s

Tr
[(

σ(r,X(r))Q1/2
)(

σ(r,X(r))Q1/2
)∗

∂2xxvn(r,X(r))
]

dr

+

∫ t

s

〈∂xvn(r,X(r)), σ(r,X(r)) dWQ(r)〉 , t ∈ [s, T ]. P− a.s. (20)

Using Girsanov’s Theorem (see [8] Theorem 10.14) we can observe that

βQ(t) :=WQ(t) +

∫ t

s

σ(r,X(r))−1bg(r,X(r), a(r)) dr,

is a Q-Wiener process with respect to a probability Q equivalent to P on the

whole interval [s, T ]. We can rewrite (20) as

vn(t,X(t)) = vn(s, x) +

∫ t

s

∂rvn(r,X(r)) dr

+

∫ t

s

〈A∗∂xvn(r,X(r)),X(r)〉 dr +

∫ t

s

〈∂xvn(r,X(r)), bi(r,X(r), a(r))〉 dr,

+
1

2

∫ t

s

Tr
[(

σ(r,X(r))Q1/2
)(

σ(r,X(r))Q1/2
)∗

∂2xxvn(r,X(r))
]

dr

+

∫ t

s

〈∂xvn(r,X(r)), σ(r,X(r)) dβQ(r)〉 . P− a.s. (21)

Since vn is a classical solution of (16), the expression above gives

vn(t,X(t)) = vn(s, x) +

∫ t

s

hn(r,X(r)) dr

+

∫ t

s

〈∂xvn(r,X(r)), bi(r,X(r), a(r))〉 dr+

∫ t

s

〈∂xvn(r,X(r)), σ(r,X(r)) dβQ(r)〉 .

(22)

Since we wish to take the limit for n→ ∞, we define

Mn(t) := vn(t,X(t)) − vn(s, x)−

∫ t

s

hn(r,X(r)) dr

−

∫ t

s

〈∂xvn(r,X(r)), bi(r,X(r), a(r))〉 dr. (23)
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{Mn}n∈N is a sequence of real Q-local martingales converging ucp, thanks to

the definition of strong solution and Hypothesis (18), to

M(t) := v(t,X(t))− v(s, x) +

∫ t

s

F (r,X(r), ∂xv(r,X(r))) dr

−

∫ t

s

〈∂xv(r,X(r)), bi(r,X(r), a(r))〉 dr, t ∈ [s, T0]. (24)

Since the space of real continuous local martingales equipped with the ucp

topology is closed (see e.g. Proposition 4.4 of [30]) then M is a continuous

Q-local martingale indexed by t ∈ [s, T0].

We have now gathered all the ingredients to conclude the proof. We set

ν̄0 = D(A∗), ν = ν̄0⊗̂πR, χ̄ = ν̄0⊗̂π ν̄0. Proposition 3.2 ensures that X(·) is a

ν-weak Dirichlet process admitting a χ̄-quadratic variation with decomposition

M + A where M is the local martingale (with respect to P) defined by M(t) =

x+
∫ t

s
σ(r,X(r)) dWQ(r) and A is a ν-martingale-orthogonal process. Now

X(t) = M̃(t) + V(t) + A(t), t ∈ [s, T0],

where M̃(t) = x +
∫ t

s σ(r,X(r)) dβQ(r) and V(t) = −
∫ t

s bg(r,X(r), a(r))dr,
t ∈ [s, T0], is a bounded variation process. Thanks to [31] Theorem 2.14 page

14-15, M̃ is a Q-local martingale. Moreover V is a bounded variation process and

then, thanks to Lemma 2.5, it is a Q−ν-martingale orthogonal process. So V+A
is a again (one can easily verify that the sum of two ν-martingale-orthogonal

processes is again a ν-martingale-orthogonal process) a Q − ν-martingale or-

thogonal process and X is a ν-weak Dirichlet process with local martingale part

M̃, with respect to Q. Still under Q, since v ∈ C0,1([0, T0] ×H), Theorem 2.7

ensures that the process v(·,X(·)) is a real weak Dirichlet process on [s, T0],

whose local martingale part being equal to

N(t) =

∫ t

s

〈∂xv(r,X(r)), σ(r,X(r)) dβQ(r)〉 , t ∈ [s, T0].

On the other hand, with respect to Q, (24) implies that

v(t,X(t)) =

[

v(s, x) −

∫ t

s

F (r,X(r), ∂xv(r,X(r))) dr

+

∫ t

s

〈∂xv(r,X(r)), bi(r,X(r), a(r))〉 dr

]

+N(t), t ∈ [s, T0], (25)

is a decomposition of v(·,X(·)) as Q- semimartingale, which is also in particular,

a Q-weak Dirichlet process. By Theorem 2.2 such a decomposition is unique on

[s, T0] and so M(t) = N(t), t ∈ [s, T0], so M(t) = N(t), t ∈ [s, T [.
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Consequently

M(t) =

∫ t

s

〈∂xv(r,X(r)), σ(r,X(r)) dβQ(r)〉

=

∫ t

s

〈∂xv(r,X(r)), bg(r,X(r), a(r)) dr〉

+

∫ t

s

〈∂xv(r,X(r)), σ(r,X(r)) dWQ(r)〉 , t ∈ [s, T ]. (26)

Example 3.8. The decomposition (17) with validity of Hypotheses (i) and (ii)

in Theorem 3.7 are satisfied if v is a strong solution of the HJB equation in the

sense of Definition 3.5 and, moreover the sequence of corresponding functions

∂xvn converge to ∂xv in C([0, T ]×H). In that case we simply set bg = 0 and

b = bi. This is the typical assumption required in the standard strong solutions

literature.

Example 3.9. Again the decomposition (17) with validity of Hypotheses (i) and

(ii) in Theorem 3.7 is fulfilled if the following assumption is satisfied.

σ(t,X(t))−1b(t,X(t), a(t)) is bounded,

for all choice of admissible controls a(·). In this case we apply Theorem 3.7 with

bi = 0 and b = bg.

4 Verification Theorem

In this section, as anticipated in the introduction, we use the decomposition

result of Theorem 3.7 to prove a verification theorem.

Theorem 4.1. Assume that Hypotheses 3.1 and 3.3 are satisfied and that the

value function is finite for any (s, x) ∈ [0, T ] × H. Let v ∈ C0,1([0, T [×H) ∩

C0([0, T ]×H) with ∂xv ∈ UC([0, T [×H ;D(A∗)) be a strong solution of (10) and

suppose that there exists two constants M > 0 and m ∈ N such that |∂xv(t, x)| ≤

M(1 + |x|m) for all (t, x) ∈ [0, T [×H.

Assume that for all initial data (s, x) ∈ [0, T ]×H and every control a(·) ∈ Us
b can be written as b(t, x, a) = bg(t, x, a) + bi(t, x, a) with bi and bg satisfying

hypotheses (i) and (ii) of Theorem 3.7. Then we have the following.

(i) v ≤ V on [0, T ]×H.

(ii) Suppose that, for some s ∈ [0, T [, there exists a predictable process a(·) =

a∗(·) ∈ Us such that, denoting X (·; s, x, a∗(·)) simply by X∗(·), we have

F (t,X∗ (t) , ∂xv (t,X
∗ (t))) = FCV (t,X∗ (t) , ∂xv (t,X

∗ (t)) ; a∗ (t)) , (27)

dt⊗ dP a.e. Then a∗(·) is optimal at (s, x); moreover v (s, x) = V (s, x).
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Proof. We choose a control a(·) ∈ Us and call X the related trajectory. We

make use of (19) in Theorem 3.7. Then we need to extend (19) to the case when

t ∈ [s, T ]. This is possible since v is continuous, (s, x) 7→ F (s, x, ∂xv(s, x)) is

well-defined and (uniformly continuous) on compact sets. At this point, setting

t = T we can write

g(X(T )) = v(T,X(T )) = v(s, x)−

∫ T

s

F (r,X(r), ∂xv(r,X(r))) dr

+

∫ T

s

〈∂xv(r,X(r)), b(r,X(r), a(r))〉 dr+

∫ T

s

〈∂xv(r,X(r)), σ(r,X(r)) dWQ(r)〉 .

(28)

Since both sides of (28) are a.s. finite, we can add
∫ T

s l(r,X(r), a(r)) dr to them,

obtaining

g(X(T ))+

∫ T

s

l(r,X(r), a(r)) dr = v(s, x)+

∫ T

s

〈∂xv(r,X(r)), σ(r,X(r)) dWQ(r)〉

+

∫ T

s

(−F (r,X(r), ∂xv(r,X(r))) + FCV (r,X(r), ∂xv(r,X(r)); a(r))) dr. (29)

Observe now that, by definition of F and FCV we know that

−F (r,X(r), ∂xv(r,X(r))) + FCV (r,X(r), ∂xv(r,X(r)); a(r))

is always positive. So its expectation always exists even if it could be +∞,

but not −∞ on an event of positive probability. This shows a posteriori that
∫ T

s l(r,X(r), a(r)) dr cannot be −∞ on a set of positive probability.

By Proposition 7.4 in [8], all the momenta of supr∈[s,T ] |X(r)| are finite. On the

other hand, σ is Lipschitz-continuous, v(s, x) is deterministic and, since ∂xv has

polynomial growth, then

E

∫ T

s

〈

∂xv(r,X(r)),
(

σ(r,X(r))Q1/2
)(

σ(r,X(r))Q1/2
)∗

∂xv(r,X(r))
〉

dr

is finite. Consequently (see [8] Sections 4.3, in particular Theorem 4.27 and

4.7),
∫ ·

s

〈∂xv(r,X(r)), σ(r,X(r)) dWQ(r)〉 ,

is a true martingale vanishing at s. Consequently, its expectation is zero. So

the expectation of the right-hand side of (29) exists even if it could be +∞;

consequently the same holds for the left-hand side.
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By definition of J , we have

J(s, x, a(·)) = E

[

g(X(T )) +

∫ T

s

l(r,X(r), a(r)) dr

]

= v(s, x)

+ E

∫ T

s

(

− F (r,X(r), ∂xv(r,X(r))) + FCV (r,X(r), ∂xv(r,X(r)); a(r))
)

dr.

(30)

So minimizing J(s, x, a(·)) over a(·) is equivalent to minimize

E

∫ T

s

(

− F (r,X(r), ∂xv(r,X(r))) + FCV (r,X(r), ∂xv(r,X(r)); a(r))
)

dr, (31)

which is a non-negative quantity. As mentioned above, the integrand of such

an expression is always nonnegative and then a lower bound for (31) is 0. If

the conditions of point (ii) are satisfied such a bound is attained by the control

a∗(·), that in this way is proved to be optimal.

Concerning the proof of (i), since the integrand in (31) is nonnegative, (30)

gives

J(s, x, a(·)) ≥ v(s, x).

Taking the inf over a(·) we get V (s, x) ≥ v(s, x), which concludes the proof.

Remark 4.2. 1. The first part of the proof does not make use that a belongs

to Us, but only that r 7→ l(r,X(·, s, x, a(·)), a(·)) is a.s. strictly bigger then

−∞. Under that only assumption, a(·) is forced to be admissible, i.e. to

belong to Us.

2. Let v be a strong solution of HJB equation. Observe that the condition

(27) can be rewritten as

a∗(t) ∈ argmin
a∈Λ

[

FCV (t,X∗ (t) , ∂xv (t,X
∗ (t)) ; a)

]

.

Suppose the existence of a Borel function φ : [0, T ]×H → R such that for

any (t, y) ∈ [0, T ]×H, φ(t, y) ∈ argmina∈Λ

(

FCV (t, y, ∂xv(t, y); a)
)

.

Suppose that the equation

{

dX(t) = (AX(t) + b(t,X(t), φ(t,X(t)) dt+ σ(t,X(t)) dWQ(t)

X(s) = x,
(32)

admits a unique mild solution X∗. We set a∗(t) = φ(t,X∗(t)), t ∈ [0, T ].

Suppose moreover that

∫ T

s

l(r,X∗(r), a∗(r))dr > −∞ a.s. (33)
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Now (33) and Remark 4.2 1. imply that a∗(·) is admissible. Then X∗ is

the optimal trajectory of the state variable related to the optimal control

a∗(t). The function φ is called optimal feedback of the system since it

gives an optimal control as a function of the state.

Remark 4.3. Observe that, using exactly the same arguments we used in this

section one could treat the (slightly) more general case in which b has the form

b(t, x, a) = b0(t, x) + bg(t, x, a) + bi(t, x, a),

where bg and bi satisfy condition of Theorem 3.7 and b0 : [0, T ] × H → H is

continuous. In this case the addendum b0 can be included in the expression of

L0 that becomes

{

D(L b0
0 ) :=

{

ϕ ∈ C1,2([0, T ]×H) : ∂xϕ ∈ C([0, T ]×H ;D(A∗))
}

L
b0
0 (ϕ) := ∂sϕ+ 〈A∗∂xϕ, x〉 + 〈∂xϕ, b0(t, x)〉 +

1
2Tr

[

σ(s, x)σ∗(s, x)∂2xxϕ
]

.
(34)

Consequently in the definition of regular solution the operator L
b0
0 appears in-

stead L0.

5 An example

We describe in this section an example where the techniques developed in the

previous part of the paper can be applied. It is rather simple but some “missing”

regularities and continuities show up so that it cannot be treated by using the

standard techniques (for more details see Remark 5.3).

Denote by Θ: R → R the Heaviside function







Θ: R → R

Θ: y 7→

{

1 if y ≥ 0

0 if y < 0.

Fix T > 0. Let ρ, β be two real numbers, ψ ∈ D(A∗) ⊆ H an eigenvector7

for the operator A∗ corresponding to an eigenvalue λ ∈ R, φ an element of H

and W a standard real (one-dimensional) Wiener process. We consider the case

where Λ = R (i.e. we consider real-valued controls). Let us take into account a

state equation of the following specific form:

{

dX(t) = (AX(t) + a(t)φ) dt+ βX(t) dW (t)

X(s) = x.
(35)

7Examples where the optimal control distributes as an eigenvector of A∗ arise in applied
examples, see for instance [3, 15] for some economic deterministic examples. In the mentioned
cases the operator A is elliptic and self-adjoint.
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The operator L0 specifies then as follows:

{

D(L0) :=
{

ϕ ∈ C1,2([0, T ]×H) : ∂xϕ ∈ C([0, T ]×H ;D(A∗))
}

L0(ϕ)(s, x) := ∂sϕ(s, x) + 〈A∗∂xϕ(s, x), x〉 +
1
2β

2
〈

x, ∂2xxϕ(s, x)(x)
〉

.
(36)

Denote by α the real constant α := −ρ+2λ+β2

〈φ,ψ〉2
. We take into account the func-

tional

J(s, x; a(·)) = E

[
∫ T

s

e−ρrΘ(〈X(r; s, x, a(·)), ψ〉) a2(r) dr

+ e−ρTαΘ(〈X(T ; s, x, a(·)), ψ〉) 〈X(T ; s, x, a(·)), ψ〉2
]

. (37)

The Hamiltonian associated to the problem is given by

F (s, x, p) := inf
a∈R

FCV (s, x, p; a), (38)

where

FCV (s, x, p; a) = 〈p, aφ〉+ e−ρsΘ(〈x, ψ〉)a2.

Standard calculations give

F (s, x, p) =

{

−∞ : p 6= 0, 〈x, ψ〉 < 0

− 〈p,φ〉2

4 : otherwise.
(39)

The HJB equation is






L0(v)(s, t) = −F (s, x, ∂xv(s, x)),

v(T, x) = g(x) := e−ρTαΘ(〈x, ψ〉) 〈x, ψ〉
2
.

(40)

Lemma 5.1. The function







v : [0, T ]×H → R

v : (s, x) 7→ αe−ρs
{

0 if 〈x, ψ〉 ≤ 0

〈x, ψ〉2 if 〈x, ψ〉 > 0

(41)

(that we could write in a more compact form as v(s, x) = αe−ρsΘ(〈x, ψ〉) 〈x, ψ〉2)

is a strong solution of (40).

Proof. We verify all the requirements of Definition 3.5. Given the form of g in

(40) one can easily see that g ∈ C(H). The first derivatives of v are given by

∂sv(s, x) = −ραe−ρsΘ(〈x, ψ〉) 〈x, ψ〉2

and

∂xv(s, x) = 2αe−ρsΘ(〈x, ψ〉) 〈x, ψ〉ψ, (42)
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so the regularities of v demanded in the first two lines of Definition 3.5 are easily

verified. Injecting (42) into (39) yields

F (s, x, ∂xv(s, x)) = −α2Θ(〈x, ψ〉) 〈x, ψ〉2 〈φ, ψ〉2 e−ρs, (43)

so the function (s, x) 7→ F (s, x, ∂xv(s, x)) from [0, T ] × H to H is finite and

continuous.

We define, for any n ∈ N, αn :=
−ρ+(2+1/n)λ+ 1

2β
2(2+1/n)(1+1/n)

− 1
4 (2+1/n)2〈φ,ψ〉2

. We consider

the approximating sequence

vn(s, x) := αne
−ρsΘ(〈x, ψ〉) 〈x, ψ〉2+1/n.

The first derivative of vn w.r.t. s and and first and second derivative of vn w.r.t.

x are given, respectively, by

∂svn(s, x) = −ραne
−ρsΘ(〈x, ψ〉) 〈x, ψ〉2+1/n,

∂xvn(s, x) = (2 + 1/n)αne
−ρsΘ(〈x, ψ〉) 〈x, ψ〉1+1/nψ

and

∂2xxvn(s, x) = (2 + 1/n)(1 + 1/n)αne
−ρsΘ(〈x, ψ〉) 〈x, ψ〉1/nψ ⊗ ψ.

so it is straightforward to see that, for any n ∈ N, vn ∈ D(L0). Moreover, if we

define

gn(x) := e−ρTαnΘ(〈x, ψ〉) 〈x, ψ〉2+1/n (44)

and

hn(s, x) := −
1

4
α2
ne

−ρs(2 + 1/n)2Θ(〈x, ψ〉) 〈φ, ψ〉2 〈x, ψ〉2+1/n , (45)

(by an easy direct computation) we can see that vn is a classical solutions of

the problem
{

L0(v)(s, t) = hn(s, x),

v(T, x) = gn(x).

The convergences asked in point (ii) of part (II) of Definition 3.5 are straight-

forward.

Lemma 5.2. An optimal control of the problem (35)-(37) can be written in

feedback form as

a(t) = −αΘ(〈X(t), ψ〉) 〈X(t), ψ〉〈φ, ψ〉. (46)

The corresponding optimal trajectory is given by the unique solution of the

mild equation

X(t) = e(t−s)Ax−

∫ t

s

e(t−r)AφαΘ(〈X(r), ψ〉) 〈X(r), ψ〉〈φ, ψ〉dr

+ β

∫ t

s

e(t−r)AX(r)dW (r). (47)
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Proof. Observe that the hypotheses of Theorem 4.1 are verified: the regularity

and the growth of v are a simple consequence of its Definition (41) and taking

bi(t, x, a) = b(t, x, a) = a(t)ψ the condition (18) is easily verified.

The optimality of (46) is now just a consequence of point 2. of Remark 4.2

once we observe that

argmin
a∈R

FCV (s, x, ∂xv(s, x); a)

= argmin
a∈R

{

a2αe−ρsΘ(〈x, ψ〉) 〈x, ψ〉 〈ψ, φ〉+ e−ρsΘ(〈x, ψ〉) a2
}

=

{

−α〈x, ψ〉〈φ, ψ〉 if 〈x, ψ〉 ≥ 0

R if 〈x, ψ〉 < 0,

so we can set

φ(s, x) = −αΘ(〈x, ψ〉) 〈x, ψ〉〈φ, ψ〉.

Observe that the elements vn of the approximating sequence are indeed the

value functions of the optimal control problems having the same state equation

(35) with running cost function

ln(r, x, a) = e−ρrΘ(〈x, ψ〉)〈x, ψ〉1/na2

and terminal cost function gn (defined in (44)). The corresponding Hamiltonian

is given by (−hn) where hn is defined in (45).

Even if it is rather simple example, it is itself of some interest because, as

far as we know, no explicit (i.e. with explicit expressions of the value function

and of the approximating sequence) example of strong solution for second order

HJB in infinite dimension is published so far.

Remark 5.3. In the example some non-regularities arise.

(i) The running cost function is

l(r, x, a) = e−ρrΘ(〈x, ψ〉)a2,

so for any choice of a 6= 0, it is discontinuous at any x ∈ H such that

〈x, ψ〉 = 0.

(ii) By (39) the Hamiltonian (s, x, p) 7→ F (s, x, p) is not continuous and even

not finite. Indeed, for any non-zero p ∈ H and for any x ∈ H with

〈x, ψ〉 < 0, its value is infinity. Conversely F (s, x, ∂xv(s, x)) found in (43)

is always finite: observe that for any x ∈ H with 〈x, ψ〉 ≤ 0, ∂xv(s, x) = 0.

(iii) The second derivative of v with respect to x is well-defined on the points

(t, x) ∈ [0, T ]×H such that 〈x, ψ〉 < 0 (where its value is 0) and it is well-

defined on the points (t, x) ∈ [0, T ]×H such that 〈x, ψ〉 > 0 (where its value

is 2αe−ρtψ ⊗ ψ) so it is discontinuous at all the points (t, x) ∈ [0, T ]×H

such that 〈x, ψ〉 = 0.
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Thanks to points (i) and (ii) one cannot deal with the example by using exist-

ing results. Indeed, among various techniques, only solutions defined through

a perturbation approach in space of square-integrable functions with respect to

some invariant measure (see e.g. [1, 24] and Chapter 5 of [16]) can deal with

non-continuous running cost but they can (at least for the moment) only deal

with problems with additive noise and satisfying the structural condition and it

is not the case here. Moreover none of the verification results we are aware of

can deal at the moment with Hamiltonian with discontinuity in the variable p.
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