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W∗-SUPERRIGIDITY OF MIXING GAUSSIAN ACTIONS OF RIGID
GROUPS

RÉMI BOUTONNET

Abstract. We generalize W∗-superrigidity results about Bernoulli actions of rigid
groups to general mixing Gaussian actions. We thus obtain the following: If Γ is any
ICC group which is w-rigid (i.e. it contains an infinite normal subgroup with the
relative property (T)) then any mixing Gaussian action Γ y X is W∗-superrigid.
More precisely, if Λ y Y is another free ergodic action such that the crossed-product
von Neumann algebras are isomorphic L

∞(X) ⋊ Γ ≃ L
∞(Y ) ⋊ Λ, then the actions

are conjugate. We prove a similar statement whenever Γ is a non-amenable ICC
product of two infinite groups.

1. Introduction

Most known examples of finite von Neumann algebras are constructed from discrete
groups or equivalence relations. Thus the question of understanding which data of
the initial group or equivalence relation is remembered in the construction of the
associated von Neumann algebra is fundamental if one wants to classify finite von
Neumann algebras. This problem is usually very hard, but a dramatic progress has
been made possible in the last decade thanks to Sorin Popa’s deformation/rigidity
theory (see [Po07b, Ga10, Va10a] for surveys).

The first rigidity result in the framework of group-measure space constructions is
Popa’s beautiful strong rigidity theorem [Po06a, Po06b]. Assume that Γ y X = XΓ

0

is a Bernoulli action and that Λ y Y is a probability measure preserving (pmp) free
ergodic action of an ICC w-rigid group (i.e. which contains an infinite normal subgroup
with the relative property (T)). Popa shows in [Po06b] that if the crossed-product von
Neumann algebras of these actions are isomorphic, then the actions are conjugate.
This is the first result that deduces conjugacy of two actions out of an isomorphism of
their crossed product von Neumann algebra.

Later on, Ioana managed to prove a very general W∗-superrigidity result about Bernoulli
shifts, which is a natural continuation to Popa’s strong rigidity result. For more histor-
ical information and results onW ∗-superrigidity, see for instance [Pe09, PV09, HPV10,
Io11, IPV11] and the introductions therein.

Definition 1.1. A measure preserving free ergodic action σ of a discrete countable
group Γ on a standard probability space (X, µ) is said to be W∗-superrigid if the
associated crossed-product von Neumann algebra M remembers the action, in the
following sense. If Λ yρ (Y, ν) is a measure preserving action for which the crossed-
product von Neumann algebra is isomorphic to M , then Λ is isomorphic to Γ and the
actions σ and ρ are conjugate.

Theorem (Ioana, [Io11]). Let Γ be an ICC w-rigid group. Then the Bernoulli action
Γ yσ [0, 1]Γ is W∗-superrigid.
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The rigidity of the von Neumann algebra in the theorem above comes from a tension
between the property (T) of the group Γ and the deformability of Bernoulli actions.
This tension is exploited via Popa’s deformation/rigidity strategy. Using a similar
strategy of proof, Ioana, Popa and Vaes later proved the W∗-superrigidity of Bernoulli
actions for other groups, relying this time on the spectral gap type rigidity discovered
by Popa in [Po08].

Theorem (Ioana-Popa-Vaes, [IPV11]). Let Γ be a non-amenable ICC group which is
the product of two infinite groups Γ = Γ1×Γ2. Then the Bernoulli action Γ yσ [0, 1]Γ

of Γ is W∗-superrigid.

The proofs of both Ioana’s theorem and Ioana-Popa-Vaes’ theorem seemed to deeply
rely on the very particular structure of Bernoulli actions. We will show that this is
not the case, and generalize these results to Gaussian actions.

Let Γ be a countable group and π : Γ → O(H) an orthogonal representation of Γ on
a real Hilbert space H . Recall that there exist (see [PS10] for instance) a canonical
standard probability space (X, µ) and a pmp action of Γ on X , such that H ⊂ L2(X),
as representations of Γ. This action is called the Gaussian action induced by the
representation π.

Ioana’s result is then generalized as follows.

Theorem A. Let Γ be an ICC w-rigid group, and π : Γ → O(H) be any mixing
orthogonal representation of Γ. Then the Gaussian action σπ associated to π is W∗-
superrigid.

However, in order to apply Popa’s spectral gap argument, one has to make an extra
assumption on the initial representation π. Ioana-Popa-Vaes’ theorem then becomes
a particular case of the following result.

Theorem B. Let Γ be a non-amenable ICC group which is the product of two infinite
groups, and consider a mixing orthogonal representation π : Γ → O(H) of Γ. Assume
that some tensor power of π is weakly contained in the regular representation. Then
the Gaussian action σπ associated to π is W∗-superrigid.

In [Bo12], we showed that many mixing Gaussian actions are not conjugate to gener-
alized Bernoulli actions. More precisely, we proved in [Bo12, Proposition 2.8] that any
Gaussian action arising from a mixing representation which is not weakly contained
in the regular representation is not conjugate to a Bernoulli action.

To prove Theorem A and Theorem B we will adapt the proof used by Ioana, and
Ioana-Popa-Vaes to the context of Gaussian actions. Let us recall the general strategy
of their proof.

Steps of the proof in the Bernoulli case. Let Γ be a group as in theorem A or B
and Γ y X = [0, 1]Γ the corresponding Bernoulli action. Assume that Λ y (Y, ν) is
another pmp, free ergodic action such that

L∞(X)⋊ Γ ≃ L∞(Y )⋊ Λ.

Put A = L∞(X), B = L∞(Y ) and M = A⋊ Γ.

Thanks to Popa’s orbit equivalence superrigidity theorems [Po07a, 5.2 and 5.6] and
[Po08, Theorem 1.3], one only has to show that the two actions are orbit equivalent.
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More concretely, it is enough to prove, by a result of Feldman and Moore [FM77], that
B is unitarily conjugate to A inside M .

The main idea of the proof, due to Ioana, is to exploit the information given by the
isomorphism M ≃ B ⋊ Λ via the dual co-action1

∆ :M → M ⊗M

bvs 7→ bvs ⊗ vs,

b ∈ B, s ∈ Λ (vs, s ∈ Λ, denote the canonical unitaries corresponding to the action
of Λ). This morphism ∆ allows us to play against each other two data of the single
action Γ y X : the rigidity of ∆(LΓ), and the malleability of the algebra M ⊗M =
(A⊗A)⋊ (Γ× Γ).

Assume that B is not unitarily conjugate to A, or equivalently that B ⊀M A by [Po06c,
Theorem A.1]. We refer to Section 2.1 for the definition of Popa’s intertwining symbol
“≺”. The rest of the proof can be cut into four steps, which lead to a contradiction.

Step (1). One shows that there exists a unitary u ∈M ⊗M such that

u∆(LΓ)u∗ ⊂ LΓ⊗LΓ.

Step (2). One can deduce that the algebra C := ∆(A)′ ∩ (M ⊗M) satisfies

C ≺M ⊗M A⊗A.

Step (3). The previous steps, and an enhanced version of Popa’s conjugacy criterion
[Po06b, Theorem 5.2] roughly imply that there exist a unitary v ∈M ⊗M ,
a group homomorphism δ : Γ → Γ × Γ, and a character ω : Γ → C such
that

v∆(C)v∗ = A⊗A and v∆(ug)v
∗ = ω(g)uδ(g), ∀g ∈ Γ.

Step (4). Using Step (3), one can now show that if a sequence (xn) inM has Fourrier
coefficients (with respect to the decomposition M = A ⋊ Γ) which tend
to zero pointwise in norm ‖ · ‖2, then this is also the case of the sequence
∆(xn), with respect to the decomposition M ⊗M = (M ⊗A) ⋊ Γ. This
easily contradicts the fact that B ⊀M A.

What has to be adapted. First note that Popa’s orbit equivalence superrigidity
results ([Po07a, 5.2 and 5.6] and [Po08, Theorem 1.3]) are still valid for Gaussian
actions as in Theorem A or Theorem B. Thus we only have to prove Steps (1)-(4) for
such Gaussian actions.

Steps (3) and (4) are very general, and will work for any mixing action satisfying the
conclusions of steps (1) and (2).

Step (1) is the result of Popa’s deformation/rigidity strategy so it should not be specific
to Bernoulli shifts. In [IPV11], it was a direct consequence of [IPV11, Corollary 4.3].
Using the results in [Bo12], one can easily get the Gaussian counterpart of [IPV11,
Corollary 4.3], namely Corollary 2.8.

Finally, Step (2) relies on a beautiful localization theorem due to Ioana, [Io11, Theorem
6.1]. That theorem states that if D is an abelian subalgebra of M ⊗M which is
normalized by “enough” unitaries in L(Γ × Γ), then either D′ ∩ (M ⊗M) ≺ A⊗A,
or D ≺ M ⊗LΓ, or D ≺ LΓ⊗M . This theorem is applied to D = ∆(A). Using

1This morphism were also introduced by Popa and Vaes in [PV09, Lemma 3.2].
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mixing properties, and the fact that B ⊀ A, the last two cases cannot hold and Step
(2) follows.

So the point of the whole proof of theorems A and B is to generalize Ioana’s localization
theorem [Io11, Theorem 6.1]. It will be done in Section 3, Theorem 3.1. We explain
below the main difficulties to obtain such a generalization.

Main difficulties in the generalization. Unlike Bernoulli shifts, general mixing
Gaussian actions do not satisfy the following properties, which were crucial in Ioana’s
argument.

• Cylinder structure: If Γ y [0, 1]Γ is a Bernoulli action, we call finite cylinder
subalgebra a subalgebra of A = L∞([0, 1]Γ) of the form AF = L∞([0, 1]F ), for
some finite subset F ⊂ Γ. Then the union of all finite cylinder subalgebras is
a strongly dense ∗-subalgebra A0 of A, which is stable under the action of Γ.
In fact, A0 is a graded CΓ-module;

• Finitely supported coefficients: If Γ y [0, 1]Γ is a Bernoulli action, there exist a
strongly dense ∗-subalgebra A0 of L∞([0, 1]Γ) such that for any a, b ∈ A0 ⊖ C,
〈σg(a), b〉 = 0 if g ∈ Γ large enough.

The use of the second property above can be avoided using ε-orthogonality and a trick
involving convex combinations. To avoid using the cylinder structure, the idea is to
replace cylinders by general finite dimensional subsets of L∞(X), and use a multiple
mixing property automatically enjoyed by mixing Gaussian actions.

Definition 1.2. A trace-preserving action Γ yσ A of a countable group on an abelian
von Neumann algebra is 2-mixing if for any a, b, c ∈ A, the quantity τ(aσg(b)σh(c))
tends to τ(a)τ(b)τ(c) as g, h, g−1h tend to infinity.

In fact, every steps of the proof still hold for general s-malleable actions (in the sense
of Popa [Po08]) which are 2-mixing.

Definition 1.3 ([Po08]). A measure preserving action Γ y (X, µ) is said to be s-
malleable if there exists a one-parameter group (αt)t∈R of automorphisms of L∞(X ×
X, µ⊗ µ), and an automorphism β ∈ Aut(L∞(X ×X, µ⊗ µ)) such that:

• the map t 7→ αt(x) is strongly continuous for any x ∈ L∞(X ×X);
• the automorphisms αt, t ∈ R and β commute with the double action of Γ on
X ×X ;

• α1(L
∞(X)⊗1) = 1⊗L∞(X), where we identify L∞(X×X) ≃ L∞(X)⊗L∞(X);

• for any t ∈ R, one has αt ◦ β = β ◦ α−t;
• β acts trivially on L∞(X)⊗ 1 and β2 = id.

Such a pair ((αt)t, β) is called an s-malleable deformation.

Theorem C. Let Γ be an ICC group and Γ yσ (X, µ) be a free ergodic action of
Γ. Assume that σ is 2-mixing and s-malleable, and that one of the following two
conditions holds.

• Γ is w-rigid or
• Γ is non-amenable and is isomorphic to the product of two infinite groups, and
some tensor power of the Koopman representation σ|L2(X)⊖C is weakly contained
in the regular representation of Γ.
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Then σ is W∗-superrigid.

This result is theoretically satisfying compared to the existing orbit equivalence super-
rigidity results about malleable actions from [Po07a, Po08]. However, the only known
examples of actions satisfying the assumptions are Gaussian actions. Therefore, in
this article we will only focus on the concrete example of Gaussian actions: we will
not provide an explicit proof of Theorem C. As we mentioned above, Theorem C can
be proved in the same way than Theorems A and B.

An application to group von Neumann algebras. As another application of
Theorem 3.1, we construct a large class of II1 factors which are not stably isomorphic
to group von Neumann algebras. These factors are the crossed-product von Neu-
mann algebras of Gaussian actions associated to representations π as in Theorem A or
Theorem B, with the extra-assumption that π is not weakly contained in the regular
representation.

In [Bo12, Proposition 2.8], such Gaussian actions were shown not to be conjugate to
generalized Bernoulli shifts. Using Theorems A and B, we get that the associated
factors are not isomorphic to crossed-product factors of Bernoulli actions, and in par-
ticular, to von Neumann algebras of certain wreath-product groups. However, showing
that such factors are not isomorphic to algebras LΛ, with no assumptions on the group
Λ is much harder, and will require the work of Ioana, Popa and Vaes [IPV11].

Theorem D. Let Γ be an ICC group and π : Γ → O(H) a mixing orthogonal repre-
sentation of Γ such that one of the following two conditions holds.

• Γ is w-rigid or
• Γ is non-amenable and is isomorphic to the product of two infinite groups, and
some tensor power of π is weakly contained in the regular representation of Γ.

Assume moreover that π itself is not contained in a direct sum λ⊕∞ of copies of the
left-regular representation. Let Γ yσ A be the Gaussian action associated to π and
put M = A⋊ Γ. Then M is not stably isomorphic to a group von Neumann algebra.

By [Bo12, Proposition 2.9], we know that for each n ≥ 3, SL(n,Z) admits a represen-
tation as in Theorem C. Thus we obtain the existence of a II1 factor Mn, which is not
stably isomorphic to a group von Neumann algebra. But using Theorem 4.1, we get
that the Mn’s are pairwise non-stably isomorphic : Mn ≇ (Mm)

t, ∀t > 0, ∀n 6= m.

Organization of the article. Apart from the introduction, this article contains
three other sections. Section 2 is the preliminary section, in which we recall Popa’s
intertwining techniques, and several facts on Gaussian actions that we proved in [Bo12].
Section 3 is devoted to prove Theorem 3.1, which generalizes [Io11, Theorem 6.1]. It
is the technical heart of the article. Finally, we prove in section 4 Theorems A,B, D
stated above.

Acknowledgement. We warmly thank Cyril Houdayer and Adrian Ioana for their
valuable advice and comments about this work. We also thank Stefaan Vaes and the
mysterious referees for usefull remarks.
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2. Preliminaries

2.1. Intertwining by bimodules. We recall here an essential tool introduced by
Popa, the so-called intertwining by bimodules’ lemma.

Theorem 2.1 (Popa, [Po06a, Po06d]). Let P,Q ⊂M be finite von Neumann algebras
(with possibly non-unital inclusions). Then the following are equivalent.

• There exist projections p ∈ P , q ∈ Q, a normal ∗-homomorphism ψ : pPp →
qQq, and a non-zero partial isometry v ∈ pMq such that xv = vψ(x), for all
x ∈ pPp;

• There exists a P -Q subbimodule H of L2(1PM1Q) which has finite index when
regarded as a right Q-module;

• There is no sequence of unitaries (un) ∈ U(P ) such that for all x, y ∈M ,

‖EQ(1Qx
∗uny1Q)‖2 → 0.

Following [Po06a], if P,Q ⊂ M satisfy these conditions, we say that a corner of P
embeds into Q inside M , and we write P ≺M Q.

Assume that we are in the concrete situation where M is of the form M = B ⋊ Γ
for some trace preserving action of Γ on a finite von Neumann algebra and Q = B.
Denote by ug, g ∈ Γ the canonical unitaries in M implementing the action of Γ. Then
it is easy to check that a subalgebra P ⊂M satisfies P ⊀ B if and only if there exists
a sequence of unitaries vn ∈ U(P ) such that

‖EB(vnu
∗
g)‖2 → 0, ∀g ∈ Γ.

This result can be improved as follows.

Lemma 2.2 (Ioana, [Io11], Theorem 1.3.2). Let Γ y B be a trace preserving action
on a finite von Neumann algebra (B, τ). Put M = B ⋊ Γ, and let P ⊂ M be a von
Neumann subalgebra. Then P ⊀ B if and only if there exists a sequence of unitaries
vn ∈ U(P ) such that

lim
n

(

sup
g∈Γ

‖EB(vnu
∗
g)‖2

)

= 0.

Another natural question one may wonder: What does it mean to embed into the
group algebra LΓ inside a crossed-product algebra M = A ⋊ Γ? In some specific
circumstances, this implies the unitary conjugacy into LΓ, as the following standard
result shows.

We denote by Q = {u ∈ U(M), uQu∗ = Q} the normalizer of a subalgebra Q of a von
Neumann algebra M . The quasi-normalizer QNM(Q) of Q in M is the *-subalgebra
of M formed by Q-Q finite elements. We recall that an element x ∈ M is Q-Q finite
if there exist x1, · · · , xk ∈M such that

xQ ⊂
k

∑

i=1

Qxi and Qx ⊂
k

∑

i=1

xiQ.

Proposition 2.3. Let Γ y A be a free mixing action of an ICC group Γ on an abelian
von Neumann algebra, and let N be a type II1 factor. Put M = (A ⋊ Γ)⊗N , and
assume that Q ⊂ pMp is a von Neumann subalgebra such that Q ⊀M 1 ⊗ N . Put
P = QN pMp(Q)

′′.
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(1) If Q ≺M LΓ⊗N then there exists a non-zero partial isometry v ∈ pM such
that vv∗ ∈ Z(P ) and v∗Pv ⊂ LΓ⊗N .

(2) If rQ ≺M LΓ⊗N for all r ∈ Q′ ∩ pMp then there exists a unitary u ∈ U(M)
such that uPu∗ ⊂ LΓ⊗N .

Proof. (1) By assumption, there exist projections p0 ∈ Q, q ∈ LΓ⊗N , a non-zero
partial isometry v ∈ p0Mq and a *-homomorphism ϕ : p0Qp0 → q(LΓ⊗N)q such that
for all x ∈ p0Qp0, one has xv = vϕ(x).

By [Va08, Remark 3.8], one can assume that ϕ(p0Qp0) ⊀M 1 ⊗ N . Hence [Po06a,
Theorem 3.1] implies that QN qMq(ϕ(p0Qp0))

′′ ⊂ LΓ⊗N . But we see that v∗Pv ⊂
QN qMq(ϕ(p0Qp0))

′′. Moreover vv∗ ∈ p0(Q
′ ∩M) ⊂ P . However vv∗ is not necessarily

in Z(P ) but one can modify v as follows to obtain such a condition.

Take partial isometries v1, · · · , vk ∈ P such that v∗i vi ≤ vv∗, i = 1, · · · , k and
∑k

i=1 viv
∗
i

is a central projection in P . Since LΓ⊗N is a factor, there exist partial isometries
w1, · · · , wk ∈ LΓ⊗N such that wiw

∗
i = v∗v∗i viv and wiw

∗
j = 0, for all 1 ≤ i 6= j ≤ k.

Define a non-zero partial isometry by w =
∑

i vivwi ∈ pM . We get

• ww∗ =
∑

i vivwiw
∗
i v

∗v∗i =
∑

i viv
∗
i ∈ Z(P );

• w∗Pw ⊂ ∑

i w
∗
i v

∗Pvwi ⊂ LΓ⊗N .

(2) Consider a maximal projection r0 ∈ Q′ ∩ pMp for which there exists a unitary
u ∈ U(M) such that u(r0Pr0)u

∗ ⊂ LΓ⊗N . One has to show that r0 = p. Otherwise
we can cut by r = p−r0, and we obtain an algebra rQ ⊂ rMr such that rQ ≺M LΓ⊗N
and rQ ⊀M 1⊗N . Remark that rPr ⊂ QN rMr(rQ)

′′. Applying (1), we get that there
exists a non-zero partial isometry v ∈ rM , such that vv∗ ∈ (rPr)′∩rMr ⊂ (rQ)′∩rMr
and v∗(rPr)v ⊂ LΓ⊗N .

Since LΓ⊗N is a factor, modifying v if necessary, one can assume that v∗v ⊥ ur0u
∗.

Now the following “cutting and pasting” argument contradicts the maximality of r0.
The partial isometry w0 = ur0 + v∗ satisfies w∗

0w0 = r0 + vv∗ ∈ Q′ ∩ pMp and
w0(r0+vv

∗)Qw∗
0 ⊂ LΓ. Extending w0 into a unitary, we obtain a w ∈ U(M) satisfying

w(r0 + vv∗)Qw∗ ⊂ LΓ. �

2.2. Gaussian actions. To any orthogonal representation π : Γ → O(H) of a discrete
countable group, one can associate a trace preserving action σπ : Γ y A on an abelian
von Neumann algebra, called the Gaussian action associated to π. This Gaussian
action can be constructed as follows. For more explicit constructions, see [BHV08,
Appendix A.7] or [PS10]. Consider the unique abelian tracial von Neumann algebra
(A, τ) generated by unitaries (w(ξ))ξ∈HR

such that:

• w(0) = 1 and w(ξ + η) = w(ξ)w(η), w(ξ)∗ = w(−ξ), for all ξ, η ∈ HR;
• τ(w(ξ)) = exp(−‖ξ‖2), for all ξ ∈ HR.

It is easy to check that these conditions imply that the vectors (w(ξ))ξ∈HR
are linearly

independent and span a weakly dense ∗-subalgebra of A. Then the Gaussian action
σπ is defined by (σπ)g(w(ξ)) = w(π(g)ξ), for all g ∈ Γ, ξ ∈ H .

As explained in [Fu07] or [PS10], Gausssian actions are s-malleable (Definition 1.3):
the rotation operators θt, t ∈ R on H ⊕H and the symmetry ρ defined by

θt =

(

cos(πt/2) − sin(πt/2)
sin(πt/2) cos(πt/2)

)

, and ρ =

(

1 0
0 −1

)
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give rise to a one-parameter group of automorphisms αt and an automorphism β of
A⊗A, which are easily seen to satisfy the conditions of Definition 1.3.

Now consider the von Neumann algebras M = A⋊ Γ and M̃ = (A⊗A)⋊σ⊗σ Γ. View

M as a subalgebra of M̃ using the identificationM ≃ (A⊗ 1)⋊Γ. The automorphisms
defined above then extend to automorphisms of M̃ still denoted (αt) and β, in such a
way that αt(ug) = β(ug) = ug, for all g ∈ Γ.

Since these automorphisms come from an s-malleable deformation, they satisfy the
so-called transversality property.

Lemma 2.4 ([Po08], Lemma 2.1). For any x ∈M and t ∈ R one has

‖x− α2t(x)‖2 ≤ 2‖αt(x)−EM ◦ αt(x)‖2.

With more conditions on the representation π, we also get the spectral gap property.

Lemma 2.5 (Spectral gap, [Bo12]). Denote by λ the left regular representation of Γ.
Assume that the representation π is such that π⊗l ≺ λ for some l ≥ 1. Let ω ∈ βN \N
be a free ultrafilter on N.

Then for every von Neumann subalgebra Q ⊂ M with no amenable direct summand,
one has Q′ ∩ M̃ω ⊂Mω

In fact this lemma admits a relative version.

Recall from [OP07] that if (M, τ) is a finite von Neumann algebra, p ∈M a projection,
and Q ⊂ M and P ⊂ pMp are subalgebras, one says that P is amenable relative
to Q inside M if there exists a P -central state ϕ on p〈M, eQ〉p such that ϕ(pxp) =
τ(pxp)/τ(p) for any x ∈M . Here 〈M, eQ〉 denotes Jones’ basic construction associated
to the inclusion Q ⊂ M . Following [IPV11, Section 2.4], P is said to be strongly non-
amenable relative to Q if for all non-zero projection p1 ∈ P ′∩pMp, Pp1 is not amenable
relative to Q.

Lemma 2.6. Denote by λ the left regular representation of Γ. Assume that the rep-
resentation π is such that π⊗l ≺ λ for some l ≥ 1. Let ω ∈ βN \N be a free ultrafilter
on N.

Then for any finite von Neumann algebra N and any von Neumann subalgebra Q ⊂
M ⊗N which is strongly non-amenable relative to 1 ⊗ N , one has Q′ ∩ (M̃ ⊗N)ω ⊂
Q′ ∩ (M ⊗N)ω.

2.3. Deformation/rigidity results on Gaussian actions. We mention here dif-
ferent versions of statements that we proved in [Bo12] using deformation/rigidity ar-
guments.

The following result is a variation of [Bo12, Theorem 3.4], with a formulation closer
to [IPV11, Theorem 4.2].

Theorem 2.7. Assume that Γ y A is the Gaussian action associated to a mixing
representation of an ICC group Γ. Let N be a II1 factor. Put M = A⋊ Γ and define
(αt) as in section 2.2.

Let p ∈ M ⊗N , and Q ⊂ p(M ⊗N)p be a von Neumann subalgebra such that there

exist t0 = 1/2n, z ∈ M̃ ⊗N and c > 0 satisfying

|τ((αt0 ⊗ id)(u∗)zu)| ≥ c, for all u ∈ U(Q).
Put P = QN p(M ⊗N)p(Q)

′′. Then at least one of the following assertions occurs.
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(1) Q ≺ 1⊗N ;
(2) P ≺ A⊗N ;
(3) There exists a non-zero partial isometry v ∈ pM such that vv∗ ∈ Z(P ), and

v∗Pv ⊂ LΓ⊗N .

Proof. Assume that (2) is not satisfied. Using the fact that π is mixing, the same
proof as the one of [Bo12, Theorem 3.4] gives that Q ≺ LΓ⊗N . Now if Q ⊀ 1 ⊗ N ,
Proposition 2.3(1) implies that (3) holds true. �

Now one can deduce the Gaussian version of [IPV11, Corollary 4.3], which implies
Step (1) of the proof of Theorems A and B.

Corollary 2.8. Assume that Γ is ICC and let Γ y A be a mixing Gaussian action.
PutM = A⋊Γ. Let N be a II1 factor and Q ⊂ p(M ⊗N)p a von Neumann subalgebra,
for some p ∈M ⊗N . Assume that we are in one of the following situations:

• Q ⊂ p(M ⊗N)p has the relative property (T);
• Q′ ∩ p(M ⊗N)p is strongly non-amenable relative to 1⊗N (see end of Section
2.2), and some tensor power of π is weakly contained in the regular represen-
tation of Γ.

Denote by P = QN p(M ⊗N)p(Q)
′′. Then one of the following assertions is true.

(1) Q ≺ 1⊗N ;
(2) P ≺ A⊗N ;
(3) There exists a unitary v ∈M ⊗N such that v∗Pv ⊂ LΓ⊗N .

Proof. The assumptions imply that the deformation αt ⊗ id converges to identity uni-
formly on Q. Indeed, if Q ⊂ p(M ⊗N)p has relative property (T), this is almost by
definition. If Q′ ∩ p(M ⊗N)p is strongly non-amenable relative to 1 ⊗ N , then this
is a consequence of spectral gap lemma 2.6, and transversality property 2.4 (see the
proof of [Po08, Lemma 5.2]).

Hence, for all r ∈ Q′ ∩ pMp, the subalgebra rQ ⊂ rMr satisfies the assumpions of
Theorem 2.7. Then if Q ⊀ 1 ⊗ N and P ⊀ A⊗N , Theorem 2.7 applied to all such
rQ’s implies in particular that for all r ∈ Q′ ∩ pMp, rQ ≺ LΓ⊗N . Now (3) follows
from Lemma 2.3(2). �

In [Bo12], we also obtained a localization result (Theorem 3.8) for subalgebras of M
that commute inside Mω with rigid subalgebras of Mω, for some free ultrafilter ω on
N. In fact, the same proof leads to the following improvement. We include a sketch of
the proof for convenience.

Theorem 2.9. Let Γ y A be a mixing Gaussian action. Put M = A⋊Γ and consider
a II1 factor N . Assume that (vn) is a bounded sequence of elements in M ⊗N such
that αt ⊗ id converges to identity uniformly on the set {vn, n ∈ N}. Choose a free
ultrafilter ω on N, and denote by D ⊂M ⊗N ⊂ (M ⊗N)ω the subalgebra of elements
that commute with the element (vn)n ∈ (M ⊗N)ω. Put P = QNM ⊗N(D)′′.

Then one of the following is true.

(1) (vn)n ∈ (A⊗N)ω ⋊ Γ;
(2) D ≺ LΓ⊗N ;
(3) P ≺M A⊗N .
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Sketch of proof. Assume that (vn)n /∈ (Aω⋊Γ)⊗Nω. We will show that the D satisfies
the assumptions of Theorem 2.7.

Define x = (xn) = (vn)− E(A⊗N)ω⋊Γ((vn)) 6= 0. Dividing x if necessary by ‖x‖2, one
can assume that ‖x‖2 ≤ 1. For F ⊂ Γ finite, denote by PF : L2(M) → L2(M) the
projection onto the closed linear span of elements of the form xug, x ∈ A, g ∈ F . One
checks that:

• αt ⊗ id converges to identity uniformly on {xn, n ∈ N};
• limn→ω ‖[xn, d]‖2 → 0, for any d ∈ D;
• limn→ω ‖(PF ⊗ id)(xn)‖2 → 0, for any finite subset F ⊂ Γ.

Using [Va10b, Lemma 3.8], one can show that this last condition implies that

(2.1) lim
n→ω

〈xnξx∗n, η〉 = 0, ∀ξ, η ∈ (L2(M̃)⊖ L2(M))⊗ L2(N).

Fix ε > 0. Then there exists a t = 1/2k such that ‖(αt ⊗ id)(xn)− xn‖2 < ε, ∀n.
Fix u ∈ U(D) and put δt(u) = (αt ⊗ id)(u) − EM ⊗N((αt ⊗ id)(u)). Then note that

δt(u) ∈ (L2(M̃)⊖ L2(M))⊗ L2(N), and that for all n,

‖δt(u)xn − δt(uxn)‖2 = ‖(1− EM ⊗N )((αt ⊗ id)(u)xn − (αt ⊗ id)(uxn))‖2
≤ ‖(αt ⊗ id)(u)xn − (αt ⊗ id)(uxn)‖2
≤ ‖xn − (αt ⊗ id)(xn)‖2 < ε.

Hence we get

lim
n→ω

‖δt(u)xn‖22 ≤ lim
n→ω

〈δt(uxn), δt(u)xn〉+ ε

= lim
n→ω

〈δt(xnu), δt(u)xn〉+ ε

≤ lim
n→ω

〈xnδt(u)x∗n, δt(u)〉+ 2ε.

Combining this last inequality with (2.1), we obtain

(2.2) lim
n→ω

‖δt(u)xn‖22 ≤ 2ε.

But exactly as in the proof of Popa’s transverality lemma [Po08, Lemma 2.1], one
shows that for all n ∈ N,

‖(α2t ⊗ id)(u)xn − uxn‖2 ≤ ‖(αt ⊗ id)(u)xn − (α−t ⊗ id)(u)xn‖2 + 2ε

≤ ‖δt(u)xn‖2 + ‖EM ⊗N ((αt ⊗ id)(u))xn − (α−t ⊗ id)(u)xn‖2 + 2ε

= 2‖δt(u)xn‖2 + 2ε,(2.3)

where the last equality is obtained by applying the relation ‖y‖2 = ‖(β ⊗ id)(y)‖2 to
the element y = EM ⊗N((αt ⊗ id)(u))xn − (α−t ⊗ id)(u)xn, and using the properties of
β (see Definition 1.3).

Hence, if ε < 1, equations (2.2) and (2.3) imply that

lim
n→ω

‖(α2t ⊗ id)(u)xn − uxn‖2 < 6
√
ε.

Put z = EM ⊗N ((xnx
∗
n)n). We have

2 lim
n→ω

‖xn‖22 − 2ℜ(τ((α2t ⊗ id)(u∗)zu)) = lim
n→ω

‖(α2t ⊗ id)(u)xn − uxn‖22 < 36ε.

If ε was chosen to be small enough, this implies the result. �
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Corollary 2.10. For i = 1, 2, consider mixing Gaussian actions Γi y Ai and put
Mi = Ai ⋊ Γi, A = A1⊗A2, Γ = Γ1 × Γ2 and M =M1⊗M2 = A⋊ Γ.

For i = 1, 2, define M̃i and (αi
t), as in section 2.2, and denote by M̃ = M̃1 ⊗ M̃2

equipped with the deformation (αt) = (α1
t ⊗ α2

t ).

Assume that (vn) is a bounded sequence of elements in M such that αt converges
uniformly to the identity on the set {vn, n ∈ N}. Choose a free ultrafilter ω on N,
and denote D ⊂ M ⊂ Mω the subalgebra of elements that commute with the element
(vn)n ∈Mω. Put P = QNM(D)′′.

Then one of the following is true.

(1) (vn)n ∈ Aω ⋊ Γ;
(2) D ≺M LΓ1⊗M2 or D ≺M M1⊗LΓ2;
(3) P ≺M A1⊗M2 or P ≺M M1⊗A2.

Proof. Exactly as in the proof of [Io11, Theorem 3.2] Claim 2, we get that if αt con-
verges uniformly on {vn, n ∈ N}, then so do α1

t ⊗ id and id⊗α2
t . Thus if (2) and (3)

are not satisfied, Theorem 2.9 implies that (vn) ∈ (Aω
1 ⋊Γ1)⊗ (Aω

2 ⋊Γ2) = Aω⋊Γ. �

2.4. 2-mixing property.

Definition 2.11. A trace-preserving action Γ yσ A of a countable group on an
abelian von Neumann algebra is said to be 2-mixing if for any a, b, c ∈ A, the quantity
τ(aσg(b)σh(c)) tends to τ(a)τ(b)τ(c) as g, h, g

−1h tend to infinity.

Proposition 2.12. An action Γ yσ A is 2-mixing if and only if for all a, b, c ∈ A,
one has

|τ(aσg(b)σh(c))− τ(a)τ(σg(b)σh(c))| → 0,

when g → ∞, h→ ∞.

Proof. The if part is straightforward. For the converse, assume that σ is 2-mixing. It
is sufficient to show that if a, b, c ∈ A, with τ(a) = 0, then τ(aσg(b)σh(c)) → 0, as
g, h→ ∞.

Assume by contradiction that there exist sequences gn, hn ∈ Γ going to infinity, and
δ > 0 such that |τ(aσgn(b)σhn

(c))| ≥ δ, for all n. Then two cases are possible:

Case 1. The sequence g−1
n hn is contained in a finite set. Then taking a subsequence

if necessary, one can assume that g−1
n hn = k is constant. Then for all n, we get

τ(aσgn(b)σhn
(c)) = τ(aσgn(bσk(c)).

But since σ is mixing this quantity tends to 0 as n tends to infinity.

Case 2. The sequence g−1
n hn is not contained in a finite set. Then taking a subsequence

if necessary, one can assume that g−1
n hn → ∞ when n→ ∞. Then the 2-mixing implies

that τ(aσgn(b)σhn
(c)) → 0.

In both cases, we get a contradiction. �

Of course any 2-mixing action is mixing. The converse holds for Gaussian actions.

Proposition 2.13. If Γ yσ A is the Gaussian action associated to a mixing repre-
sentation π on H, then σ is 2-mixing.
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Proof. By a linearity/density argument, it is enough to prove that for all ξ, η, δ ∈ H ,
and all sequences gn, hn ∈ Γ tending to infinity, one has

lim
n

[τ(ω(ξ)σgn(ω(η))σhn
(ω(δ)))− τ(ω(ξ))τ(σgn(ω(η))σhn

(ω(δ)))] = 0.

But one checks that:

• τ(ω(ξ)σgn(ω(η))σhn
(ω(δ))) = exp(−‖ξ + π(gn)η + π(hn)δ‖2);

• τ(ω(ξ))τ(σgn(ω(η))σhn
(ω(δ))) = exp(−‖ξ‖2 − ‖π(gn)η + π(hn)δ‖2).

The difference is easily seen to tend to 0. �

3. The key step

We now state the key theorem from which Theorems A and B follow as explained in
the introduction.

Theorem 3.1. For i = 1, 2, consider mixing Gaussian actions Γi y Ai of discrete
countable groups Γi, and put Mi = Ai ⋊ Γi, A = A1⊗A2, Γ = Γ1 × Γ2 and

M =M1⊗M2 = A⋊ Γ.

Let t > 0. Realize (LΓ)t ⊂ M t by fixing an integer n ≥ t and a projection p ∈
LΓ ⊗ Mn(C) with trace t/n. Let D ⊂ M t be an abelian von Neumann subalgebra,
and denote by Λ′′ the von Neumann algebra generated by the group of unitaries Λ =
NM t(D) ∩ U((LΓ)t). Make the following assumptions:

(i) Λ′′ ⊀M LΓ1 ⊗ 1 and Λ′′ ⊀M 1⊗ LΓ2;
(ii) D ⊀ LΓ1 ⊗M2 and D ⊀M M1 ⊗ LΓ2.

Denote by C = D′ ∩M t. Then for all projections q ∈ Z(C), Cq ≺M A.

Proof. Exactly as in the proof of [IPV11, Theorem 5.1], we first show that it is sufficient
to prove that C ≺M A. Indeed, assume that we have shown that the assumptions of
the theorem imply that C ≺M A.

Consider the set of projections

P = {q1 ∈ Z(C) |Cq ≺M A, for all non-zero subprojections q ∈ Z(C)q1}.
Then P admits a unique maximal element p1 ∈ Z(C). By uniqueness, p1 commutes
with the normalizer of C, and in particular with Λ′′. Using [Va10b, Lemma 3.8]
and assumption (i), we get that p1 ∈ (LΓ)t. We want to show that p1 = p(= 1C).
Otherwise, we can cut by p−p1 and we see that (p−p1)D ⊂ (p−p1)(M⊗Mn(C))(p−p1)
satisfies the assumptions of the theorem. Thus (p− p1)C ≺M A. This contradicts the
maximality of p1.

So the rest of the proof is devoted to showing that C ≺M A. As in the proof of [IPV11,
Theorem 5.1], we assume that t ≤ 1, so that n can be chosen to be equal to 1. This
assumption largely simplifies notations, and does not hide any essential part of the
proof.

Note that the assumption (i) implies that there exists a sequence of unitary elements
vn ∈ U(pLΓp) that normalize D and such that

(3.1) ‖ELΓ1⊗1(avnb)‖2 → 0 and ‖E1⊗LΓ2(avnb)‖2 → 0, ∀a, b ∈M.

We will proceed in two steps to prove that C ≺M A. In a first step we collect properties
regarding the sequence (vn) or sequences of the form (vnav

∗
n), a ∈ D. In the second
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step we show the result, reasoning by contradiction. Before moving on to these two
steps, we introduce some notations:

• We denote by ug, g ∈ Γ the canonical unitaries in M implementing the action
of Γ;

• For any element x ∈ M , we denote by x =
∑

g∈Γ xgug (xg ∈ A for all g ∈ Γ)
its Fourier decomposition.

• If S ⊂ Γ is any subset, denote by PS : L2(M) → L2(M) the projection onto
the closed linear span of the vectors aug, a ∈ A, g ∈ S.

• If K ⊂ A is a closed subspace, we denote by QK : L2(M) → L2(M) the
projection onto the closed linear span of the vectors aug, a ∈ K, g ∈ Γ.

Warning for the sequel: g, h ∈ Γ does not mean (g, h) ∈ Γ!

Step 1: Properties of the sequences (vnav
∗
n), a ∈ D.

Lemma 3.2. For any free ultrafilter ω on N, and any a ∈ D, the element (vnav
∗
n)n ∈

Mω belongs to Aω ⋊ Γ.

Proof. We will apply Corollary 2.10. Fix a ∈ D. Since the vn’s are in LΓ, the
deformation αt introduced in the statement of Corollary 2.10 converges uniformly on
the set {vnav∗n, n ∈ N}. Thus Corollary 2.10 implies that one of the following holds
true:

• (vnav
∗
n)n ∈ Aω ⋊ Γ;

• D ≺M LΓ1⊗M2 or D ≺M M1⊗LΓ2;
• P ≺M A1⊗M2 or P ≺M M1⊗A2, where P = NpMp(D)′′.

The second case is excluded by assumption, so we are left to show that the third case is
not possible. By symmetry, it is sufficient to show that P ⊀M A1⊗M2. But we claim
that for all x, y ∈ M , ‖EA1 ⊗M2

(xvny)‖2 → 0. Since vn ∈ U(P ), this claim implies the
result.

By Kaplansky’s density theorem, and by linearity it is sufficient to prove the claim for
x and y of the form ug ⊗ 1, g ∈ Γ1. In particular xvny lies in LΓ. So using the fact
that

A1 ⊗M2 ⊂ M
∪ ∪

1⊗ LΓ2 ⊂ LΓ

is a commuting square, 3.1 directly implies that ‖EA1 ⊗M2
(xvny)‖2 → 0. �

For an element x ∈ M = LΓ, denote by h(x) the height of x: h(x) = supg∈Γ |xg|,
where x =

∑

xgug is the Fourier decomposition of x.

Lemma 3.3. There exists δ > 0 such that h(vn) > δ for all n.

Proof. Assume that the result is false. Taking a subsequence if necessary, we get
that h(vn) → 0. Then we claim that for all finite subset S ⊂ Γ, and all a ∈ (M ⊖
(LΓ1⊗M2)) ∩ (M ⊖ (M1 ⊗LΓ2)),

lim
n

‖PS(vnav
∗
n)‖2 = 0.

Note that (M⊖ (LΓ1 ⊗M2))∩ (M⊖ (M1⊗LΓ2)) is the subset of elements inM whose
Fourier coefficients lie in the weak closure of (A1 ⊖ C1)⊗ (A2 ⊖ C1).
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By a linearity/density argument, to prove this claim it is sufficient to show that for
any bounded sequence of elements wn ∈ LΓ and a⊗ b ∈ (A1 ⊖ C1)⊗ (A2 ⊖ C1),

‖EA(vn(a⊗ b)wn)‖2 → 0.

We can assume that supn ‖wn‖2 ≤ 1. Write vn =
∑

g∈Γ vn,gug and wn =
∑

g∈Γ wn,gug.
We have

EA(vn(a⊗ b)wn) =
∑

g∈Γ

vn,gwn,g−1σg(a⊗ b),

which leads to the formula:

(3.2) ‖EA(vn(a⊗ b)wn)‖22 =
∑

g,g′∈Γ

vn,gwn,g−1vn,g′wn,g′−1τ(σg(a⊗ b)σg′(a
∗ ⊗ b∗)).

Fix ε > 0. Since the action Γi y Ai is mixing for i = 1, 2, there exist finite sets Fi ⊂ Γi

such that |τ((a⊗b)σ(s,t)(a∗⊗b∗))| = |τ(aσs(a∗))τ(bσt(b∗))| < ε, if (s, t) /∈ F = F1×F2.
Now 3.2 and Cauchy-Schwarz inequality imply

‖EA(vn(a⊗ b)wn)‖22 ≤
∑

g∈Γ

∑

g′∈gF

|vn,gwn,g−1vn,g′wn,g′−1τ(σg(a⊗ b)σg′(a
∗ ⊗ b∗))|+ ε.

≤ ‖a‖22‖b‖22h(vn)|F |
∑

g∈Γ

|vn,gwn,g−1|+ ε

≤ ‖a‖22‖b‖22h(vn)|F |+ ε.

Hence, lim supn ‖EA(vn(a⊗ b)wn)‖22 ≤ ε. Since ε was arbitrary, we get the claim.

Now take ε′ < ‖p‖2/3. By assumption, D ⊀M LΓ1 ⊗M2 and D ⊀M M1 ⊗LΓ2, so
there exists a ∈ U(D) such that

‖ELΓ1 ⊗M2
(a)‖2 < ε′ and ‖EM1 ⊗LΓ2

(a)‖2 < ε′.

By Lemma 3.2, the sequence (vnav
∗
n)n belongs to Aω ⋊ Γ, so that there exists a finite

subset F ⊂ Γ such that ‖PF (vnav
∗
n)‖2 ≥ ‖p‖2 − ε′. Thus if we define a0 = a −

ELΓ1 ⊗M2
(a)− EM1 ⊗LΓ2

(a−ELΓ1 ⊗M2
(a)), we get

‖p‖2 − ε′ ≤ ‖PF (vnav
∗
n)‖2

≤ ‖PF (vn(a− ELΓ1 ⊗M2
(a))v∗n)‖2 + ε′

≤ ‖PF (vna0v
∗
n)‖2 + 2ε′.

But a0 is orthogonal to LΓ1⊗M2 andM1⊗LΓ2, because the conditional expectations
ELΓ1 ⊗M2

and EM1 ⊗LΓ2
commute. Therefore, when n goes to infinity, the claim implies

that ‖PF (vna0v
∗
n)‖2 → 0 which leads to the absurd statement that ‖p‖2 ≤ 3ε′ <

‖p‖2. �

We end this paragraph by a lemma that localizes the Fourier coefficients of elements
vnav

∗
n inside A, for a particular (fixed) a ∈ D. In fact, this lemma will be the starting

point of our reasoning by contradiction in Step 2 below, being the initialization of an
induction process.

Lemma 3.4. There exists an a ∈ U(D), a δ0 > 0, a finite dimensional subspace
K ⊂ (A1 ⊖ C1)⊗ (A2 ⊖ C1), and a sequence (gn, hn) ∈ Γ such that:

• gn, hn → ∞, as n→ ∞;
• lim inf ‖Qσ(gn,hn)(K)(vnav

∗
n)‖2 > δ0.



W
∗
-SUPERRIGIDITY OF GAUSSIAN ACTIONS 15

Proof. Put δ1 = lim inf h(vn) > 0 and consider a sequence (gn, hn) ∈ Γ such that
|vn,(gn,hn)| = h(vn) for all n. Now 3.1 implies that the sequences (gn) and (hn) go to
infinity with n. Moreover, we have

lim sup
n

‖vn − vn,(gn,hn)u(gn,hn)‖2 =
√

‖p‖22 − δ21.

Take ε > 0 such that
√

‖p‖22 − δ21 + 4ε < ‖p‖2. By assumption (ii), there exists
a ∈ U(D) such that ‖ELΓ1 ⊗M2

(a)‖2 < ε and ‖EM1 ⊗LΓ2
(a)‖2 < ε. Thus the element

a1 = a − ELΓ1 ⊗M2
(a) − EM1 ⊗LΓ2

(a − ELΓ1 ⊗M2
(a)) satisfies ‖a − a1‖2 < 3ε, and its

Fourier coefficients are in (A1⊖C1)⊗ (A2⊖C1). We conclude that there exists a finite
dimensional K ⊂ (A1 ⊖ C1)⊗ (A2 ⊖ C1) such that, ‖a−QK(a)‖2 < 4ε.

Finally, we get that

‖vnav∗n − vn,(gn,hn)u(gn,hn)QK(a)v
∗
n‖2 <

√

‖p‖22 − δ21 + 4ε.

Since vn,(gn,hn)u(gn,hn)QK(a)v
∗
n belongs to the image of the projection Qσ(gn,hn)(K), we

get the result with δ0 > 0 defined by ‖p‖22 − δ20 = (
√

‖p‖22 − δ21 + 4ε)2. �

Step 2: We show that C ≺M A.

Notation. For a finite subset G ⊂ Γ, finite dimensional subspaces K1, K2 ⊂ A and
λ > 0, define

[K1 × σG(K2)]
λ = conv{λaσg(b) | a ∈ K1, b ∈ K2, g ∈ G, ‖a‖2 ≤ 1, ‖b‖2 ≤ 1}.

We have that [K1 × σG(K2)]
λ is a closed convex subset C of A (being the convex hull

of a compact subset in a finite dimensional vector space). Then the set C̃ consisting
of vectors ξ ∈ L2(M) whose Fourier coefficients ξg = 〈ξ, ug〉 (g ∈ Γ) belong to C is a
closed convex subset of L2(M). Hence one can define the “orthogonal projection onto
this set” QC : L2(M) → L2(M) as follows. For x ∈ L2(M), QC(x) is the unique point

of C̃ such that

‖x−QC(x)‖ = inf
y∈C̃

‖x− y‖.

Note that the restriction of QC to L2(A) is equal to the orthogonal projection onto C,
and that QC(

∑

g∈Γ xgug) =
∑

g∈ΓQC(xg)ug.

Remark 3.5. This notation is consistent with the previous notation QK : If K ⊂ A
is a finite dimensional subspace, then QK(a) = QC(a), where C = [C1 × σ{e}(K)]λ as
soon as λ ≥ ‖a‖2.

Before getting into the heart of the proof, we check some easy properties of these
convex sets.

Lemma 3.6. Fix λ > 0 and finite dimensional subspaces K1, K2 ⊂ A. Then there
exists a constant κ > 0 such that for all finite G ⊂ Γ, and all x ∈ [K1 × σG(K2)]

λ,

‖x‖∞ ≤ κ.

Proof. Since K1 and K2 are finite dimensional, there exists a constant c > 0 such that
‖a‖∞ ≤ c‖a‖2 for all a ∈ K1 or a ∈ K2. One sees that κ = λc2 satisfies the conclusion
of the lemma. �
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Lemma 3.7. For finite subsets F,G ⊂ Γ, and finite dimensional subspacesK1, K2, K
′
1, K

′
2 ⊂

A and λ1, λ2 > 0, we have

[K1 × σF (K2)]
λ1 + [K ′

1 × σG(K
′
2)]

λ2 ⊂ [(K1 +K ′
1)× σG∪F (K2 +K ′

2)]
λ1+λ2.

Proof. This is straightforward. �

From now on, we assume by contradiction that C ⊀M A. The contradiction we are
looking for is then a direct consequence of the following lemma. Indeed, using Lemma
3.4, and iterating Lemma 3.8 enough times, we get the absurd statement that there
exist unitaries an = vnav

∗
n and elements bn of the form QCn(an) such that lim infn ‖an−

bn‖22 is negative.

Lemma 3.8. Fix a ∈ U(D) and put an = vnav
∗
n for all n. Assume that there exists a

sequence of finite subsets Fn×Gn ⊂ Γ = Γ1×Γ2, finite dimensional subspaces K1 ⊂ A,
K2 ⊂ (A1 ⊖ C1)⊗ (A2 ⊖ C1), λ > 0 and δ > 0 such that:

• supn |Fn||Gn| <∞;
• Fn → ∞ (meaning that for all g ∈ Γ1, g /∈ Fn for n large enough), Gn → ∞;
• lim supn ‖an −QCn(an)‖22 < ‖p‖22 − δ2, where Cn = [K1 × σFn×Gn

(K2)]
λ.

Then there exists a sequence of finite subsets F ′
n×G′

n ⊂ Γ, finite dimensional subspaces
K ′

1 ⊂ A, K ′
2 ⊂ (A1 ⊖ C1)⊗ (A2 ⊖ C1), and λ′ > 0 such that:

• supn |F ′
n||G′

n| <∞;
• F ′

n → ∞, G′
n → ∞;

• lim supn ‖an −QC′

n
(an)‖22 < ‖p‖22 − 3δ2/2, where C′

n = [K ′
1 × σF ′

n×G′

n
(K ′

2)]
λ′

.

The multiple mixing property will be used in the proof of this lemma through the
following lemma.

Lemma 3.9. Let x, y, z ∈ A1 ⊗ A2. For any sequences gn = (g1n, g
2
n) ∈ Γ and hn =

(h1n, h
2
n) ∈ Γ such that g1n, g

2
n, h

1
n, h

2
n → ∞, we have

|τ(xσgn(y)σhn
(z))− τ(x)τ(σgn(y)σhn

(z))| → 0.

Proof. Without loss of generality, one can assume that x = x1 ⊗ x2, y = y1 ⊗ y2,
z = z1 ⊗ z2. We have

• τ(xσgn(y)σhn
(z)) = τ(x1σg1n(y1)σh1

n
(z1))τ(x2σg2n(y2)σh2

n
(z2));

• τ(x)τ(σgn(y)σhn
(z)) = τ(x1)τ(σg1n(y1)σh1

n
(z1))τ(x2)τ(σg2n(y2)σh2

n
(z2)).

So the result follows directly from the multiple mixing property of the Gaussian actions
Γi y Ai, i = 1, 2. �

Proof of Lemma 3.8. Let a, Fn, Gn, K1, K2, λ, δ and Cn be as in the implication. Fix
ε > 0, with ε≪ δ. By Lemma 3.2 one can find S ⊂ Γ finite such that ‖an−PS(an)‖2 ≤
ε, for all n. Hence we get that lim supn ‖an − PS ◦QCn(an)‖2 <

√

‖p‖22 − δ2 + ε.

Now following Ioana’s idea (see the proof of [Io11, Theorem 5.2] and also the end of
the proof of [Va11, Theorem 14.1] for a more clear exposition of this idea), we will
consider an element d ∈ U(C) with sufficiently spread out Fourier coefficients so that
for n large enough, d(PS ◦QCn(an))d

∗ is almost orthogonal to PS ◦QCn(an), while it is
still close to an. Then the sum d(PS ◦QCn(an))d

∗+PS ◦QCn(an) should be even closer
to an.
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Let α > 0 be a (finite) constant such that ‖x‖∞ ≤ α‖x‖2, for all x ∈ K1. Since
K2 ⊂ (A1 ⊖ C1)⊗ (A2 ⊖ C1) is finite dimensional, the set

L = {g ∈ Γ | ∃a, b ∈ K2, ‖a‖2 ≤ 1, ‖b‖2 ≤ 1 : |〈σg(a), b〉| ≥ ε/|S|2λ2α2}
is finite. Hence for all n, Ln = ∪g,h∈Fn×Gn

gLh−1 is finite, with cardinality smaller or
equal to |Fn|2|Gn|2|L|, which is itself majorized by some N , not depending on n.

Since C ⊀ A, Ioana’s intertwining criterion (Lemma 2.2) implies that there exists
d ∈ U(C) such that ‖PF (d)‖2 ≤ ε/κ|S|, whenever |F | ≤ N , where κ is given by
Lemma 3.6 applied to K1, K2 and λ.

By Kaplansky’s density theorem, one can find d0, d1 ∈M , and T = T1 × T2 ⊂ Γ finite
such that:

• di = PT (di), i = 1, 2;
• ‖d0 − d‖2 ≤ min(ε, ε/κ|S|), ‖d1 − d∗‖2 ≤ ε;
• ‖di‖∞ ≤ 1, i = 1, 2.

Since an ∈ D for all n and d ∈ C = D′ ∩M , we have dand
∗ = an. Thus for all n,

‖an − d0and1‖2 ≤ 2ε, and so

lim sup
n

‖an − d0(PS ◦QCn(an))d1‖2 ≤
√

‖p‖22 − δ2 + 3ε.

Now, for all n, put Tn = T \Ln. By definition of d, ‖PT (d)−PTn
(d)‖2 ≤ ε/κ|S|, hence

‖d0 − PTn
(d0)‖2 ≤ 3ε/κ|S|. Notice that ‖PS ◦QCn(an)‖∞ ≤ κ|S|, which implies that

lim sup
n

‖an − PTn
(d0)PS ◦QCn(an)d1‖2 ≤

√

‖p‖22 − δ2 + 6ε.

Denote by xn = PS ◦QCn(an) and yn = PTn
(d0)PS ◦QCn(an)d1.

We want to show that lim supn |〈xn, yn〉| is small.

Write d0 =
∑

g∈T d0,gug, an =
∑

h an,huh, and d1 =
∑

k∈T d1,kuk. We get

〈yn, xn〉 =
∑

g∈Tn,h∈S,k∈T
ghk∈S

τ(d0,gσgh(d1,k)σg(QCn(an,h))QCn(an,ghk)
∗)

=
∑

g∈T,h∈S,k∈T
ghk∈S

1{g∈Tn}τ(d0,gσgh(d1,k)σg(QCn(an,h))QCn(an,ghk)
∗).

Claim. For all fixed x, y ∈ A, and g ∈ T , there exists n0 such that for all n ≥ n0, and
all a, b ∈ Cn,

|1{g∈Tn}τ(xyσg(a)b
∗)〉| ≤ 2ε‖x‖2‖y‖2/|S|2.

To prove this claim, first recall that for all n, Cn = [K1 × σFn×Gn
(K2)]

λ. Denote by

K̃1 = span{xyσg(a)b∗, a, b ∈ K1}. Since K̃1 and K2 have finite dimension and since
Fn, Gn → ∞, Lemma 3.9 implies that there exists n0 such that for n ≥ n0, and for all
s, t ∈ Fn ×Gn one has

(3.3) sup
a∈K̃1,‖a‖2≤1

b,c∈K2,‖b‖2≤1,‖c‖2≤1

|τ(aσgs(b)σt(c∗))− τ(a)τ(σgs(b)σt(c
∗))| ≤ ε‖x‖2‖y‖2/|S|2λ2.

Thus take n ≥ n0. By definition of Cn, it is sufficient to prove that for all a, b ∈ K1,
c, d ∈ K2, with ‖a‖2, ‖b‖2, ‖c‖2, ‖d‖2 ≤ 1, and all s, t ∈ Fn ×Gn,

|1{g∈Tn}τ(xyσg(λaσs(c))λb
∗σt(d

∗))| ≤ 2ε‖x‖2‖y‖2/|S|2.
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We can assume that g ∈ Tn. An easy calculation gives

|τ(xyσg(λaσs(c))λb∗σt(d∗))| ≤ ε‖x‖2‖y‖2/|S|2 + λ2|τ(xyσg(a)b∗)τ(σgs(c)σt(d∗))|
≤ ε‖x‖2‖y‖2/|S|2 + λ2‖x‖2‖y‖2‖a‖∞‖b‖∞ε/|S|2λ2α2

≤ 2ε‖x‖2‖y‖2/|S|2,
where the first inequality is deduced from 3.3, while the second is because g /∈ Ln. So
the claim is proven.

Now we can estimate |〈xn, yn〉|, for n large enough.

|〈xn, yn〉| ≤
∑

g∈T,h∈S,k′∈S

|1{g∈Tn}τ(d0,gσgh(d1,h−1g−1k′)σg(QCn
(an,h))QCn

(an,k′)
∗)|

≤
∑

g∈T,h∈S,k′∈S

2ε‖d0,g‖2‖d1,h−1g−1k′‖2/|S|2

≤ 2ε‖d0‖2‖d1‖2 ≤ 2ε.

Therefore, we obtain:

• lim supn ‖an − xn‖2 <
√

‖p‖22 − δ2 + ε;

• lim supn ‖an − yn‖2 <
√

‖p‖22 − δ2 + 6ε;
• lim supn |〈xn, yn〉| ≤ 2ε.

Thus using the formula

‖x− (y + z)‖22 = ‖x− y‖22 + ‖x− z‖22 − ‖x‖22 + 2ℜ〈y, z〉,
one checks that lim supn ‖an − (xn + yn)‖22 ≤ ‖p‖22 − 3δ2/2, if ε is small enough.

Now observe that

yn =
∑

g∈Tn,h∈S,k∈T

d0,gσgh(d1,k)σg(QCn(an,h))ughk.

So let us check that yn has its Fourier coefficients in [K0 × σ(T1Fn)×(T2Gn)(K2)]
λ|S||T |,

where K0 = span{d0,gσgh(d1,k)σg(c), c ∈ K1, g, k ∈ T, h ∈ S}.
Fix n ∈ N, and s ∈ Γ. Denote by yn,s = EA(ynu

∗
s). We have

yn,s =
∑

g∈Tn,h∈S,k∈T
ghk=s

d0,gσgh(d1,k)σg(QCn(an,h)).

Thus it is a convex combination of terms of the form

T =
∑

g∈T,h∈S,k∈T
ghk=s

d0,gσgh(d1,k)σg(λahσth(bh))

=
1

|S||T |
∑

g∈T,h∈S,k∈T
ghk=s

|S||T |d0,gσgh(d1,k)σg(λahσth(bh)),

for elements ah ∈ K1, bh ∈ K2, with ‖ah‖2, ‖bh‖2 ≤ 1 and th ∈ Fn × Gn, for all
h ∈ S. But such terms T are themselves convex combinations of elements of the
form λ|S||T |xσgt(y), with x ∈ K0, y ∈ K2, ‖x‖2, ‖y‖2 ≤ 1 and gt ∈ T (Fn × Gn) =
(T1Fn)× (T2Gn).
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Therefore, as pointed out in Lemma 3.7, xn+yn has Fourier coefficients in C′
n = [K ′

1×
σF ′

n×G′

n
(K ′

2)]
λ′

, with K ′
1 = K1 +K0, K

′
2 = K2, λ

′ = λ + λ|S||T |, and F ′
n = Fn ∪ T1Fn,

G′
n = Gn ∪ T2Gn.

We conclude that:

‖an −QC′

n
(an)‖22 ≤ ‖p‖22 − 3δ2/2,

which proves the lemma. �

The proof of Theorem 3.1 is complete. �

Taking Γ2 = {e} and A2 = C we obtain a similar statement for a single mixing action
Γ y A.

Corollary 3.10. Assume that Γ y A is a mixing Gaussian action. Denote by M =
A ⋊ Γ. Consider an abelian von Neumann subalgebra D ⊂ pMp, p ∈ LΓ, which
is normalized by a sequence of unitaries (vn) ∈ U(pLΓp) with vn → 0 weakly. Put
C = D′ ∩ pMp. Then one of the following is true:

• D ≺M LΓ
• For all q ∈ Z(C), qC ≺M A.

In fact, S. Vaes asked during his series of lectures at the IHP in Paris (spring 2011)
whether such a corollary could hold for any mixing action. A. Ioana showed that this
is true for Bernoulli shifts [Io11, Theorem 6.2], and as we just showed, the proof can
be adapted to Gaussian actions. In our proof, we only used the following properties
of Gaussian actions:

• The 2-mixing property;
• The malleability property.

Moreover, the malleability of Gaussian actions is only used to prove Lemma 3.2 (i.e.
to show that the sequences (vnav

∗
n), a ∈ D lie in Aω ⋊Γ). We suspect that this lemma

might be shown only using multiple mixing properties, but we were not able to reach
this conclusion.

4. Proof of the results

We will prove the following generalization of Theorems A and B that considers some
amplifications. We will follow closely the proof of [IPV11, Theorem 10.1].

Theorem 4.1. Let Γ be an ICC countable discrete group, and π : Γ → O(HR) an
orthogonal representation of Γ. Make one of the following two assumptions:

• Γ is w-rigid and ICC, and π is mixing;
• Γ is an ICC non-amenable product of two infinite groups and π is mixing and
admits a tensor power which is weakly contained in the regular representation.

Let Γ y A be the Gaussian action associated to π and put M = A⋊Γ. Let Λ y B be
another free ergodic action on an abelian von Neumann algebra, and put N = B ⋊ Λ.

If for some t ≥ 1, M ≃ N t, then t = 1, Γ ≃ Λ and the actions Γ y A and Λ y B are
conjugate.
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Proof. Take a projection p0 ∈M with trace equal to 1/t ≤ 1. By assumption we have
an isomorphism θ : N → p0Mp0. For notational simplicity, we will omit the θ, and
just write N = p0Mp0.

Claim. To prove the theorem, it is sufficient to show that either there exists u ∈ U(M)
such that uLΛu∗ ⊂ LΓ, or B ≺M A. Indeed, if uLΛu∗ ⊂ LΓ, then Corollary 3.10
easily implies that B ≺M A (B ≺ LΓ is excluded because of Proposition 2.3). If
B ≺M A, then by [Po06c, Theorem A.1] (and using an amplification Bt of B into
a Cartan subalgebra of M), there exists a unitary v ∈ M such that vBv∗ ⊂ A.
Thus (B ⊂ N) and (qA ⊂ qMq) follow isomorphic, where q = vp0v

∗ ∈ A. Hence
R(Λ y B) ≃ R(Γ y A)1/t. Popa’s orbit equivalence superrigidity theorems ([Po07a,
Theorems 5.2 and 5.6] and [Po08, Theorem 1.3]) imply that t = 1, Γ ≃ Λ and the
actions are conjugate. This proves the claim.

Assume that B ⊀M A and that no unitary ofM conjugates LΛ into LΓ. We will follow
the procedure described in the introduction (steps (1)-(4)) to get a contradiction.

Denote by ∆0 : N → N ⊗N the comultiplication defined by ∆(bvs) = bvs ⊗ vs for
b ∈ B, s ∈ Λ. Amplifying the ∗-morphism ∆0, we obtain a (possibly non-unital)
∗-morphism ∆ :M → M ⊗M , which satisfies the following properties.

Lemma 4.2. Let P ⊂M a von Neumann subalgebra.

(1) If P ⊀M B then ∆(P ) ⊀M ⊗M M ⊗ 1;
(2) If P is diffuse, then ∆(P ) ⊀ 1⊗M ;
(3) If ∆(M) ≺ M ⊗P , then LΛ ≺ P . Moreover, if ∆(M)s ≺ M ⊗P for every

non-zero projection s ∈ ∆(M)′ ∩ ∆(1)(M ⊗M)∆(1), then LΛr ≺ P for all
non-zero projection r ∈ LΛ′ ∩M ;

(4) If ∆(M) ≺ P ⊗M , then there exists a projection q ∈ P ′ ∩M such that Pq ⊂
qMq has finite index;

(5) If P has no amenable direct summand, then ∆(P ) is strongly non-amenable
relative to M⊗1 or 1⊗M . In particular, if N ⊂M is an amenable subalgebra,
then ∆(P ) ⊀M ⊗N or N ⊗M .

Proof. These properties are true for ∆0 by [IPV11, Lemma 10.2] and [Io11, Lemma
9.2(4)]. One easily checks that they are still true for ∆ (see also [BV12, Proposition
4.1]). �

Since we assumed that no unitary of M conjugates LΛ into LΓ, the moreover part
of statement (3) above combined with Proposition 2.3.ii provides a projection s ∈
∆(M)′ ∩∆(1)(M ⊗M)∆(1) such that s∆(M) ⊀ M ⊗LΓ.

Step (1) There exists a unitary v ∈ U(M ⊗M) such that

vs∆(LΓ)v∗ ⊂ L(Γ× Γ).

Proof. Put Q = s∆(LΓ) ⊂ s(M ⊗M)s. The assumptions of the theorem imply that
either Q ⊂ s(M ⊗M)s has relative property (T) (case 1), or that Q = Q1⊗Q2 with
Q1 diffuse and Q2 being strongly non-amenable relative to M ⊗ 1 and 1⊗M (Lemma
4.2.5) (case 2).

Applying corollary 2.8 either to Q (in case 1) or to Q1 (in case 2), we get that one of
the following assertions holds true (note that Q is contained in the normalizer of Q1).

(a) Q ≺ 1⊗M (in case 1) or Q1 ≺ 1⊗M (in case 2).
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(b) Q ≺ A⊗M .
(c) There exists v1 ∈ U(M ⊗M) such that v1Qv

∗
1 ⊂ LΓ⊗M .

But assertions (a) and (b) are excluded because of items (2) and (5) in Lemma 4.2.
Thus (c) holds true.

Now one can apply again Corollary 2.8 to the subalgebra v1Qv
∗
1 ⊂ (v1sv

∗
1)(LΓ⊗M)(v1sv

∗
1)

(in case 1) or to v1Q1v
∗
1 (in case 2), to deduce that one of the following is true.

(a’) Q ≺ LΓ⊗ 1 (in case 1) or Q1 ≺ LΓ⊗ 1 (in case 2).
(b’) Q ≺ LΓ⊗A.
(c’) Step (1) is true.

Again (b’) is false. By Lemma 4.2.1, (a’) would imply that Q0 ≺ B where Q0 is a
diffuse von Neumann subalgebra of LΓ. Passing to relative commutants, it further
implies that B ≺M Q′

0 ∩M the later being contained in LΓ since our Gaussian action
is mixing (see for instance [Bo12, Lemma 3.5]). But then M ≺M LΓ (by Proposition
2.3), which is imposible. So (a’) is excluded. �

Now define q = vsv∗ ∈ L(Γ× Γ) and C = (vs∆(A)v∗)′ ∩ q(M ⊗M)q.

Step (2) For every projection p ∈ Z(C), we have that Cp ≺ A⊗A. Moreover there
exists a unitary u ∈ U(M ⊗M) such that uZ(C)u∗ ⊂ A⊗A.

Proof. Note that the normalizer of the abelian von Neumann subalgebra vs∆(A)v∗ ⊂
q(M ⊗M)q contains vs∆(LΓ)v∗ ⊂ qL(Γ×Γ)q. So we apply Theorem 3.1 to vs∆(A)v∗

and we get that one of the following is true:

• vs∆(LΓ)v∗ ≺ LΓ⊗ 1 or 1⊗ LΓ;
• vs∆(A)v∗ ≺ LΓ⊗M or M ⊗ LΓ;
• For every projection p ∈ Z(C), we have that Cp ≺ A⊗A.

Since Γ is non-amenable, Lemma 4.2.5 implies that the first case is impossible. Using
Proposition 2.3.i, the second case implies one of the following impossible situations:

• s∆(A) ≺ 1⊗M (exluded because A is diffuse);
• s∆(M) ≺ LΓ⊗M (excluded because LΓ ⊂M has infinite index);
• s∆(A) ≺ M ⊗ 1 (contradicts our assumption B ⊀ A);
• s∆(M) ≺M ⊗LΓ (contradicts the definition of s).

Thus the first part of Step 2 is true. In particular C is of type I. The second part is
then deduced exactly as in the proof of [Io11, Theorem 6.2, Claim 3]. �

Now the conclusion follows from the end of the proof of [IPV11, Theorem 10.1] (Steps
3 and 4). �

Proof of Theorem D. Let π be an orthogonal representation as in the statement of the
theorem. Assume by contradiction that there exists a countable group Λ such that
M ≃ (LΛ)t for some t > 0. Then adapting the proof of [IPV11, Theorem 8.2], we get
that t = 1, and Λ ≃ Σ⋊ Γ, for some infinite abelian group Σ and some action Γ y Σ
by automorphisms. Moreover, the initial Gaussian action σ is conjugate to the action
of Γ on LΣ.

Now, since σ is mixing, the action Γ y Σ \ {e} has finite stabilizers. But then the
representation Γ y ℓ2(Σ \ {e}) is a direct sum of quasi-regular representations of
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the form Γ y ℓ2(Γ/Γ0), where Γ0 is a finite subgroup of Γ. But such quasi-regular
representations are all contained in the regular representation.

So we conclude that that the Koopman representation Γ y L2(A) ⊖ C1 is contained
in a direct sum of copies of the regular representation. Thus, Proposition 1.7 in
[PS10] implies this is also the case of the representation π, which is excluded by
assumption. �
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