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Bharath Bhushan Damodaran, Joachim Höhle, and Sébastien Lefèvre

Abstract 
This research deals with the automatic generation of 2D land 
cover maps of urban areas using very high resolution multi-
spectral aerial imagery. The appropriate selection of classifier 
and attributes is important to achieve high thematic accura-
cies. In this paper, new attributes are generated to increase the 
discriminative power of auxiliary information provided by re-
mote sensing images. The generated attributes are derived from 
the vegetation index and elevation information using morpho-
logical attribute profiles. The extended experimental evaluation 
and comparison of attribute profile-based mapping solutions 
is conducted to derive the optimal combinations of attributes 
required for classification and to understand the genericity of 
attributes on a range of classifiers, i.e., various combinations 
of attributes and classifiers. Experimental results with two high 
resolution images show that the proposed attributes derived on 
auxiliary information outperform the existing attribute profiles 
computed on original image and its principal components.  

Introduction
Nowadays, due to the advances in the sensor technology, it is 
possible to acquire very high-resolution satellite or airborne 
multispectral imagery to generate accurate urban land cover 
maps. However, analyzing very high-resolution imagery is 
complex, mainly due to the diversity in the size and shape 
of objects, high spectral and spatial variations, and objects 
composed of similar type of materials (Foody, 2000). Urban 
areas are of special interest because they change all the time 
and the maps should be updated in short intervals (Cao et al., 
2015). Also, small objects like walls, hedges, and trees should 
be detected. Machine learning techniques or supervised clas-
sifiers are used to translate images into useful information in 
form of a thematic map. The thematic accuracy of land cover 
maps depends very much on the type of landscape, the input 
data, the class attributes, and on the type of the classification 
method used (Damodaran and Nidamanuri, 2014a; Thomas et 
al., 2003). The type of class attributes has a significant impact 
on the performance of the underlying classifier. Therefore, 
derivation and appropriate use of both simple and advanced 
attributes are of prime importance for generating accurate 2D 
thematic maps from very high-resolution imagery.

The image classification is generally carried out using the 
spectral characteristics of remotely sensed images. However, 
this information alone is not sufficient to obtain accurate 
thematic maps. On the other hand, it is essential to derive the 
spatial contextual attributes to incorporate the neighboring re-
lation among the pixels (Blaschke, 2010; Salehi et al., 2012b; 
Damodaran et al., 2015). Several spatial-based attributes such 
as texture and geometrical attributes are derived to account for 
the neighborhood information in high-resolution imagery. The 

combination of these attributes has significantly increased the 
classification accuracy. The commonly used texture attribute 
is described by means of gray-level co-occurrence matrix, 
mean, standard deviation, entropy, and contrast (Trias-Sanz et 
al., 2008). The geometrical attributes are derived based on the 
contours (boundaries) and regions in the image. The common-
ly used attributes are convexity, perimeter, compactness, and 
area (De Martinao et al., 2003; Du et al., 2015; Inglada, 2007). 
Recently, operators based on multi-scale modeling by math-
ematical morphology (MM) have been employed to extract the 
geometrical informative attributes from high-resolution urban 
imagery (Dalla Mura et al., 2010; Du et al., 2015). The attri-
bute profiles (AP) are built from morphological operators that 
provide multi-level or multi-scale geometrical characteriza-
tion of very high-resolution imagery (Dalla Mura et al., 2010; 
Aptoula et al., 2016). These attribute profiles are a powerful 
model to increase the discrimination between the land cover 
classes. The concept of the APs with all its modifications and 
generalizations is explained in Ghamisi et al. (2015). Several 
other studies were carried out to demonstrate the potential of 
attribute profiles with multi- or hyperspectral imagery using 
single classification methods (Benediktsson et al., 2005; Fau-
vel et al., 2008; Pedergnana et al., 2010; Ghamisi et al., 2014).

Apart from the intensities of the original images or ortho-
images, auxiliary information such as the normalized differ-
ence vegetation index (NDVI), the digital surface model (DSM) 
or the normalized digital surface model (nDSM) are considered 
as important (widely used) attributes for remote sensing image 
classification (Elshehaby and Taha, 2009; Salehi et al., 2012a; 
Höhle and Höhle, 2013). Several studies in literature high-
lighted the importance of DSM and NDVI attributes to provide 
discriminative information to distinguish between the classes 
in very high-resolution imagery (Salehi et al., 2012a; Sampath 
and Shan, 2007). The height above ground (nDSM) derived 
from filtering the DSM was considered as even more important 
in high-resolution urban imagery (Höhle, 2013). However, the 
performance improvement of the thematic map using only 
the above information might be limited, and sometimes it 
might not be as effective as expected. Recently, Tokarczyk et 
al. (2015) showed that the NDVI attribute was not a useful at-
tribute for the classification of high resolution urban imagery, 
since it does not provide any additional information. Thus, 
it is essential and necessary to provide an alternative way to 
utilize the NDVI attribute for high resolution urban image clas-
sification, which could benefit many urban mapping applica-
tions. In this paper, we propose a methodological framework 
to utilize the NDVI attribute for high-resolution urban image 
classification by incorporating the multi-level spatial con-
textual information from the NDVI attribute. The multi-level 
characterization of the NDVI attribute is generated by means of 
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morphological attribute profiles. So far, as per our knowledge, 
studies on generating attribute profiles on the NDVI have not 
been reported. Similarly, the incorporation of the spatial con-
textual information from the DSM or nDSM might be required 
to achieve the expected improvement in the classification 
accuracy (Merciol and Lefèvre, 2015). Recently, the attribute 
profiles were generated from the DSM derived by lidar data 
(Pedergnana et al., 2012; Ghamisi et al., 2014; Khodadadzadeh 
et al., 2015; Liao et al., 2016), and they have shown the ability 
of attribute profiles to improve the classification accuracy. 
However, only limited studies exist on assessing the perfor-
mance of the attribute profiles derived from the DSM or nDSM, 
and there is a need for conducting experiments to validate the 
conclusions derived from these previous studies. Therefore, 
the first contribution of this paper is the generation of a multi-
scale representation of the NDVI and DSM (nDSM) attributes.

Furthermore, the simple attributes (image intensities of 
several bands, NDVI, DSM or nDSM) could bring complimen-
tary information when compared with the spatial attributes 
derived by the attribute filters from NDVI, DSM, and nDSM. 
Thus, integrating the spectral (simple) and spatial attributes 
is essential for generating accurate land cover maps (Zhang 
et al., 2012). Therefore, the second objective of this study is 
to conduct extensive experiments on different combinations 
of various attributes to assess the impact of different attribute 
combinations and to identify the best combination of attri-
butes for generating land cover maps of highest accuracy.  

Finally, the type of classifier employed to generate land 
cover maps has a significant impact on the thematic accuracy 
of the maps (Damodaran and Nidamanuri, 2014b; Thomas et 
al., 2003). It is established that there is no single best classifier 
available that could offer optimal performance across differ-
ent types of attributes and landscapes. Since these classifiers 
differ in the principles they rely on, it is necessary to have a 
practical knowledge on the choice of the classifier and attri-
butes to generate classification maps of high thematic accuracy. 
Recently, the PerTurbo classifier has been proposed to the 
remote sensing community for hyperspectral image classifica-
tion (Chapel et al., 2014). This classifier has shown better or 
comparative performance than support vector machines (SVM). 
Both the SVM and PerTurbo are non-linear classifiers implicitly 
mapping the data into the reproducing kernel Hilbert space 
(RKHS). While SVM is a discriminative classifier, PerTurbo is a 
generative classifier. Such an important classifier has not been 
extensively studied. Thus, the third objective of this paper is 
to assess the genericity of the proposed attributes over a wide 
range of state-of-the-art classification methods and to validate 
the performance of the PerTurbo classifier extensively. Figure 
1 shows the flowchart of generation of land cover maps. The 
preparatory work comprises the selection and the derivation of 
data, which characterize the classes of the land cover map to be 
produced. The attribute generation consists in deriving auxilia-
ry information such as NDVI, DSM (nDSM) from the images and in 
generating multi-scale representations of this information. The 
training of the applied classifier requires some reference data. 
The classification of all map units (pixels or DSM cells) can then 
be achieved. The assessment of the map’s thematic accuracy 
is a necessary step of the generation of land cover maps. Also, 
cartographic enhancement may be part of the whole process. 

The contributions of this paper can be summarized as fol-
lows: (a) generation of multi-scale representation of the NDVI, 
DSM, and nDSM attributes, (b) integration of simple and spatial 
attributes for urban cover classification and identification of the 
optimal combination of attributes for accurate classification, 
and (c) comparative analysis of the state-of-the-art machine 
learning classifiers, and validation of the PerTurbo classifier. 

The paper is structured as follows. The next Section deals 
with the class attributes and machine learning methods used 

for generation of land cover maps, followed by a description 
of the experimental setup and the approaches used in the as-
sessment. The next Section  presents the results and discus-
sion with aerial imagery of two test sites, followed by our 
conclusions.

Materials and Methods
In this section, we provide the background of the multi-scale 
representation of the NDVI, DSM, and nDSM using attribute 
profiles and state-of-the-art machine learning classifiers used 
in this study.

Multi-Scale Representation Using Attribute Profiles
Mathematical morphology is widely used to model the spatial 
characteristics of the classes (objects) in high resolution aerial 
and satellite images. The predefined structuring element (SE) 
is used to generate morphological profiles by applying closing 
and opening operations. The objects that are smaller than the 
SE are removed during these operations, and filtering artifacts 
are avoided using morphological operators by reconstruction. 
Recently, morphological attribute profiles were used to gener-
ate multi-level characterization of the classes by sequential 
application of morphological attribute filters to model the dif-
ferent kinds of structural information (Dalla Mura et al., 2010; 
Ghamisi et al., 2015). Various filtering criteria have been 
introduced (e.g., area, standard deviation, moment of inertia, 

Figure 1. Steps of the generation of land cover maps.
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and diagonal bounding box) and they are called attributes 
in the afore-mentioned papers and the general literature on 
mathematical morphology and attribute profiles. However, we 
will refer in this paper to the usual terminology of machine 
learning and remote sensing when using the term attribute. 
Two kinds of attribute filters are available: thinning when 
an object not matching the criterion is merged to a simi-
lar nearby object of lower gray level, and thickening if it is 
merged to one of higher gray level. The other objects are kept 
unchanged. A wide range of thresholds can be used when as-
sessing the criterion, thus leading to a series of values called 
the attribute profile. More details about the attribute profiles 
are given in (Dalla Mura et al., 2010; Ghamisi et al., 2015). 

In this study, we apply the attribute profiles on the NDVI, 
DSM/nDSM to generate the multi-scale or multi-level represen-
tation of these attributes. The generated multi-scale represen-
tation of NDVI, DSM/nDSM incorporates the spatial contextual 
information and increases the discrimination between the 
land cover classes compared to the simple NDVI, DSM/nDSM at-
tributes. The attribute profiles are generated using four criteria 
among the most popular ones (area, diagonal bounding box, 
standard deviation, moment of inertia). We generated a total 
of 96 features (including all the criteria), among which, 48 
features are from thinning operations and 48 are from thick-
ening operations. The attribute profiles are computed using 
the Matlab codes developed by Dalla Mura et al. (2010).  

State-of-the-Art Machine Learning Methods in the Generation of Land 
Cover Maps
In this subsection, we review the state-of-the-art machine 
learning methods used in this study. Several methods are 
used in this paper to assess the genericity of the attributes 
over a wide range of classifiers, and the choice of these clas-
sifiers are motivated by the demonstrated performance in 
remote sensing image classification.

Decision Tree
There are two steps involved in the decision tree (DT) classifi-
cation: the generation of the decision tree and the assignment 
of a class to each map unit. The derivation of the decision tree 
is carried out by means of training data. They are usually ob-
tained from maps or orthoimages by digitizing polygons rep-
resenting a class and extracting their position and some other 
attributes. Thresholds for the attributes are then automatically 
derived which split the training data into two parts. This test-
ing occurs several times until all training units are separated 
into the selected classes. The derived structure is named 
‘decision tree.’ The classes can be distinguished by means of 
attributes that characterize the selected classes. By means of 
the derived DT, the class of each map unit can be predicted 
and a land cover map can be generated. The theoretical back-
ground of the DT method is given in previous publications, 
e.g., Breiman et al. (1984). Experiences with DT classification 
are published notably in Friedl and Brodley (1997), Thomas 
et al. (2003), and Höhle (2015).

Random Forest
Random forest (RF) is an ensemble classifier, which uses the 
decision trees to construct the base classifiers in the ensemble 
learning framework (Breiman, 2001; Pal, 2005). Each of the 
decision trees is trained on bootstrap samples of the origi-
nal training data. During the training phase, the RF uses the 
randomly selected subset of attributes to determine the split 
of the nodes. The number of attributes or variables used to 
split is calculated from the square root of the original number 
of attributes. The number of decision trees to be grown is a 
user-defined parameter. The predictions of all the outcomes of 
the decision trees are combined by means of a majority voting 
procedure.

Multinomial Logistic Regression
Multinomial Logistic Regression (MLR) generalizes the logis-
tic regression to predict multiple classes. The weights are 
derived for each class and attributes are linearly combined. 
The weights are obtained by maximizing the log-likelihood 
function. The detailed description of the MLR can be found in 
Bohning (1992), and Pal (2012).

Support Vector Machines 
The Support Vector Machine (SVM) is a binary classifier which 
finds an optimal hyperplane so that the samples between two 
classes are maximally separated. As a SVM is designed for the 
binary or two-class classification, we have used the ‘one ver-
sus one’ approach for the multi-class classification problem 
(Hsu and Lin, 2002). The Gaussian radial basis function (RBF) 
is used as a kernel function in this study. The hyper-param-
eters of the SVM classifier are bandwidth parameters and the 
cost function. They are automatically tuned using a fivefold 
cross-validation approach. The SVM is a widely-used classifier 
in the machine learning community due to its outstanding 
capability to handle the non-linearity in the data. The theo-
retical background and experiences with the SVM are given in 
Melgani and Bruzzone (2004).

PerTurbo Classifier
PerTurbo is a discriminative classifier, in which each class is 
characterized in the manifold by the Laplace-Beltrami opera-
tor (Chapel et al., 2014). The Laplace-Beltrami operator is 
approximated using the Gaussian RBF kernel. The PerTurbo 
classifier contains two parameters to be optimized: the band-
width parameter of the Gaussian RBF kernel and a regulariza-
tion parameter for finding the inverse of Gaussian RBF kernel. 
These hyper-parameters are automatically tuned using a 
fivefold cross-validation approach. PerTurbo is a recently 
proposed classifier that has shown comparative or better per-
formance than the SVM classifier. However, the performance of 
the PerTurbo classifier has not been studied extensively yet.

All classification experiments are performed through R 
programming using open source packages. The ‘rpart’ package 
is used for the DT classification, ‘e1071’ for the SVM classifier, 
‘randomForest’ for the RF classifier, and ‘nnet’ for the MLR 
classification. For the PerTurbo classifier, we used our own 
implementation.

Experimental Design and Assessment Approaches
In this section we will describe the design of our experiments 
and investigations regarding multiple attributes. The ap-
proaches in the assessment of the thematic accuracy will also 
be dealt with.

Design of Experiments and Investigation of Multiple Attributes
The attributes should characterize the classes well and pro-
vide discriminative information so that they can be separated 
from the other classes. The performance of the classifiers 
significantly depends on the type of the attributes used to 
characterize the underlying land cover classes. Therefore, 
the attributes must be selected with proper care. Thus, it is 
necessary to conduct investigations on the effectiveness of 
the attributes in advance and only such attributes should 
then be used to improve the accuracy of the classification. To 
achieve a strong improvement in classification accuracy, the 
fusion or combination of the simple and spatial information 
attributes is also essential. In this study, we investigate dif-
ferent combinations (all possible combinations) of the simple 
and spatial contextual attributes. The sequence of steps to 
be followed when generating land cover maps is shown in 
Figure 1. The attributes considered in this study are: Orthoim-
age (intensities of three or four bands), NDVI, DSM or nDSM; the 
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spatial attributes considered are: multi-scale NDVI (NDVIAP), 
multi-scale DSM (DSMAP), or multi-scale nDSM (nDSMAP). The 
investigation on all the possible combinations employed are: 
(1) orthoimage, (2) NDVI, (3) DSM, (4) orthoimage+NDVI, (5) 
orthoimage+DSM, (6) orthoimage+NDVI+DSM, (7) NDVIAP, (8) 
DSMAP, (9) orthoimage+NDVIAP, (10) orthoimage+DSMAP, (11) 
orthoimage+DSM+NDVIAP, and (12) orthoimage+NDVI+DSMAP. 
The above 12 different combinations are applied using all the 
mentioned classifiers. Furthermore, we also compared our 
best combination to the standard usage of attribute profiles in 
the literature, through five different configurations where at-
tribute’s profiles are derived from either the original orthoim-
age or its principal components. 

Approaches in Accuracy Assessment
The assessment of the thematic accuracy of land cover maps 
requires accurate and reliable reference data. Such data can 
be a complete map or a set of samples. The approaches in 
the assessment should be based on statistical principles. 
This means that these data should be independent from the 
training data. The samples should be selected randomly and 
the sample size should be large enough to compute accuracy 
measures of small confidence intervals (Congalton and Green, 
2008; Höhle and Höhle, 2013). Details on the quality assess-
ment of extracted geo-spatial objects are published in Zhan et 
al. (2005). When results of classifications are compared, it is 
necessary to use the same assessment approach. The follow-
ing characteristics should be known: the type of reference 
points (3D points taken from stereo pairs or 2D points taken 
from orthoimages) and the type of sampling (independence 
from training points, random extraction from the map or from 
reference data, number of points or sample size). 

From the available ground truth (reference) samples, we 
randomly selected 500 samples per class for training, and 
the remaining samples are used for testing. To avoid the 
bias induced in random sampling, Monte-Carlo simulations 
are performed and the accuracy measures are averaged over 
several runs. The accuracy measures can be user’s accuracy, 
producer’s accuracy, overall accuracy, and kappa coefficient 
(Congalton and Green, 2008). Other measures are correctness, 
completeness, and F1-score (ISPRS WG III/4, 2014). The ac-
curacy measures are derived from an error matrix (also known 
as a confusion matrix). The matrix can be written in different 
ways. For example, it can be normalized where the reference 
is written in the rows and the classification in the columns of 
the matrix. The calculation of the accuracy measures will dif-
fer when normalization in row direction is not applied. In this 
investigation, we will write the reference values in columns 
and the classification values in the rows. Furthermore, we 
will not normalize the values (counts). The accuracy measure 
should be supplemented with a confidence interval (CI). The 
width of the CI informs on the reliability of the calculated ac-
curacy measure.  

Experimental Results and Discussion
In this study the practical tests are carried out with two 
types of aerial images covering two urban areas. The images 
were taken either by a large-format camera (Zeiss DMC) or a 
medium-format camera (Leica RCD30). Both cameras are met-
ric cameras. The images consist of four bands (RGB and NIR) 
and have a ground resolution (GSD) below 10 cm. The very 
high resolution and overlapping images enable the deriva-
tion of accurate and dense digital elevation models (DEMs) 
by means of software tools. In the following, we first describe 
the test sites, the applied procedures in the assessment, and 
then, the obtained results. The classification results are ana-
lyzed in two ways. First, we deal with classification results 
obtained by combing different simple attributes. Second, we 

derive classification results obtained by combining simple 
and multi-scale (spatial contextual) attributes; and finally we 
compare the derived classification results with some baseline 
approaches in literature.

Classification Results of the ISPRS Dataset
The first test site is a city area with many houses, roads, trees, 
bushes, and cars. The site is situated in Germany and covers 
3.9 ha.

Description of Data 
The data are part of the ISPRS “2D semantic labelling contest” 
which is currently available to compare various methods 
of classification for the extraction of multiple urban objects 
(ISPRS WG III/4, 2014). A digital surface model (DSM) and a 
false-color orthoimage (based on the DSM) were derived from 
aerial images by the organizers of the contest. The test mate-
rial is of high-resolution (GSD = 9 cm) allowing the extraction 
of small objects, like trees, cars, etc. The data are in raster 
format; geocoding information was not provided. Figure 2 de-
picts the orthoimage of the test site. The ground truth (refer-
ence) samples for the entire area are provided along with the 
dataset. This reference map consists of five major urban land 
cover classes: impervious surfaces, building, low vegetation, 
tree, and car. 

Assessment of Classification Results with Simple and Multi-Scale Attributes
Table 1 reports the classification accuracy of the ISPRS dataset 
with six different combinations of simple attributes and six 
combinations of multi-scale attributes (spatial contextual at-
tributes) obtained by the DT, RF, MLR, SVM, and PerTurbo clas-
sifiers. The reported overall accuracy and confidence interval 
are averaged over ten independent runs. First, we assess the 
performance of the simple attributes considered in the remote 
sensing image classification. More specifically we assess the 

Figure 2. False-color orthoimage of Test Site #1.
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performance of NDVI and DSM attributes, and then we show 
how the limitations of NDVI attribute are addressed through 
multi-scale characterization with attribute profiles. 

Table 1 shows that NDVI attribute obtained worst classifica-
tion results with all the considered classifiers. Furthermore, 
its combination with the orthoimage and DSM attributes does 
not lead to any classification improvement. It confirms the fact 
that the NDVI attribute does not provide any additional infor-
mation to distinguish between the used land cover classes, and 
this observation is also supported by the per-class accuracy 
measures (where all pixels are classified into the “low vegeta-
tion” class). On the other hand, DSM attribute provided better 
class discrimination than NDVI attribute, which is shown by 
the increase in classification accuracy by about 2 to 8 percent 
when the DSM is combined with the orthoimage. The classifi-
cation accuracy measures with all the attribute combinations 
reveal that the combination of the orthoimage (intensities of 
the NIR-, R-, G-bands) and the DSM attribute is the best attribute 
combination to generate land cover maps with this dataset. 

The comparative analysis (see Table 1a and 1b) shows that 
the incorporation of spatial information (attribute profiles) 
along with the simple information has increased the classi-
fication accuracy significantly. It can be observed from both 
tables that multi-scale representation or multi-level character-
ization of NDVI attributes has improved the SVM classification 
accuracy by 53 percent when compared to the simple NDVI 
attribute. Averaging the results of all five classifiers the gain is 
46 percent. This shows that the multi-scale characterization 
of the NDVI attribute provides additional class discriminating 
information, and hence it is an important attribute to generate 
accurate land cover maps. When the multi-scale representa-
tion of DSM attribute is incorporated along with the original 
DSM attribute the magnitude of increase in accuracy is not 
as high as the NDVI multi-scale characterization, but how-
ever, it remains significant. The average improvement with 
five classifiers is about 4.4 percent. Thus, for both derived 
features, the multi-scale characterization by attribute pro-
files provides additional class discriminative information. 
Furthermore, in Table 1a, the DSM attribute outperformed the 
NDVI attribute, but when the spatial contextual information is 
included the multi-scale characterization of the NDVI attribute 

outperformed the multi-scale characterization of the DSM at-
tribute. When the orthoimage is combined with multi-scale 
representations of NDVI and DSM, the classification accuracy is 
further significantly increased This shows that original pixel 
intensities bring some additional complementary information, 
thus we decided to combine all the available simple attributes 
to benefit from such complementary information along with 
multi-scale NDVI and DSM attributes. This combination im-
proved the classification accuracy significantly and resulted 
in the best set of attributes (orthoimage+NDVI+DSM+NDVIAP) 
to obtain accurate classification maps for the ISPRS dataset. 
Table 2 reports the confusion matrix, producer’s accuracy, 
user’s accuracy, and F1 score of the best attribute combination 
(orthoimage+DSM+NDVIAP) and the best classifier (SVM) for the 
ISPRS dataset. The reported measures are from one run of the 
Monte-Carlo simulations.

Table 1. Classification results of the ISPRS dataset using simple attributes and spatial contextual attributes by means of the five 
used classifiers. The reported overall accuracy measures and the corresponding confidence intervals are averaged over ten runs. 
The numbers in bold indicate the best attribute regarding each classifier (OA=Overall Accuracy, LB=Lower Bound, UB=Upper 
Bound of the Confidence Interval). The RF classifier was not Applied with the NDVI and DSM Attributes, since they contain 
only a one-dimensional attribute. The numbers in bold indicate the best-obtained classification results regarding each attribute 
combination. The Values are in %.

Attribute
combination

Classification methods

(a) Simple attributes

DT RF MLR SVM PerTurbo

OA LB UB OA LB UB OA LB UB OA LB UB OA LB UB

OrthoImg 62.08 62.04 62.13 68.2 68.16 68.24 59.32 59.27 59.36 72.12 72.08 72.16 62.93 62.81 62.97

NDVI 19.99 19.95 20.21 - - - 02.22 02.21 02.24 13.20 13.17 13.23 30.94 30.90 30.98

DSM 39.74 39.69 39.78 - - - 34.13 34.09 34.18 39.41 39.36 39.45 28.53 28.49 28.58

OrthoImg+NDVI 62.09 62.04 62.14 67.77 67.73 67.81 59.32 59.28 59.37 72.21 72.16 72.25 62.93 62.88 62.97

OrthoImg+DSM 61.82 61.78 61.87 75.12 75.08 75.16 67.35 67.30 67.40 74.64 74.61 74.68 70.31 70.27 70.36

OrthoImg+NDVI+DSM 61.82 61.79 61.87 75.17 75.13 75.21 67.35 67.30 67.40 74.32 74.28 74.36 70.31 70.27 70.36

(b) Joint simple and multi-scale attributes

NDVIAP 57.49 57.45 57.54 65.21 65.17 65.25 63.45 63.41 63.50 66.80 66.75 66.84 62.90 62.86 62.95

DSMAP 39.74 39.70 39.78 39.69 39.65 39.74 37.63 37.59 37.68 41.44 41.39 41.48 40.57 40.52 40.61

OrthoImg+NDVIAP 58.51 58.47 58.56 70.41 70.37 70.46 68.24 68.20 68.29 73.03 72.99 73.07 69.69 69.64 69.73

OrthoImg+DSMAP 62.69 62.64 62.73 75.39 75.35 75.43 77.14 77.10 77.18 79.02 78.99 79.06 74.95 74.91 74.99

OrthoImg+DSM+NDVIAP 68.94 68.90 68.98 77.63 77.60 77.67 77.27 77.24 77.31 78.96 78.92 79.00 75.61 75.57 75.65

OrthoImg+NDVI +DSMAP 61.81 61.78 61.87 67.99 67.94 68.03 67.24 67.20 67.29 71.37 71.33 71.42 68.42 68.38 68.47

Table 2. Confusion matrix of the best attribute combination 
(OrthoImg+DSM+NDVIAP) with the SVM classifier for the 
ISPRS data set. The reported confusion matrix is from one run 
of the Monte-Carlo Simulation. 

Reference 
Classi-
fication

imp_surf building low_veg tree car Total

imp_surf 1134683 126552 15878 10502 23258 1310873

building 66981 1095391 7719 9632 2503 1182226

low_veg 62213 20697 531225 228248 2376 844759

tree 12193 9912 69673 1029302 382 1121462

car 215824 52040 12235 4519 78621 363239

Total 1491894 1304592 636730 1282203 107140 4822559

Class 
name

PA [%] UA [%] F1 [%]
Overall accuracy = 80.2%
Kappa coefficient = 0.741imp_surf 76.1 86.6 81.0

building 84.0 92.6 88.1

low_veg 83.4 62.9 71.7

tree 80.3 91.8 85.6

car 73.4 21.6 33.4
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Of interest is also the graphical output, the land cover map 
(see Figure 3). It may be checked as to how the classes of the 
map are detected and separated from each other. It can be 
noticed that the classes “building” and “impervious surface” 
are well detected. The class “car” with F1 = 33.4 percent is 
not well discovered. 

Classification Results of RCD30 Dataset
Example 2 is a suburb area in Switzerland. This test site 
consists of several residential houses, roads, lawns, trees, and 
bushes (see Figure 4), and it covers 1.4 ha. 

Description of the Data
The images of the RCD30 demo set were taken with a GSD of 
5 cm and were then geo-referenced. By means of two overlap-
ping images a digital surface model (DSM) with 907339 cells 
has been derived using matching techniques. The software 
package “Match-T” has been applied for this task (Heuchel 
et al., 2011). The resolution of the gridded DSM is about 11 
cm. By means of filtering, a digital terrain model (DTM) and a 
normalized digital surface model (nDSM) were derived from 
the DSM. Based on the DTM, a false-color orthoimage has been 
compiled. The intensities of four channels (R, G, B, NIR) were 
used in the classification (attribute “OrthoImg”).

A land cover map was generated using six classes (“build-
ing”, “hedge & bush”, “grass”, “road & parking lot”, “tree”, 

“wall & car port”). A few other objects exist in the area, e.g., 
cars and swimming pools; their number is very small. There-
fore, they are not chosen as a class. The assessment of the the-
matic accuracy used reference points that were extracted from 
the geo-referenced orthoimage. About 2,400 points were used 
for each of the six classes in the assessment. The classification 
results of the RCD30 dataset are presented in the following. It 
will be done in the same way as with the ISPRS dataset.

Classification Results with Simple and Multi-Scale Attributes
Table 3 reports the classification results of the RCD30 dataset 
regarding the six simple attributes and six spatial contextual 
(multi-scale) attributes for the five classifiers. 

When the classification results of the NDVI and nDSM attri-
butes are analyzed, it shows that the classification results of the 
NDVI attributes are worse when compared to the nDSM attribute. 
This indicates that the height above ground (nDSM) is crucial 
information for the urban cover imagery. It is also interesting to 
see that when the NDVI attribute is combined with the intensi-
ties of the orthoimage: there is no change in classification ac-
curacy when compared to the classification accuracy using the 
orthoimage attributes (orthoImg). On the other hand, when the 
nDSM attributes are combined with the orthoimage attributes, a 
significant improvement (greater than 10 percent) emerges in 
the classification accuracy. This result states further that the 
NDVI attribute does not provide any additional information for 
class discrimination, whereas the nDSM attribute increases the 
class discriminate information and results in the highest clas-
sification accuracy. The analysis for the identification of the 
best attribute combination reveals that orthoimage intensities 
combined with nDSM attributes is the optimal attribute combi-
nation for the RCD30 data set. The best classification accuracy 
achieved with RCD30 data set is about 97 percent.

When the multi-scale representation of the NDVI attributes 
is incorporated along with the original NDVI attributes, the 
classification accuracy has been increased significantly by 
about 26 percent with SVM classifier and by an average of 29 
percent with all the five classifiers in comparison with simple 
NDVI attribute. This shows that the multi-scale representation 
of NDVI attributes increases the class discriminant information 
and classification accuracy as observed with the ISPRS dataset. 

Figure 3. Graphical result of the generated land cover map 
using the SVM classification method and the attribute 
combination (orthoimage intensities, NDVI, DSM, NDVIAP) 
for this area and data. Figure 4. Orthoimage of Test Site #2.
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On the other hand, when the multi-scale representation of the 
nDSM attributes is incorporated along with the original nDSM at-
tribute, the improvement in classification accuracy is limited. 
Furthermore, when the orthoimage or all the simple attributes 
are combined with multi-scale attributes, the classification 
accuracy has significantly improved. Finally, the combination 
of orthoimage+nDSM+NDVIAP has been identified as the optimal 
attribute combination of the RCD30 dataset. The confusion 
matrix, producer’s, and user’s accuracy of land cover classes of 
the RCD30 data with respect to the best attribute combination 
and classification method is shown in Table 4.

We initially expected that the incorporation of the ‘raw’ 
NDVI attribute along with orthoimage would increase the clas-
sification accuracy, but in our two examples it was observed 
that NDVI was not a useful attribute (in its ‘raw’ format) to 
characterize the land cover classes. Tokarczyk et al. (2015) 
also observed similar behavior of the NDVI attribute for the 
classification of high-resolution urban imagery. However, in 
this study we showed how the NDVI attribute can be utilized 
for urban cover classification by modeling the spatial contex-
tual information using morphological attribute profiles. This 
is an important contribution that could directly influence 
many real-world applications when dealing with high-resolu-
tion urban imagery.

The produced land cover map is depicted in Figure 5. It 
can be noticed that the classes “building” and “road & park-
ing lot” are well detected. Smaller objects like hedges and 
walls are also represented in the map. Shadows behind build-
ings are the reason for errors. Shadows should, therefore, be 
removed by preparatory work before the classification.

Comparison with Existing Attribute Profiles
In this sub-section, we compare the classification accuracies 
of the best feature set including NDVI-derived attribute profiles 
with some baseline approaches representative to the existing 
use of attribute profiles in the literature. Attribute profiles 
are usually computed from the original orthoimage or from 
its principal components (extended attribute profile). For the 
orthoimage, we compute the attribute profiles marginally (i.e., 
channel wise) on each of the bands and concatenate the fea-
tures into a single vector. When principal component analysis 
is applied, the attribute profiles are computed either on the 
first principal component (PC) or on the first two PCs (the first 
two PCs account to 99 percent variance of the original image 
for both datasets).  

Tables 5 and 6 show results achieved with five different 
classifiers when considering the five different baseline con-
figurations and the proposed feature set on the ISPRS and RCD 
datasets. The proposed set consisting of the multi-scale NDVI 
characterization along with simple attributes significantly out-
performed the baseline approaches for both datasets. Indeed, 
the improvement observed with the ISPRS dataset is about 3 
percent on average when compared with attribute profiles 

Table 3. Classification accuracy measures of the RCD30 dataset with different combinations of the simple and multi-scale 
attributes by five different classification methods. The reported accuracy measures are averaged over ten independent runs 
(OA=Overall Accuracy, LB=Lower Bound, UB=Upper Bound of the Confidence Interval). The RF classifier was not applied 
with the NDVI and nDSM attributes, Since they contain one-dimensional attributes only. The numbers in bold indicate the 
obtained best classification results with regard to each attribute combination. The values are in %.

Attribute combination

Classification methods

(a) Simple attributes

DT RF MLR SVM PerTurbo

OA LB UB OA LB UB OA LB UB OA LB UB OA LB UB

OrthoImg 79.95 79.29 80.59 86.76 86.20 87.31 77.03 76.33 77.71 87.68 87.14 88.21 81.40 80.76 82.03

NDVI 68.42 67.66 69.17 - - - 59.33 58.53 60.13 67.59 66.82 68.35 46.91 46.09 47.72

nDSM 75.17 74.65 75.87 - - - 59.71 58.91 60.51 75.19 74.48 75.89 71.33 70.58 72.06

OrthoImg+NDVI 79.80 79.14 80.45 86.81 86.25 87.36 77.11 76.42 77.79 87.56 87.01 88.09 82.22 81.59 82.83

OrtoImg+nDSM 93.69 93.28 94.08 97.96 97.72 98.18 95.56 95.21 95.88 97.42 97.15 97.66 97.33 97.06 97.59

OrthoImg+NDVI+nDSM 95.57 95.22 95.89 97.99 97.75 98.21 95.78 95.45 96.10 97.39 97.12 97.64 97.30 97.02 97.55

(b) Joint simple and multi-scale attributes

NDVI+NDVIAP 85.65 85.07 86.21 94.72 94.35 95.08 90.77 90.29 91.23 94.52 94.15 94.89 87.01 86.45 87.55

nDSM+nDSMAP 75.16 74.45 75.86 71.51 70.77 72.24 70.72 69.98 71.46 74.04 73.32 74.75 71.16 70.42 71.90

OrthoImg+NDVIAP 88.85 88.33 89.35 97.33 97.05 97.58 96.18 95.86 96.49 97.63 97.37 97.87 93.37 92.96 93.77

OrthoImg+nDSMAP 93.69 93.29 94.08 96.71 96.41 96.99 96.80 96.50 97.08 97.93 97.68 98.15 96.79 96.49 97.06

OrthoImg+nDSM+NDVIAP 96.17 95.85 96.47 99.23 99.08 99.37 98.31 98.09 98.51 98.86 98.68 99.02 98.74 98.55 98.91

OrthoImg+NDVI+nDSMAP 95.56 95.22 95.89 97.56 97.30 97.80 96.69 96.39 96.97 97.90 97.66 98.13 96.57 96.26 96.86

Table 4. Confusion matrix, producer’s accuracy, user’s accuracy, 
and F1 score of the different land cover classes obtained by 
the best attribute combination (Orthoimage+Ndsm+NDVIAP) 
using the random forest classifier and the RCD30 Data. The 
reported measures are from the best single run of a Monte-Carlo 
simulation (ten independent runs).

Reference
Classi-
fication building

hedge 
& 

bush grass

road & 
parking 

lot tree

wall & 
car 
port Total

building 3704 0 0 0 0 0 3704

hedge&bush 0 2788 8 0 2 18 2816

grass 0 11 2169 0 0 27 2207

road&
parking lot 

0 0 0 2651 0 0 2651

tree 0 1 0 0 1326 0 1327

wall&car port 0 8 3 1 1 1731 1744

total 3704 2808 2180 2652 1329 1776 14449

Class name PA [%] UA [%] F1[%]
Overall accuracy = 99.5%
Kappa coefficient = 0.993

building 100 100 100

hedge&bush 99.29 99.01 99.15

grass 99.50 98.28 98.88

road&
parking lot

99.96 100 99.98

tree 99.77 99.92 99.85

wall&car port 97.47 99.25 98.35
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computed from all bands of the orthoimage or from its two 
first principal components. It is about a 20 percent improve-
ment when the attribute profile is computed from a single 
feature (the first principal component). A similar observation 
can also be derived for the RCD30 dataset. More interest-
ingly, our proposed set of simple features and NDVI attribute 
profile attain this improvement with a much smaller number 
of features than those of baseline approaches. While attribute 
profiles computed from the original orthoimage or its first 
two principal components, respectively, lead to feature vector 
lengths of 291 and 194, respectively; our proposed combined 
set contains only 101 features. When the multi-scale attri-
butes with similar number of features vectors is considered, 
the attribute profile computed from NDVI only is also better 
than the attribute profiles computed from the first principal 
component (9 percent gain with ISPRS, 2 percent with RCD30). 
These various observations show the potential of applying 
attribute profiles on derived features to generate accurate land 
cover maps.

Figures 6 through 9 show the per-class (producer’s and us-
er’s) SVM classification accuracies for different configurations 
with both datasets. They reveal that integrating the proposed 
multi-scale characterization of derived features (NDVI or DSM/
nDSM) outperformed baseline approaches for most of the land 
cover classes. 

Performance Analysis of Classification Methods 
In this sub-section, we assess the impact of classification 
methods over the considered different attribute combinations. 
From Tables 1 and 3 it is evident that there is a variability of 
classification accuracy regarding different attribute combina-
tions and classifiers for both datasets. Thus, it is necessary to 
conduct comparative analysis on the performance of differ-
ent classifiers and different attribute combinations to gain 
the knowledge on choice of the appropriate methods. Based 
on the performance analysis of the different classification 
methods, we have not found a unique classifier being optimal 

Figure 5. Graphical result of the generated land cover 
map using the RF classification method with the attribute 
combination (orthoimage intensities, NDVI, nDSM, NDVIAP).

Table 5. Classification of the ISPRS dataset: accuracy measures (in %) achieved with the best proposed combined feature set 
and with five baseline configurations. The reported measures are averaged over 10 independent runs (OA=overall accuracy, 
LB=lower bound, UB=upper bound of the confidence interval). The numbers in bold indicate the obtained best classification 
results and the numbers in brackets indicate the number of features..

Attribute combination

Classification methods

DT RF MLR SVM PerTurbo

OA LB UB OA LB UB OA LB UB OA LB UB OA LB UB

OrthoImg+DSM+NDVIAP (101) 68.94 68.90 68.98 77.63 77.60 77.67 77.27 77.24 77.31 78.96 78.92 79.00 75.61 75.57 75.65

OrthoImgAP (291) 60.38 60.34 60.43 76.05 76.01 76.09 73.82 73.78 73.86 77.54 77.51 77.58 72.54 72.50 72.58

PC1AP (97) 44.35 44.31 44.39 57.31 57.26 57.35 52.47 52.43 52.51 58.71 58.67 58.76 55.93 55.88 55.97

OrthoImg+PC1AP (99) 64.23 64.18 64.27 72.45 72.41 72.49 71.34 71.30 71.38 74.75 74.72 74.79 66.70 66.65 66.74

PC12AP (194) 66.66 66.62 66.71 74.76 74.73 74.80 72.26 72.21 72.30 75.40 75.37 75.44 72.48 72.44 72.53

OrthoImg+PC12AP (195) 66.66 66.62 66.70 74.96 74.92 75.00 72.78 72.74 72.82 76.44 76.40 76.48 72.62 72.58 72.67

Table 6. Classification of the RCD30 dataset: accuracy measures (in %) achieved with the best proposed combined feature set 
and with five baseline configurations. The reported measures are averaged over 10 independent runs (OA=overall accuracy, 
LB=lower bound, UB=upper bound of the confidence interval). The numbers in bold indicate the obtained best classification 
results and the numbers in brackets indicate the number of features.

Attribute combination

Classification methods

DT RF MLR SVM PerTurbo

OA LB UB OA LB UB OA LB UB OA LB UB OA LB UB

OrthoImg+nDSM+NDVIAP (102) 96.17 95.85 96.47 99.23 99.08 99.37 98.31 98.09 98.51 98.86 98.68 99.02 98.74 98.55 98.91

OrthoImgAP (388) 94.54 94.16 94.90 99.39 99.26 99.51 99.06 98.89 99.21 99.36 99.22 99.48 98.41 98.19 98.60

PC1AP (97) 77.53 76.84 78.20 92.99 92.57 93.40 90.26 89.77 90.73 93.23 92.82 93.64 86.55 85.98 87.10

OrthoImg+PC1AP (100) 88.48 87.96 89.00 96.87 96.58 97.15 95.51 95.16 95.84 96.86 96.57 97.13 93.46 93.05 93.86

PC12AP (194) 92.84 92.41 93.25 98.78 98.60 98.95 98.55 98.35 98.74 99.17 99.01 99.31 97.71 97.45 97.94

OrthoImg+PC12AP (196) 92.84 92.41 93.25 98.88 98.70 99.04 98.47 98.27 98.67 99.28 99.13 99.41 98.08 97.85 98.30
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Figure 6. Producer’s accuracies for SVM 
classification using multi-scale attributes with 
the ISPRS dataset. These accuracy measures are 
averaged over ten runs.

Figure 7. User’s accuracies for SVM classification 
using multi-scale attributes with the ISPRS dataset. 
These accuracy measures are averaged over ten runs.

Figure 8. Producer’s accuracy for SVM classification 
using multi-scale attributes with the RCD30 dataset. 
These accuracy measures are averaged over ten runs.

Figure 9. User’s accuracy for SVM classification 
using multi-scale attributes with the RCD30 dataset. 
These accuracy measures are averaged over ten runs.
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across different attribute combinations when the simple attri-
butes were used. There exist up to two classifiers which can 
be considered as optimal across different attribute combina-
tions. A similar result was also derived by Damodaran and 
Nidamanuri (2014a) and Fabio et al. (1997). These studies 
suggest that the superiority of one method over the others 
depends on the nature of the attributes used. In a similar man-
ner, it is also observed that the performance of the classifiers 
is also variable with respect to each attribute combination. On 
the other hand, when the multi-scale attributes are consid-
ered, the variability among the classification methods is less 
and there is a possibility of identifying a set of classification 
methods. This indicates that the feature engineering is more 
important than the choice of the classification method. This 
eliminates the dilemma in choosing the appropriate classifier 
for the problem at hand. Finally, the analysis of the PerTurbo 
classification method showed comparable performance with 
the best classification methods (SVM and RF) using a few attri-
bute combinations. However, the performance PerTurbo clas-
sifier is worth to explore, as it has the capacity to model the 
class distributions using manifold assumptions. Due to this 
characteristic, PerTurbo does not need complex optimization 
procedures. This is a unique advantage over the SVM classifier. 

The produced land cover maps are by no means perfect 
even though the calculated overall accuracy has been very 
high (80.2 percent and 99.5 percent, respectively). The areas 
of the classes are not homogeneous. Some misinterpreta-
tions can also be noticed. The produced maps need to be of 
higher quality to be used as topographic maps. Enhancement 
by means of image processing methods will further improve 
the cartographic quality of the produced maps. A methodol-
ogy for such cartographic enhancement is proposed in Höhle 
(2016). A high geometric accuracy would also be a require-
ment of topographic mapping. An assessment of the geomet-
ric accuracy should therefore be carried out too. 

Conclusions
This study had the goal to develop a methodological frame-
work to effectively utilize the auxiliary information (NDVI, 
DSM, nDSM) derived from remotely sensed images to produce 
urban land cover classification maps and to find an optimal 
methodology to produce land cover maps of high thematic 
accuracy from aerial imagery. To understand the strong influ-
ence of the choice of both the classification method and the 
applied class attributes, we conducted extensive experiments 
with seventeen different combinations of attributes and five 
classification methods. The experimental results state that the 
use of attribute profiles to model multi-level characterization 
has made a high thematic accuracy possible. They also re-
vealed that the developed multi-level characterization of the 
vegetation index has a significant impact on urban imagery 
classification over the existing attribute profiles approaches. 
Furthermore, the generation of appropriate class attributes 
has decreased the variability of classification accuracies of 
different classification methods, thus indicating that the ap-
propriate choice of classifier is not so important in real-world 
applications. The type of landscape together with the speci-
fied classes of the land cover map require tests in advance 
to yield an optimal result. The obtained results in the two 
examples demonstrate that the integration of techniques from 
photogrammetry, remote sensing, and machine learning can 
produce urban land cover maps of high thematic accuracy.  
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