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99 Avenue J.-B. Clement, F-93430 Villetaneuse, France
cIMAR, Romanian Academy, Bucharest, Romania

Abstract

A variational approach is proposed for modelling the static finite deformation of two (or more)
three-dimensional nonlinear elastic solids which merged in a third medium, define a triple line (tl).
The total energy, accounting for elastic, surface and possible gravity potentials is then minimized
numerically in order to solve two physical problems of interest: (i) a soft incompressible axisymmetric
drop at rest on a stiffer substrate and (ii) a stiff drop at rest upon a softer substrate, both in situations
of strong substrate surface tension effects. Because of the interplay between surface and bulks prop-
erties, several lengthscales control the behavior of the tl. A unified deformability parameter relating
all scales is introduced and a multi-scale discretization of the domain is used.

A first limiting case of our theory describes the elastowetting problem in which a very soft drop
sits on a stiffer elastic solid. The numerical predictions of our model are compared with the analytical
results of the linear elastic theory. In particular, our computations show that the Laplace pressure,
together with the asymmetry of the solid surface tensions (between the wet and dry part of the
interface), account for the rotation of the cusp of the ridge.

In the second example, motivated by indentation problems of a nonlinear elastic substrate by
a stiff sphere, we analyse the interplay of the solid surface tensions and elasticity at a small-scale.
The numerical results also show that gravity has an important effect and must be included in any
micro-scale modelling.

keywords: elastowetting, triple line (tl), surface tension, multiscale modelling, nonlinear elasticity,
finite elements

1 Introduction

Soft elastic solids can be deformed by surface effects ([Roman and Bico, 2010]) in a fashion similar to that
of fluids ([De Gennes et al., 2013]). While capillary forces are proportional to a certain characteristic
length Lc, elastic forces are proportional to its square L2

c , such that, below some lenghtscale, the capillary
forces becomes dominant and can no longer be neglected. Elasto-capillarity focuses on all phenomena
arising from the coupling between bulk elastic deformations with surface effects. Because capillary forces
tend to minimize the surface area, or interface, between two media in different thermodynamic phases
(such as the interface between a solid and the air or between a solid and a liquid), surface effects act
as external loads. For example, [Mora et al., 2013] showed experimentally that a centimeter-size soft
elastic solid immersed in a liquid can undergo large deformations, stretching, shortening and bending its
slender structure, or rounding as much as bubbles. More recently, [Mora and Pomeau, 2015] investigated
the deformation of a sharp soft solid edge (hydrogel) surrounded by a liquid, and showed how the sharp
edges round under the effect of surface tensions. Also, several instabilities due to surface effects in
elastic solids have been explored by [Mora et al., 2010, Ben Amar and Ciarletta, 2010, Mora et al., 2011,
Dervaux et al., 2011, Dervaux and Ben Amar, 2011, Ciarletta, 2013, Taffetani and Ciarletta, 2015].

∗Author for correspondence: riccardo.depascalis@gmail.com
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Motivated by fundamental questions as well as problems of practical importance in fluid han-
dling applications ([Unger et al., 2000, Boland et al., 2006, Sokuler, 2010, Chung, 2011]) a lot of in-
terest has been devoted recently to elastowetting problems where, typically, liquid drops are in con-
tact with both the air and a soft solid. In such problems, three thermodynamic phases (typically
a solid a liquid and its vapour) are in contact and the intersection between these interfaces defines
the so-called triple line (tl). The wetting of these soft viscoelastic materials differs from that on
rigid substrates where the (static) behavior of the tl is solely controlled by surface tensions, lead-
ing to the so-called Young’s equation (see formula (28)). In elastowetting however, the vertical com-
ponent of the capillary forces induce the formation of a ridge on the solid surface beneath the tl

([Yu, 2012]) and the competition between elasticity and capillarity must be taken into account to de-
scribe the experimental observations. Despite a large literature starting in the sixities ([Lester, 1961,
Rusanov, 1975, Shanahan and De Gennes, 1987, Shanahan, 1987b, Shanahan, 1987a]) up to more re-
cent works ([Pericet-Camara et al., 2009, Jerison et al., 2011, Lubarda, 2012, Style and Dufresne, 2012,
Limat, 2012, Nadermann et al., 2013, Style et al., 2013a, Dervaux and Limat, 2015, Bostwick et al., 2014]
and references therein), several outstanding questions are still debated and a large scientific community is
currently investigating both static and dynamic effects in elastowetting. For example, the detailed struc-
ture of the soft elastic ridge beneath the tl ([White, 2003, Marchand et al., 2012b, Park et al., 2014,
Lubbers et al., 2014]) is still not resolved in the general case of asymmetric surface tensions. On
the theoretical side, the vast majority of studies on elastowetting have been developed within the
framework of linear elasticity, although with a few notable exceptions confined to particular cases
([Madasu and Cairncross, 2004, Yu and Zhao, 2009]), and nonlinear effects, either geometric or mate-
rial, have yet to be incorporated within a theoretical framework.

Since the work of [Shuttleworth, 1950], surface effects arising in solids have been, in general, consid-
ered differently from those arising in liquids, distinguishing between surface energy (work necessary to
form unit area of surface by a division process) and surface tension (tangential stress (force per unit
length) in the surface layer), while for liquids no distinction is needed. This topic has been recently
investigated by [Marchand et al., 2012a] and [Weijs et al., 2013] for example. In this paper, we focus
on the effects of material and geometric nonlinearities on the tl and we leave aside the possible differ-
ences between surface tension and surface energy, taking the surface tension and the surface energy as
equivalents ([Mora et al., 2013]). These forces, here, will be called ‘surface tensions’. Moreover, for the
applications given in this paper we will consider incompressible isotropic materials, hence misleading
interpretations for the surface effects can be avoided (see [Weijs et al., 2013]).

Modelling tl is a challenge for any continuum model because of geometrical and material nonlin-
earities, discontinuities in the loading surface forces where pointwise forces produce high values of the
deformation gradient, as well as the existence of multiple scales. To tackle this problem, we develop
here a variational approach to overcome some of the existing difficulties. Under the isotropy and hyper-
elasticity assumption, the elastic energy density used to describe the solid response is chosen to be of
the Mooney-Rivlin type. The total energy of the system, consists of an elasto-capillarity energy (which
includes elastic and superficial energies), as well as the gravitational potential energy. This last con-
tribution, even at very small scales, could have a non negligible effect for very soft materials such as
those typically used in micro-fabricated devices ([Xu et al., 2013]). The static equilibrium is a station-
ary point of the total energy, and since the equation obtained from the minimization process is unlikely
solvable analytically, a standard Newton-Raphson procedure is adapted here for Finite Element Method
(FEM) simulations. However, the presence of several bulks and interface properties leads to physical
effects occurring at different scales. In order to properly model the tl, all these scales must be taken
into account. Here, a unified deformability parameter δ is used to relate all the scales and a multiscale
discretization of the domain is employed in order to capture phenomena occurring at different scales and
thus the global behavior of the system. The displacement field is then calculated step by step, iterating
the algorithm and increasing the deformability parameter starting from δ = 0.

In order to gain physical insights into the behavior of the tl, we focus on two axisymmetric problems:
(i) firstly, motivated by elastowetting problems, we study the behavior of a very soft drop on a stiffer
nonlinear elastic substrate. In particular, we investigate the limiting case of a drop with a vanishing
shear modulus that has a purely hydrostatic stress and thus behaves as a fluid at rest. The numerical
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results are presented and discussed for both the symmetric and asymmetric cases (i.e. identical or dif-
ferent solid surfaces tensions between the dry and wetted parts). In the symmetric case, our numerical
results at small δ are compared to a linear theory ([Bostwick et al., 2014]) which uses a displacement
potential function in a small-deformations framework. The good agreement between analytics and nu-
merics validate the numerical method. For higher liquid-air surface tensions or softer substrate however,
very large deformations occur and the linear theory fails. In the asymmetric case, we predict a rotation
of the ridge at the tl, a fact which is also observed experimentally. (ii) In a second part, motivated by
indentation problems, ([Style et al., 2013b, Xu et al., 2014, Cao et al., 2014]), we investigate the case of
a stiff elastic sphere on a softer substrate. A method similar to that of the first application is used in
the analysis and in the numerical computations. We show that gravity has an important effect on the
behavior of the tl and must be included in any indentation micro-scale modelling.

The structure of our paper is as follows: in section 2, notations, definitions of the total energy of the
system, kinematics and constitutive assumptions are introduced for a general system of two isotropic
hyperelastic compressible bodies which are statically in equilibrium under the effect of superficial forces
and gravity effects. In section 3 a minimization procedure for the total energy in 3-D is derived. Sections
4 and 5 analyse and discuss two applications, under the axisymmetry and incompressibility assumptions:
the case of a soft drop on a stiffer substrate and the stiff drop on the softer substrate. Finally, conclusions
are presented in the section 6.

2 Elastocapillary energy, kinematics and constitutive assumptions

Two solids S1,S2 and a vapour V are described, in the current three-dimensional Euclidean space, by
the regions D̃1, D̃2 and D̃V

1, respectively. The elastic domain of interest in the Eulerian configuration
is D̃ = D̃1 ∪ D̃2, while the interface between S1 and S2 is denoted by Γ̃12, between S1 and V by Γ̃1V and
between S2 and V by Γ̃2V, respectively, and shortly all gathered by Γ̃ = Γ̃12 ∪ Γ̃1V ∪ Γ̃2V. Λ̃ denotes all
other interfaces, where conditions are imposed on the displacement field. The introduced geometrical
terms refer to the current configuration, and the same notations with the superscript 0 are used for the
reference configuration D̃0.

Surface effects are considered by assuming the presence of a piecewise constant, in magnitude, surface
tension γ̃ on Γ̃, such that

γ̃ =

{ γ̃12 on Γ̃12,

γ̃1V on Γ̃1V ,

γ̃2V on Γ̃2V.

(1)

Assuming hyperelasticity, the internal energy of the system is the sum of the potential elastic energy
(strain energy function) W̃e and the surface potential energy W̃s = γ̃. Effects from the gravity g there
will be also taken into account so that the total potential energy, denoted by Π̃, is

Π̃ = Ĩe + Ĩs − Ĩg, (2)

where

Ĩe =
∫

D̃0

W̃e dD̃0, Ĩs =
∫

Γ̃
W̃s dΓ̃, Ĩg =

∫

D̃0

ρ̃0g̃ · ũ dD̃0, (3)

and where ũ denotes the displacement vector field.
In order to obtain a dimensionless formulation of the problem, let us introduce the characteristic

length Lc, which allows to define the dimensionless domains D, D1, D2 , the dimensionless interfaces Γ
and Λ and the dimensionless displacement u

D̃ = LcD, D̃i = LcDi (i = 1, 2), Γ̃ = LcΓ, Λ̃ = LcΛ, ũ = Lcu, (4)

and let γc be the characteristic surface tension which gives the dimensionless surface energy Ws and the
surface tension γ,

W̃s = γcWs, γ̃ = γcγ. (5)

1The upper symbol˜will be always used to denote dimensional quantities.

3



Let also denote by Σc the characteristic stress, which gives the dimensionless strain energy function We

and the two dimensionless (infinitesimal) shear modulus µi of Si

W̃e = ΣcWe, µ̃i = Σcµi, (i = 1, 2). (6)

Finally, denoting by ρc and by gc the characteristic density and the characteristic gravity, we can define

ρ̃0 = ρcρ0, g̃ = gcg, (7)

the dimensionless density and the gravity vector.
Since we deal with several bulks (and thus several elastic coefficients) and several interfaces (and

thus several surface tensions), several lengthscales, which relate surface tensions to the elastic effects,
appear. These physical lengthscales have to be considered in addition to the characteristic length Lc,
which describe the characteristic size of the solids. In fact, the ratios

ls1 =
γ̃1V
µ1Σc

, ls2 =
γ̃2V
µ2Σc

(8)

define two independent elastocapillary length scales for each solid S1 and S2. Since the tl is related to
both (or more) solids, it is clearly related to both length scales ls1 and ls2. Choosing one characteristic
elastocapillary length we introduce a unified non-dimensional parameter, called here the deformability

parameter δ, which combines the different scales involved in the modelling of the tl and the dimensionless
gravity parameter η, which accounts for the gravity effects

ls =
γc
Σc

, δ =
ls
Lc

=
γc

LcΣc
, η =

Lcρcgc
Σc

, (9)

Both parameters δ and η controls the overall deformation.
The total potential dimensionless energy Π for D can be therefore rewritten in a dimensionless form

as
Π(u) = Ie(u) + Is(u) + Ig(u), (10)

where

Ie(u) =
∫

D0

We(u) dD0, Is(u) = δ

∫

Γ
Ws dΓ, Ig(u) = η

∫

D0

g · u dD0. (11)

In the isotropic case, the potential elastic energy density We is related to the elastic stress by the
following nonlinear relationship,

σ = α0I+ α1B+ α2B
2, (12)

where αj = αj(I1, I2, I3), j = 0, 1, 2, are the elastic response functions defined by

α0 = 2
√

I3W3, α1 =
2√
I3

[W1 + I1W2] , α2 = − 2√
I3
W2, (13)

where Wi = ∂W/∂I1 and

I1 = trB, I2 =
1
2 [(trB)2 − trB2], I3 = J2 = detB, (14)

are the principal invariants of B, where B is the left Cauchy-Green tensor FFT and F = F(u) = I+∇u

is the deformation gradient Fij = ∂xi/∂Xj . Here x andX denote the coordinate systems in the reference
and current configuration, respectively, which are related by x = X + u. In the incompressible limit,
the dimensionless Cauchy stress tensor (12) simplifies to:

σ = −pI+ 2 [W1 + I1W2]B− 2W2B
2 (15)

where p is the Lagrange multiplier introduced by the incompressibility constraint. For future uses, the
first Piola-Kirchhoff stress tensor P and the Kirchhoff stress tensor τK , are also recalled,

P = JσF−T, τK = Jσ. (16)

In order to write the total energy of the system (10) in the reference configuration, the superficial
contribution of the energy can be pulled-back, which thanks to Nanson’s formula ndΓ = JF−Tn0dΓ0

(here n and n0 are the outward unit normals in the deformed and undeformed configurations), can be
rewritten as

Is(u) = δ

∫

Γ0

WsJ‖F−T(u)n0‖ dΓ0. (17)
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3 Minimization of the total energy: Euler-Lagrange equations

The displacement solution u is a stationary point of the total energy (10), i.e. a solution for the Euler-
Lagrange equation:

Π′(u)(v) =
d

dt
Π(u+ tv)|t=0 = 0, (18)

for every v test function. Standard calculations show that

I ′
e(u)(v) =

∫

D0

P(u) : ∇v dD0 =

∫

D0

τK(u) : ∇vF−1(u) dD0, (19)

I ′
s(u)(v) =

∫

Γ0

δγG(u,v) dΓ0, (20)

where

G(u,v) = J‖F−Tn0‖F−T : ∇v −
(

F
−T

∇vF−T
)

n0 · F−Tn0

‖F−Tn0‖ , (21)

where in order to simplify notations (here and in the following where no confusion occurs) the u depen-
dence of the deformation gradient F = F(u) has been omitted, and

I ′
g(u)(v) =

∫

D0

ηg · v dD0, (22)

for u− u0 ∈ U and for every v ∈ U , where

U =
{

v ∈ W 1,s(D0,R3);v|Λ0 = 0
}

, (23)

and u0 is some displacement field imposed on the boundary Λ0, and W 1,s(D0,R3) denotes the Sobolev
space of vectorial functions defined on D0, with s ≥ 1.

Generally, equation (18) cannot be evaluated analytically and a numerical scheme is necessary. One of
the most popular procedure is the so called Newton-Raphson method (see for instance [Le Tallec, 1994]),
which is presented below. Let us consider a sequence un s.t. un − u0 ∈ U , un+1 = un +wn, where wn

is the solution of the following equation

Π′′(un)(v,wn) + Π′(un)(v) = 0, for all v ∈ U , (24)

or, equivalently,

I ′′
e (un)(v,wn) + I ′′

s (un)(v,wn) + I ′
e(un)(v) + I ′

s(un)(v) + I ′
g(un)(v) = 0, for all v ∈ U , (25)

where double prime denotes the second derivative given in A.
The choice of the initial guess u0 is very important and determine the convergence (or absence of

solution) of the Newton-Raphson algorithm. To choose u0, we will use the deformability parameter
δ as a loading parameter. Indeed, let us remark that for δ = 0 the surface energy vanishes and the
above problem is a standard boundary value problem in nonlinear elasticity. Its solution, denoted by
u0, is the initial guess u0 for computing the displacement u = u∆δ associated to the deformability
parameter δ = ∆δ. The displacement field u = u(k+1)∆δ, is then calculated step by step, by iterating
the Newton-Raphson algorithm starting from u0 = uk∆δ and increasing the deformability parameter δ.

The variational formulation is written for any system of two isotropic nonlinear elastic solids S1,S2,
but it can be easily generalised to more than two anisotropic nonlinear elastic solids. The incompress-
ibility constraint can be taken into account by considering the constitutive law (15) rather then (12).
In the following, two applications are considered: a soft drop at rest on an harder substrate (section
4) and the dual case of a stiff sphere at rest on a softer substrate (section 5). Since there is a wide
interest for elastic solids which preserve their volumes, S1 and S2 will be considered incompressible. In
the numerical computations, standard numerical technics (penalization, augmented Lagrangian) could
be used to handle the incompressibility constraint (see for instance [Le Tallec, 1994]).
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4 A softer drop on a stiffer substrate

Let us consider one incompressible soft elastic domain (gel-like or fluid-like) which initially is a spherical
drop S2 with radius R0 = R̃0/Lc deposited on a stiffer elastic substrate S1. Assuming axisymmetry, the
substrate S1 is thought as a thick disc of depth H = H̃/Lc and radius L = L̃/Lc. The origin of the
polar coordinate system is in the centre of the substrate upper face (see the Fig. 1 for a representative
scheme).

V

S1

S2

X

Y

Z

R
Φ

Λ0

Γ0

1V

Γ0

2A

Γ0
12

Figure 1: A soft drop S2 at rest on the elastic substrate S1 in the presence of the vapour V. The figure
shows a possible reference configuration.

4.1 Initial configuration

Since the uniqueness is missing the choice of the reference configuration is an important step. In the
present analysis, the reference state is chosen to be the equilibrium configuration which minimizes the
surface energy only. When the sphere S2 is assumed very soft compared to the substrate S1, this is a
reasonable choice and it corresponds to δ = 0 by taking Σc = µ̃1 → ∞. When δ increases, the elastic
effects come into play and the new equilibrium configuration will correspond to a stationary point of
the total elastocapillary energy where the balance now accounts for both the elastic and surface energies
(and of course the gravitationnal energy also when η 6= 0).

R

R0

θθθ

θ < π/2

θ > π/2

Figure 2: Initial configuration: a spherical drop of radius R0 (left) deposited on a rigid substrate at two
contact angles θ (right).

The initial configuration is computed by minimizing the surface energy with the volume conservation
constraint ([White, 2003]). Basically, when no elastic contribution is considered, the equilibrium of the
system is trivially the one for which S2 is a spherical cap shape at rest on the (assumed rigid) substrate.
The reference S2 cap shape is defined by its radius R and by the contact angle θ (see Figure 2). From
simple geometrical considerations and the volume V = 4/3πR3

0 conservation we get that R = R(θ),

R(θ) =

(

4R3
0

(1 + cos θ)2(2− cos θ)

)1/3

. (26)

The surface energy Is = γ12|Γ12|+γ2V|Γ2V|+γ1V|Γ1V| depends on the surface areas |Γ12| = π(R(θ) sin θ)2,
|Γ2V| = 2πR2(θ)(1+cos θ) and |Γ1V| = π

(

L2 − (R(θ) sin θ)2
)

and therefore it is a function of the contact
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angle θ:
Is = Is(θ) = π(γ12 − γ1V)(R(θ) sin(θ))2 + 2πγ2V(1 + cos θ)R2(θ) + πγ1VL

2. (27)

The contact angle of the initial configuration θ, obtained by minimizing Is (i.e. the first variation with
respect to θ vanishes) is

θ = arccos

(

γ12 − γ1V
γ2V

)

. (28)

The relationship (28) is refereed to as Young’s equation in classical wetting theory ([Lester, 1961])
and ensures the balance of the horizontal projection of the three surface tensions at the tl.

4.2 Boundary conditions and parameters setting

The imposed displacement on Λ0 assumes perfect adhesion and no sliding conditions-type for the bottom
and lateral boundary respectively, i.e

u|Z=−H = 0, ur |R=L = 0. (29)

The following parameters are chosen to reproduce typical physical parameters encountered in elastowet-
ting experiments

γc = 0.01N/m, Σc = 1000N/m2, Lc = 0.001m, ρc = 1000Kg/m3, gc = 1m/s2. (30)

The surface parameters (surface tensions) and the geometrical parameters are chosen to be γ12 = 4.5,
γ1V = 1.9, γ2V = 6.8 and H = 0.051, L = 2R(θ) + H, Vol(S2) = 5. This choice of the parameters
together with Young’s law (28), are sufficient to uniquely define the reference domain D0 as the starting
equilibrium configuration (undeformed configuration). Simulations have been carried for Mooney-Rivlin
strain energy density with several choices of the parameter f (see B), and since no remarkable differences
being observed all results are presented in the following for the Neo-Hookean potential (f = 1/2). Finally,
the computation results will be always displayed for a 2D half domain D and the blue regions will denote
a softer solid while the grey region will denote the stiffer one (see coloured figures).

4.3 Multiscale domain discretization

In order to capture the effects near the tl on different length scales Lc, ls1, ls2, we used a multiscale
discretization of the undeformed domain D0. To unify geometric and physical length scales we choose
an appropriate ad hoc three levels discretization by adapting the mesh size h in each region. Since the
higher stresses and distortions occur next to the tl, the domain will be discretized here with a finest
mesh hs, while meshes of medium size hm cover the area along the interfaces Γ, and finally, larger meshes
size hl are in the rest part of the domain. A mesh is then described according to the choice of hs, and
of the two ratios Cms and Cls, given by

hm = Cmshs, hl = Clshs. (31)

For Cms ≈ 10 and Cls ≈ 102, the mesh plotted in Fig. 3 accounts for a multiscale discretization able to
describe the deformation at different length scales. To obtain an accuracy in the position of the tl of
the order of 10−2µm/Lc the mesh size hs in its neighborhood has to be of the order of 1µm/Lc. With
the above multi-scale mesh the number of elements is less then 104 and the computational costs is rather
low (around 10 minutes on a laptop).

4.4 Triple line’s position accuracy

Several simulations have been carried in order to test the convergence of the FEM computations and
the sensitivity of the tl position on the mesh size hs. The elastic constants have been chosen to be
µ1 = 6, µ2 = 6×10−2 to keep the ‘softness’s ratio’ to be 100 (see next subsection). Keeping Cms = 6 and
Cls = 42 fixed, five simulations have been carried for hs = 0.8, 1, 2, 3 and 4µm/Lc. As seen in Figures
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(a) (b)

Figure 3: (a) The mesh discretization of the domain D0 following a three-level mesh size as in (31). (b)
Zoom in near the tl.

4a and 4b the computed deformed profiles of the tl are all in agreement and there are no important
differences (the deformations are overlapped) for hs less than 3µm/Lc at a µm scale. In Fig. 5, the
coordinates of the tl are reported against the sizes hs. We see clearly that for hs less than 2µm/Lc we
get a very good accuracy (of order of 10−2µm).

5µm

(a)

5µm

(b)

Figure 4: Comparison between the deformations near the tl for different mesh sizes hs. (a) hs = 1µm/Lc

(coloured regions with black wireframe) against hs = 2µm/Lc (white wireframe). (b) hs = 2µm/Lc (white
wireframe) against hs = 3µm/Lc (coloured regions with black wireframe).

1.0682 1.0684 1.0686 1.0688 1.0690

0.0042

0.0044

0.0046

0.0048

0.0050

hs = 0.8µm/Lc

hs = 1µm/Lc

hs = 2µm/Lc

hs = 3µm/Lc

hs = 4µm/Lc

Z

R

Figure 5: The tl position in a Lc-scale (mm) for different mesh sizes hs = 0.8, 1, 2, 3 and 4µm/Lc.

4.5 Drop ‘fluidity’ and gravity effects

As mentioned previously, the problem considered in this paper, involving two solids, could also model a
fluid in contact with a solid since in a fluid at rest the stress is purely hydrostatic. To simulate a fluid,
we reduce the shear stress responses in the solid-like model to get a fluid-like behavior. That means
that for small ratio µ2/µ1 the ‘solid’ S2 will exhibit a liquid-like behavior. We therefore conducted
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several simulations for different µ2/µ1, while µ1 is kept fixed. In Figure 6a we have compared the
deformation near the tl for µ2/µ1 = 0.1 and for µ2/µ1 = 0.02, while in Figure 6b for µ2/µ1 = 0.01 and
for µ2/µ1 = 0.005. We see that for µ2/µ1 less than 0.02 the deformation is not influenced by the shear
modulus µ2 of the ‘fluid’ S2 and we conclude that for µ2/µ1 = 10−2 the tl interaction between a fluid
and a solid could be modeled within the framework of two solids in interaction.

5µm

(a)

5µm

(b)

Figure 6: Comparison between the deformations near the tl for different µ2/µ1. (a) µ2/µ1 = 0.1
(coloured regions with black wireframe) against µ2/µ1 = 0.02 (white wireframe). (b) µ2/µ1 = 0.01
(coloured regions with black wireframe) against µ2/µ1 = 0.005 (white wireframe).

5µm

Figure 7: Comparison between the computed deformation near the tl with no gravity (η = 0, white
wireframe) and with gravity (η = 9.81 × 10−3, coloured mesh).

Even though gravity effects are often neglected, they can be important, even for very small drops, for
the evaluation of some physical and geometrical quantities close to the tl (for example the slopes of the
interfaces). In Fig. 7, we have plotted the comparison of the computed deformation near the tl with
and without gravity. Clearly, near the tl at a µm scale, the predictions when gravity is not considered
can lead to some substantial differences.

4.6 Comparison between the nonlinear computations and the analytical solution of

the linear elasticity

Within the framework of linear elasticity, one may derive an analytical expression of the boundary
z = z1(r) of the solid S1 interacting with a fluid for uniform surface tension (i.e. γ1V = γ12). The
problem is formulated in terms of a displacement potential function and accounts for finite thickness
effects. The obtained ‘analytical’ solution is found in Fourier-Hankel space and must nonetheless be
inverted numerically (see D for details). Of course, the linear approximation cannot be used to model
situations where the tip of the ridge is bent, for which the boundary of the solid S1 cannot be written
as a z = z1(r) function.

We compare here the nonlinear numerical computation of the deformed configuration with the ana-
lytical expression of z = z1(r) of S1’s boundary obtained in linear elasticity. To do that let us consider

9



first the symmetrical case of a substrate S1 with thickness H = 0.050, and γ12 = 3, γ1V = 3, γ2V = 6.8
and µ1 = 6, µ2 = µ1 × 10−2.

5µm

(a)

100µm

(b)

Figure 8: (a) Comparison between the nonlinear computation of the deformed configuration (coloured
regions) and the linear analytical solution z = z1(r) (white solid line) near tl in the symmetrical case
(γ12 = γ1V) for δ = 0.01. (b) Same as in (a) when z axis is stretched at 1 : 10.

As we can see from Figures 8a and 8b for symmetrical surface tensions, (i.e. γ12 = γ1V) and for
moderate deformations (δ ≤ 0.01) the linear predictions successfully recover the nonlinear theory. In
this regime of deformability, the linear theory is still accurate to describe the deformed substrate’s profile
near the tl (see Fig. 8a), and excellent to describe the two dimples (see Fig. 8b) appearing on the wet
and dry side respectively, far enough from the distorted area. For increasing δ, as expected, the two
theories diverge when approaching the tl (at a µm scale), while they are in very good agreement far
enough (at a mm scale). Fig. 9a shows a comparison for δ = 0.05, and clearly the linear predictions are
not anymore in agreement with the nonlinear ones. The Fig. 9b plots the vertical distance ∆ between
the nonlinear predictions of the tl and the linear predicted profile curve2 (as specified in Fig. 9a),
against the deformability parameter δ. We remark that for higher values of δ, the linear theory becomes
less and less accurate and the difference is of order of 4µm.

∆

5µm

(a)

0.01 0.02 0.03 0.04 0.05

0.001

0.002

0.003

0.004

∆ mm

δ

(b)

Figure 9: (a) Comparison between the nonlinear computation of the deformed configuration (coloured
regions) and the linear analytical solution z = z1(r) (white solid line) near tl in the symmetrical case
(γ12 = γ1V) for δ = 0.05. (b) The vertical distance ∆ (in a µm/Lc scale) between the linear and nonlinear
predictions of the tl positions versus the deformability parameter δ.

In the asymmetrical case of different solids surface tensions (i.e. γ12 = 4.5 6= γ1V = 1.9) the linear
elasticity predictions of [Bostwick et al., 2014] are not in a good agreement with the nonlinear ones even
for moderate deformations δ = 0.01. In Fig. 10a one can see an important difference between the linear
and nonlinear case for δ = 0.01 at the µm scale. The plot of the contour lines of the displacement
gradient norm ‖∇u‖, shows that the deformation becomes larger and larger as it approaches to the tl,
and ‖∇u‖ in some area reaches values of 130% (see Fig. 11). Under the 3% threshold, the deformations

2The linear and nonlinear predictions of the tl are not necessarily on the same vertical line.
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are well described accurately by the linear theory, while in the region of high values of ‖∇u‖ the two
predictions diverge.

5µm

(a)

5µm

tl0

(b)

Figure 10: (a) Comparison between the nonlinear computation of the deformed configuration (coloured
regions) and the linear analytical solution z = z1(r) (white solid line) near tl in the the asymmetrical
case (γ12 6= γ1V) for δ = 0.01. (b) Nonlinear computation of the deformed configuration for δ = 0.07 and
the cusp rotation.
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(a)

0.17111

0.31222

0.45333

0.59444

0.73556

0.87667

1.0178

1.1589

3.000e-02

1.300e+00

Displacement Gradient

5µm

(b)

Figure 11: (a) Contour lines for the ‖∇u‖ ≥ 0.03 and linear predictions (white solid curves) near the
tl at a larger scale for the same settings as in Fig. 10a. (b) The same region zoomed in at a µm scale.

As it has already been verified experimentally (see [Park et al., 2014]) the combined effect of hydro-
static pressure and surfaces forces tend to rotate the ridge. In Fig. 10b we have plotted the nonlinear
computation of the deformed configuration for a large deformability parameter δ = 0.07. This clearly
shows that the tip of the ridge is bent with an asymmetric tip.

5 A stiffer drop on a softer substrate

By contrast with the case of a soft drop at rest on a stiffer substrate, presented in the previous section 4,
we present here the dual case of a stiffer elastic drop S2 deposited on a softer (gel-like) elastic substrate
S1 (assumed axisymmetric with thickness H and radius L). Without loosing any generality, L is assumed
to be a fixed radius (for instance when S1 is constrained by walls of an external circular box) and very
large compared to the diameter of the drop. The solid S1 is now softer than the solid S2. The analysis
will be carried by considering the following set of parameters γ12 = 4.5, γ2V = 1.9, γ1V = 6.8 and µ2 = 6,
µ1 = 6× 10−2.

5.1 Initial configuration

Similarly to section 4.1, the initial configuration is chosen by minimizing surface energies only and thus
assuming that the stiff sphere is rigid. Again, some basic geometrical considerations show that the
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V
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Φ
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Γ0
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12

h0

Figure 12: A stiff elastic drop S2 at rest on the softer (gel-like) elastic substrate S1 in the presence of
vapour V. The figure shows a possible reference configuration.

contact angle satisfies:

θ = arccos

(

γ12 − γ2V
γ1V

)

. (32)

This can also be deduced from the balance of surface tensions on the plane tangent to the sphere at the
tl. The normal component of the surface tension will therefore be the main source of the deformation
when the elastic energy (and gravity) is accounted for. Moreover, because of the partial immersion of
the drop in the substrate and the incompressibility assumption for both S1 and S2, the thickness of the
substrate H becomes h after immersion (see Fig. 12 for a schematic visualization):

h = H +
R3

0

3L2
(1− cos θ)2(2 + cos θ). (33)

The geometrical settings are now chosen to have H = 1.2, L = 2R0 sin θ+H and R0 = 1. The domain is
discretized by the multiscale approach, following the three levels mesh size proposed in section 4.3 (see
Fig. 13).

(a) (b)

Figure 13: (a) The mesh discretization of domain D0 following a three-level mesh size as in (31). (b)
Zoom near the tl.

5.2 Deformability and gravity parameters effects

Fig. 14a shows the comparison between the computed deformation near the tl with no gravity (η = 0,
unfilled wireframe) and with gravity (η = 9.81 × 10−3 point filled regions) for δ = 0.01 with the tl

marked by a red circle. The same comparison is also presented in Fig. 14b for a larger value of the
deformability δ = 0.07. This analysis shows that even at small scales, gravity can have dramatic effects
. This suggests that gravity effects must be taken into account for any theory who wishes to describe
such problems.
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0 5µm

(a)

0 5µm

(b)

Figure 14: Comparison between the computed deformation near the tl with no gravity (η = 0) and
with gravity (η = 9.81× 10−3) for δ = 0.01 (a) and for δ = 0.07 (b). Here the 0 in the scale bar of 5µm
represent the initial position of the tl in its reference configuration D0.

6 Conclusions

We have presented in this paper a variational approach describing the equilibrium of two nonlinear elastic
bodies in contact, which accounts for bulk elasticity as well as surface and gravitational energies. This
work is a first step towards a generalization of linear theories, when finite deformations needs to be taken
into account. The variational equations are derived for the most general case of two compressible solids,
and the numerical Newton-Raphson scheme is adapted as a numerical tool for solving these equations.
In order to tackle the inherent difficulties of the problem caused by the existence of several lengthscales,
a unified deformability parameter was defined and a multiscale domain’s discretization was used. We
analysed the axisymmetric case of a soft drop at rest on a stiff substrate and the reciprocal problem of
a stiff solid drop on a softer substrate, under the incompressibility constraint. Results are given without
any restriction on the values of surface tensions. The equations were implemented in a finite element
formulation coded in freeFem++.

In the first application, the simulation domain was discretized on three levels of mesh element size
for which both the accuracy of the convergence and the sensitivity to the mesh size were tested. Very
soft drops simulates fluid-like behavior where the static stress is purely hydrostatic. The theory derived
here, which accounts for finite deformations, was also compared to the linear predictions. We have shown
that, in the general case, the two theories are in agreement at low deformations but diverge for increasing
deformations. In fact, even at low deformations, in the vicinity of the tl, the displacement gradient
becomes so large that any linear theory will fail. However, reasonably far from the tl, the linear predic-
tions are rather accurate. For example, the linear theory predicts quite well the two dimples appearing
in the substrate (on the wet and dry parts) and also seen experimentally. At higher deformations, and
in the general case of asymmetric surface tensions, the numerical simulations reveal an asymmetry and
a rotation of the tip of the ridge beneath the tl, a feature also confirmed by the experimental observa-
tions and not described by the linear theory. To model indentation applications (phenomena typically
occurring at smaller scales than elastowetting problems), the second example we developed concerns the
analysis and the modelling of a stiff sphere at rest on a softer substrate. In this case, we have shown
that the effects of the gravity cannot be neglected since it induces significant deformations.
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A Second derivative of the total energy

The second variation of Ie is,

I ′′
e (u)(v,w) =

∫

D0

[(

∂τK
∂F

(u)∇w

)

: (∇vF−1(u))− τK(u) :
(

∇vF−1(u)∇wF
−1(u)

)

]

dD0 (34)

and the second variation of Is is,

I ′′
s (u)(v,w) =

∫

Γ0

δγJF1(u,v,w) dΓ0 +

∫

Γ0

δγF2(u,v,w) dΓ0 (35)

where

F1(u,v,w) = ‖F−Tn0‖
[

−
(

F
−T

∇wF
−T

)

: ∇v +
(

F
−T : ∇v

) (

F
−T : ∇w

)]

−
(

F
−T

∇wF
−T

)

n0 · F−Tn0

‖F−Tn0‖ F
−T : ∇v (36)

and

F2(u,v,w) =
[(

F
−T

∇wF
−T

)

∇vF−T + F
−T

∇v
(

F
−T

∇wF
−T

)]

n0 · F
−Tn0

‖F−Tn0‖

+

(

F
−T

∇vF−T
)

n0 ·
(

F
−T

∇wF
−T

)

n0

‖F−Tn0‖

−
((

F
−T

∇vF−T
)

n0 · F−Tn0
)

(

F
−T

∇wF
−T

)

n0 · F−Tn0

‖F−Tn0‖3
, (37)

where the u dependence in F has been omitted for more clarity, while no contribution to the second
variation of the energy is given from the gravity.

B Mooney-Rivlin strain energy function

Let A,B be second order tensors. Denoting by AB the contraction, in Cartesian components, over one
repeated index and by : a contraction on two repeated indices, i.e. A : B = Tr(AB

T), we recall some
simple rules of tensor calculus.

∂

∂A
det (A) = A

−Tdet (A) ,
∂A−1

∂A
: B = −A

−1
BA

−1,
∂A−T

∂A
: B = −A

−T
BA

−T. (38)

Let us consider the strain energy function of the Mooney-Rivlin type

WMR =
1

2

(

1

2
+ f

)

µ(I1 − 3) +
1

2

(

1

2
− f

)

µ(I2 − 3), (39)

where f is a dimensionless constant in the range −1/2 ≤ f ≤ 1/2 and µ > 0 is the shear modulus for
infinitesimal deformations. Note when f = 1/2, the neo-Hookean model is recovered. The Kirchhoff
stress tensor reads now

τK = −pI+ µ

((

1

2
+ f

)

+

(

1

2
− f

)

I1

)

B− µ

(

1

2
− f

)

B
2 (40)

and its deviatoric part

τD
K = µ

((

1

2
+ f

)

+

(

1

2
− f

)

I1

)

B− µ

(

1

2
− f

)

B
2 − µ

3

((

1

2
+ f

)

I1 + 2

(

1

2
− f

)

I2

)

I (41)

while

∂τK
∂F

A = µ

((

1

2
− f

)

2F : A

)

B+ µ

((

1

2
+ f

)

+

(

1

2
− f

)

I1

)

(

AF
T + FA

T
)

− µ

(

1

2
− f

)

((

AF
T + FA

T
)

B+B
(

AF
T + FA

T
))

(42)
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C The axisymmetric case

Under the assumption of axisymmetry, reference and current configurations, D0 and D, respectively, can
therefore be described by the use of cylindrical coordinates (R,Z,Φ) and (r, z, ϕ), respectively, where

r = r(R,Z), z = z(R,Z), ϕ = Φ (0 ≤ Φ < 2π), (43)

and u = (ur(R,Z), uz(R,Z), 0). It is also assumed

D0 =
{

(R,Z) ∈ Ω0,Φ ∈ [0, 2π)
}

, D =
{

(r, z) ∈ Ω, ϕ ∈ [0, 2π)
}

,

Γ0 =
{

(R,Z) ∈ Γ0
2,Φ ∈ [0, 2π)

}

, Γ =
{

(r, z) ∈ Γ2, ϕ ∈ [0, 2π)
}

,

Λ0 =
{

(R,Z) ∈ Λ0
2,Φ ∈ [0, 2π)

}

, Λ =
{

(r, z) ∈ Λ2, ϕ ∈ [0, 2π)
}

, (44)

where Ω0 and Ω, as well as Γ0
2,Λ

0
2 and Γ2,Λ2 are the 2-D domains, and 2-D boundaries, in the plane

〈eR,eZ〉 and 〈er,ez〉, respectively (see Fig. 15).

V
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S2

R

Z

r

z

τ
0

n
0 τ

n

Ω0 Ω

γ2V

γ1Vγ12

Γ0

1V

Γ0

2V

Γ0
12

Λ0

Λ0

Γ1V

Γ2V

Γ12

Λ

Λ

Figure 15: Half section of a 2D axisymmetric soft gel-like drop S2 on a harder substrate S1 with the
presence of some vapour V, represented in a schematic case in its reference configuration Ω0 (left) and
in its current configuration Ω (right), no scale is implied.

The displacement gradient ∇u and the deformation gradient Fij = ∂xi/∂Xj associated with (43) in
polar components are

∇u =

[

[∇u]2 0
0 ur/R

]

, F =

[

F2 0
0 r/R

]

, (45)

while the left Cauchy-Green tensor B = FF
T and its inverse are given by

B =

[

B2 0
0 (r/R)2

]

, B
−1 =

[

B
−1
2 0
0 (R/r)2

]

, (46)

where

[∇u]2 =

[

ur,R ur,Z
uz,R uz,Z

]

, F2 =

[

r,R r,Z
z,R z,Z

]

, B2 =

[

r2,R + r2,Z rRz,R + rZz,Z
rRz,R + rZz,Z z2,R + z2,Z

]

, (47)

B
−1
2 =

[

z2,R + z2,Z − (rRz,R + rZz,Z)

− (rRz,R + rZz,Z) r2,R + r2,Z

]

/ (rZz,R − r,Rz,Z)
2 , (48)

and where the , denotes the partial derivative with respect to the subscript variable. Moreover

I3 = J2
2

( r

R

)2
, J2 = detF2. (49)
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Where defined, let τ ,n be the unit tangent and outward normal vectors, respectively,

τ = (τ2, 0) , n = (n2, 0) , (50)

where
τ2 = (τr, τz) , n2 = (nr, nz) , (51)

are the respective two-dimensional unit tangent and outward normal vectors. Since

J‖F−Tn0‖ = J2
r

R
‖F−T

2 n0
2‖ =

r

R
‖F2τ

0
2 ‖, (52)

where the last equality is obtained from a two-dimensional version of Nanson’s formula (see
[Steigmann and Ogden, 1997]), the superficial term in (10) can therefore be rewritten as

Is =
∫

Γ0

δγJ‖F−Tn0‖ dΓ0 = 2πδ

∫

Γ0
2

γr‖F2τ
0
2 ‖ dRdZ, (53)

where the integration over Φ has been computed. From definition (18), the first variation of Is(u) is
easily derived as

I ′
s(u)(v) = 2πδ

∫

Γ0
2

γ (R+ ur)
F2τ

0
2

‖F2τ
0
2 ‖

·∇vτ 0
2 dRdZ + 2πδ

∫

Γ0
2

γvr‖F0
2τ

0
2 ‖ dRdZ, (54)

for every v = (vr(R,Z), vz(R,Z), 0) in U . The first variation of Ie reads

I ′
e(u)(v) = 2π

∫

Ω0

P(u) : ∇v RdRdZ = 2π

∫

Ω0

τK(u) : ∇vF−1(u) RdRdZ (55)

while the first variation for the gravity energy term as

I ′
g(u)(v) = 2π

∫

Ω0

ηg · v RdRdZ (56)

In order to apply the Newton-Raphson procedure (24), the second variation of Ie is,

I ′′
e (u)(v,w) = 2π

∫

Ω0

(

∂P

∂F
(u)∇w

)

: ∇v RdRdZ

= 2π

∫

Ω0

[(

∂τK
∂F

(u)∇w

)

: (∇vF−1(u))− τK(u) :
(

∇vF−1(u)∇wF
−1(u)

)

]

RdRdZ (57)

and the second variation of Is is,

I ′′
s (u)(v,w) = 2πδ

∫

Γ0
2

γ(R+ ur)

‖F2(u)τ
0
2 ‖3

[

‖F2(u)τ
0
2 ‖2∇wnτ

0
2−

(

∇wτ 0
2 · F2(u)τ

0
)

F2(u)τ
0
2

]

·∇vτ 0
2 RdRdZ

+ 2πδ

∫

Γ0
2

γur
F2(u)τ

0
2

‖F2(u)τ
0
2 ‖

·∇vτ 0
2 RdRdZ + 2πδ

∫

Γ0
2

γvr
F2(u)τ

0
2

‖F2(u)τ
0
2 ‖

·∇wτ 0
2 RdRdZ. (58)

D The linear elastic solution

The deformation of the elastic solid is described by the axisymmetric displacement field u,

u = ur(r, z)er + uz(r, z)ez , (59)

and the strain tensor ǫ is defined as

ǫ =
1

2

(

∇u+ (∇u)T
)

, (60)
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while the linear stress stress relationships gives the stress tensor σ as

σ =
E

1 + ν

(

ǫ+
ν

1− 2ν
Tr(ǫ)I

)

(61)

where E is the Young’s modulus and ν is the Poisson ratio. The mechanical equilibrium in the bulk of
the soft elastic layer is described by the Navier equations:

∇ · σ = 0 (62)

or, using the displacement field u by

(1− 2ν)△u+∇(∇ · u) = 0. (63)

This set of equations is completed by the condition of stress continuity at the free boundary z = h,

σn = t+ γsn(∇ · n) (64)

where n and t are the unit normal vector to the surface and traction forces exerted at the substrate
boundary, respectively. γsl is the surface energy of the solid-liquid interface and γsg is the surface energy
of the solid-gas interface. In addition, the soft elastic layer is bounded at the bottom, i.e at z = 0,

u(r, 0) = 0. (65)

Let us consider the problem of a static purely normal force t = Fz(r)ez applied at the free boundary
of the elastic solid. The axisymmetric compressible Navier equations are simplified by introducing a
potential function known as the Galerkin vector G,

G = ξ(r, z)ez (66)

defined as

u =
1 + ν

E
(2(1− ν)△G−∇(∇ ·G)) . (67)

Substituting (67) into (63), we obtain the familiar biharmonic equation of linear elasticity

△2ξ = 0. (68)

In the axisymmetric geometry, it is useful to defined the Fourier-Hankel transform with respect to r by

ξ̂(s, z) =

∫ ∞

0
rξ(r, z)J0(sr)dr (69)

and its inverse transform by

ξ(r, z) =

∫ ∞

0
sξ̂(s, z)J0(sr)ds. (70)

Inserting (70) into the biharmonic equation (68), we get the simple fourth-order ordinary differential
equation for ξ̂,

d4ξ̂

dz4
− 2s2

d2ξ̂

dz2
+ s4ξ̂ = 0 (71)

and the boundary condition (65) can be rewritten in term of ξ̂(s, z) as

dξ̂

dz
= 0 and (1− 2ν)

d2ξ̂

dz2
− 2(1− ν)s2ξ̂ = 0 (72)

The general solution of (71), subjected to the two boundary conditions in (72), is then

ξ̂(s, z) = C(s)

(

cosh(sz) +
sz sinh(sz)

2(1 − 2ν

)

+D(s) (sz cosh(sz)− sinh(sz)) (73)
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where C(s) and D(s) are two functions of s that need to be determined using the remaining two scalar
boundary conditions (64) at the free surface z = h. In component forms, (64) reads

σrz = 0 for 0 ≤ r ≤ ∞ (74)

and
σzz − γs△||uz − Fz = 0 (75)

where △|| is the Laplacian operator along the r direction only. Using the constitutive relation (61)
together with definition (67) of the Galerkin vector, the first boundary condition (74) reads,

(1− ν)
∂ξ

∂r
+ r

(

rν
∂3ξ

∂r∂z2
− (1− ν)

(

∂2ξ

∂r2
+ r

∂3ξ

∂r3

))

|z=h

= 0, (76)

and inserting the definition (70) of the Fourier-Hankel transform into (76) we get

s2(1− ν)ξ̂(s, h) + ν
∂2ξ̂

∂z2

∣

∣

∣

∣

z=h

= 0. (77)

Now inserting the solution (73) into (77) we get a relation between C(s) and D(s),

D(s) = C(s)
2(1 − ν) cosh(hs) + hs sinh(hs)

2(1 − 2ν) ((1− 2ν) sinh(hs)− hs cosh(hs))
. (78)

We now have a single function C(s) to be determined using the boundary condition (75). To find the
solution we rewrite this BC using the inverse Hankel transform (70),

σ̂zz(s, h) + γss
2ûz(s, h)− F̂z(s) = 0 (79)

which solution is

C(s) =
(

4E(2ν − 1)F̂z(s)((2ν − 1) sinh(hs) + hs cosh(hs))
)/

(

s3
(

E
(

2h2s2 + 4ν(2ν − 3) + 5
)

+ E(3− 4ν) cosh(2hs) + 4γsh
(

ν2 − 1
)

s2

+ 2γs(ν
2 − 1)(4ν − 3)s sinh(2hs)

)

)

. (80)

Equation (73), together with (78) and (80) is the general solution of the problem of a compressible
substrate of finite thickness h under an arbitrary distribution of normal forces. We are mostly interested
by the deformation of the free surface of an incompressible material. Evaluating (73) at z = h and in
the limit ν → 1/2, the surface displacement field is given by

uz(r, h) =

∫ ∞

0

F̂z(s)J0(sr)

sγs

(

2E(2h2s2+cosh(2hs)+1)
3γs(sinh(2hs)−2hs) + s

)ds. (81)

Since for a spherical drop with radius R and contact angle α, the normal force is given by

F̂z = γ sin(α)

(

RJ0(sR)− 2

s
J1(sR)

)

, (82)

where γ is the surface energy of the liquid-gas interface, the deformation profile for the symmetrical case
α = π/2 (i.e. γs = γsg = γsl) is finally given by

uz(r, h) =
γ

γs

∫ ∞

0

J0(sr)
(

RJ0(sR)− 2
sJ1(sR)

)

s
(

2E(2h2s2+cosh(2hs)+1)
3γs(sinh(2hs)−2hs) + s

) ds. (83)
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