
HAL Id: hal-01447368
https://hal.science/hal-01447368

Submitted on 25 Nov 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Localization of deformation in thin shells under
indentation

Alice Nasto, Amin Ajdari, Arnaud Lazarus, Ashkan Vaziri, Pedro M. Reis

To cite this version:
Alice Nasto, Amin Ajdari, Arnaud Lazarus, Ashkan Vaziri, Pedro M. Reis. Localization of deformation
in thin shells under indentation. Soft Matter, 2013, 9 (29), �10.1039/c3sm50279a�. �hal-01447368�

https://hal.science/hal-01447368
https://hal.archives-ouvertes.fr


Localization of deformation in thin shells under indentation

Alice Nastoa, Amin Ajdaric, Arnaud Lazarusa, Ashkan Vaziric, and Pedro M. Reisab∗

We perform a hybrid experimental and numerical study
of the localization of deformation in thin spherical elas-
tic shells under indentation. Past a critical indentation,
the deformation of the shell ceases to be axisymmetric and
sharp points of localized curvature form. In plates, these
sharp points are known as d-cones. By way of analogy,
we refer to regions of localization in shells as s-cones, for
‘shell-cones’. We quantify how the formation and evo-
lution of s-cones is affected by the indenter’s curvature.
Juxtaposing results from precision model experiments and
Finite Element simulations enables us to explore the fric-
tional nature of the shell-indenter contact and characterize
the relative properties of strain energy focusing, at differ-
ent loci of localization. Our combined experimental and
computational approach allows us to gain invaluable phys-
ical insight towards rationalizing this geometrically non-
linear process.

Introduction:

Localization in thin shells is observed over a large range of
length scales; from colloidal capsules at the microscale1 to
aircraft2,3 and architectural domes4,5. When localization is
induced by indentation, the shape of the indenter affects the
nature of the indenter-shell contact. This is an important con-
sideration in applications such as Atomic Force Microscopy
(AFM)6, which has been used to measure the mechanical re-
sponse of shell structures such as microcapsules7 and bacte-
ria8. The curvature of the AFM tip relative to the curvature of
the object that it indents is often non-negligible. As such, the
relationship between the mechanical response and the nature
of the indenter-object contact is critical for understanding the
process.

The mechanics of shells is inextricably connected to its ge-
ometry9 and, for a shell with positive Gaussian curvature,
bending and stretching are coupled. Stretching is energetically

∗ To whom correspondence should be sent: preis@mit.edy
a Department of Mechanical Engineering, Massachusetts Institute of Technol-
ogy (MIT), 77 Massachusetts Av., Cambridge MA, USA.
b Department of Civil & Environmental Engineering, MIT, Cambridge MA,
USA.
c Department of Mechanical and Industrial Engineering, Northeastern Uni-
versity, Boston MA, USA.

costly and the deformation of a shell is governed in large part
by a need to minimize stretching, in favor of bending, to pre-
serve the isometry of the surface (i.e. preserving the distance
along the surface between any two points). TEXT ADDED
HERE TO CLARIFY POINT ABOUT ISOMETRY A shell is
curved in its undeformed shape, yet when it undergoes large
deformations, the indented surface can develop sharp angular
shapes. Energy localizes at these vertices and along straight
edges, which, although locally costly, minimize stretching
globally10. In the linear regime, there have been a number
of attempts to rationalize the interplay between geometry and
mechanics, ranging from the seminal work of Reissner11 on
spherical shells to the more recent study of geometry-induced
rigidity in non-spherical pressurized shells12. There has been
much less attention, however, on localization in shells under
large deformations for which a general predictive framework
is still aloof.

The scenario for large deformations in doubly-curved shells
is not unlike what is observed in plates and other developable
surfaces (e.g. cylindrical shells) under large deformations,
where energy localizes along ridges and vertices, known as d-
cones for ‘developable cones’13–17. These localized structures
have been well studied and characterized through experimen-
tal, numerical, and theoretical work. Drawing an analogy with
d-cones in plates and cylindrical shells17, we denote the lo-
calized objects in doubly-curved shells by s-cones, for ‘shell
cones’, highlighting that they are not developable. Previous
studies on large deformations and localization in shells have
considered a variety of loading mechanisms. Some studies in-
duce large deformations in shells through depressurization and
characterize a variety of buckled shapes18–20. In other studies,
shells are deformed by indentation, with the most common
scenarios involving indentation by either a point load10,21–23

or a plate load21,23–29.
Here, we fill the gap between point and plate indentation

by studying indenters with intermediate curvatures. We are
motivated by the fact that natural and engineering instances of
indentation often occur in this intermediate range. Our goal
is to develop insight and gain a better understanding on the
relationship between the geometry of the shell, the shape of
the indenter, and the mechanics of the localization process in
the nonlinear regime of shells under indentation. Towards this
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Fig. 1 Experimental setup a) Coating technique used to fabricate
thin and uniform hemispherical shells. b) CAD model of indenter
and shell molds. c) Hemispherical elastomeric shell created by the
coating technique. d) Schematic of indenter, with radius R1 and shell,
with radius R2. e) Series of indenters ranging from Γ = R1/R2 = 0
(point load) to Γ = ∞ (plate load).

end, we perform precision model experiments using hemi-
spherical elastomeric shells and indenters with custom con-
trolled geometries that we custom fabricate using rapid proto-
typing. The shells are made using a coating technique (Fig. 1a)
whereby the surface of a mold (Fig. 1b) is coated by a liquid
polymer, which eventually cures, resulting in a thin shell with
uniform thickness (Fig. 1c). Our shells have radius R2 = 25
mm and thickness t = 0.28± 0.027 mm. More details on the
shell and indenter fabrication are given in the Materials and
Methods section.

Our indenters have a range of radii of curvature, such that
the ratio between the radius of the indenter, R1, and that of
the shell, R2, defined as Γ = R1/R2 (shown schematically in
Fig. 1d), lies in the full range 0 < Γ < ∞, from point load to
plate load, respectively (examples given in Fig. 1e). The me-
chanical response is quantified through indentation tests and
the evolution of the deformation of the shell is captured with
digital images using a camera located underneath the shell.
In parallel, we perform Finite Element Analysis (FEA) of
the same scenario explored experimentally, finding excellent
quantitative agreement between the two. Given the predictive
power of our numerics, we then exploit the simulations to gain
further insight into quantities that cannot be readily accessed
experimentally, such as the role of friction in the mechanical
response and characterization of localization of the strain en-

ergy. We find that patterns of localization are reproducible
with all values of Γ, in both experiments and simulations, and
show that the indenter’s shape affects both the number of s-
cones that form as well as the indentation onset for localiza-
tion. The mechanical response is also significantly affected by
the nature of the shell-indenter contact and important qualita-
tive differences are observed between sharp indenters (Γ < 1)
and blunt indenters (Γ > 1).

Point Indentation:

We start by considering the case of point indentation. A thin
hemispherical shell is clamped at its equator. A point load is
then applied to the shell’s pole along its axis and the indenta-
tion is performed quasi-statically at 5 mm/min (see Materials
and Methods for more details). This scenario is implemented
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Fig. 2 Point indentation a) Experimental snapshots (captured from
underneath the shell) of the evolution of the pattern of localization for
an elastomeric shell under point indentation at the pole. The white
reflection corresponds to the location at which the shell inverts. b)
Snapshots from FEA simulations of an elastomeric shell under point
indentation at the pole. c) Angular position of s-cones vs. indenta-
tion obtained from experimental images. θ is defined as in the red
schematic drawn in a2.
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and studied experimentally and through FEA simulations. In
the experiments, the evolution of the deformation upon inden-
tation is captured through digital imaging, as shown in the se-
quence of photographs in Fig. 2a) The white lines in the pho-
tographs, which aid identifying the loci of localization, corre-
spond to light reflections from the ridge-like regions, where
the shell inverts. The FEA simulations provides additional
means to quantify the localization process, for example by
having access to the energy density as indicated by the color
map in Fig. 2b). Localized structures are associated with sharp
increases in energy density.

In Fig. 2a,b), we present a sequence of representative snap-
shots of the shell at different stages of indentation, for the ex-
periments and the FEA simulations, respectively, at the same
values of the control parameters. Excellent qualitative and
quantitative agreement is found between the two. We define
the dimensionless indentation as ε = δ/R2, where δ is the in-
dentation displacement and R2 is the radius of the shell. At
small values ε , the cap of the shell inverts inwards, forming
an axisymmetric circular ridge, known as Pogorelov ridge30,
along which the shell stretches (Fig. 2a1,b1). Due to the
high energetic cost associated with stretching, past a critical
value of indentation, the round ridge loses its axisymmetry
and strain focuses at three conical-like vertices, the s-cones,
which help reducing the stretching globally (Fig. 2a2,b2)21.
Once these three s-cones form, the inverted portion of the shell
develops a tetrahedral shape. One vertex of the tetrahedron is
located at the point where the indenter makes contact with the
shell. The outer three vertices are located along a path on
the surface where the shell inverts. These three s-cones are
connected by straight segments, which we denote by ridges,
which act as folds between the mostly undeformed outer shell
and the inner inverted region. Inside the inverted tetrahedral
region, additional folds form, which we refer to as gullies, that
connect each of the s-cones to the point of indentation. As the
shell is indented further, the s-cones travel along the shell’s
surface and eventually new s-cones can form. It is interesting
to note that the birth of additional s-cones appears by division
of an existing localized structure (Fig. 2a3,b3), rather than nu-
cleation at a previously smooth region of the shell. Further
indentation past the splitting event results in four well defined
s-cones (Fig. 2 a4, b4).

To further quantify the process of birth and growth of s-
cones, we perform digital image processing on the experimen-
tal frames to track the angular position of each of the s-cones
(projected on a plane perpendicular to the vertical axis of in-
dentation). The schematic definition of the s-cone’s angular
position, θ , is presented in Fig. 2a2). As the shell is indented,
the evolution of the s-cones’ angular position illustrates the
splitting mechanism by which new s-cones form; at ε ∼ 0.7,
the forth new s-cone emerges through the branching of one of
the older three.

Localization of Energy for Point Indentation:

We proceed by further characterizing the various localized
structures identified above for point load, using quantities ex-
tracted from the FEA that are not available experimentally.
We shall later demonstrate the power of our FEA simulations
in predictively reproducing the experimental results. In partic-
ular, our focus now goes to a quantitative comparison of the
strain energy density, the energy stored in a body due to defor-
mation per unit volume, for the s-cones, ridges, and gullies.
We analyze the specific example of indentation to δ = 15mm
(ε=0.6). The paths along the shell’s surface that we shall use
in our discussion are schematically drawn on top of the FEA
snapshots shown in Fig. 3a,b).

In Fig. 3c, we trace the energy density along Path #1, which
is a closed contour that traverses over the range of the three s-
cones and the ridges that connect them. The energy density is
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Fig. 3 Energy Localization a,b) Snapshot from a finite element sim-
ulation of a shell indented with a point load. b). Top view of a shell
indented with a point load. c) Energy density along Path #1, which
traces over the three s-cones and the three ridges that connect them.
d) Energy density along Paths #2, #3, and #4 start from the pole of
the shell, trace along one of the gullies and one of the s-cones, and
end at the base of the shell. e) Energy density along Path #5, which
starts from the pole of the shell, climbs between the s-cones and ,
traces over the ridge that connects adjacent s-cones, and ends at the
base of the shell. f) Energy density along Path #6, which intersects
the three gullies.
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highest at the s-cones and is minimum at the ridge’s midpoint,
half way between adjacent s-cones. The energy density level
in the neighborhood of the s-cones is 25 times higher than
along the ridges, which is significant of localization. Paths #2,
#3, and #4 define meridians; they start from the pole of the
shell, pass along a gully, over one of the s-cones, and end at
the shell’s equator, with each of the paths passing over each
of the three s-cones. In Fig. 3d), we plot the energy density
along these paths. The maximum of energy occurs at the pole
where the indenter contacts the shell. Moving away from the
pole, the energy density drops along the gullies, then sharply
increases at the s-cones, before rapidly decaying by four or-
ders of magnitude towards zero at the clamped equator of the
shell since it is not deformed. The energy density curves cor-
responding to these three paths are superposed, highlighting
the symmetry of the process. In Fig. 3e), we plot the energy
density along Path #5, which starts at the pole, traces along
one of the faces of the tetrahedron, crosses over the ridge’s
mid point, and ends at the shell’s equator. As stated before,
energy is localized most intensely at the pole where the shell
is indented. The strain energy along the face of the tetrahedron
is small (1% compared to the energy localized at the s-cones).
While climbing and traversing over the ridge, there is a small
increase in strain energy, indicating that there is some focus-
ing of strain energy at the ridge (4% compared to the energy
localized at the s-cones). The energy then decays towards zero
at the shell’s equator, consistently with the clamping boundary
conditions there. In Fig. 3f), we trace the energy density along
Path #6, which is a circular contour near the shell’s pole and
crosses over the gullies and faces of the tetrahedron. Along
this path, the energy is maximum at the gullies. In summary
for point indentation we find that energy is most strongly lo-
calized at the s-cones. Energy is localized to less of an extent
along gullies and ridges, with energy being focused ten times
more along gullies in comparison to ridges.

Varying the Shape of the Indenter:

Having described the behavior observed for point indentation,
we now consider the effect of changing the shape of the inden-
ter on the localization process, in both experiments and FEA
simulations. The ratio of shell and indenter radii is varied from
Γ = 0 (for point load) to Γ = ∞ (for plate load), and we con-
sider twelve indenters between these extreme values. In our
experiments, we employ rapid prototyping to design and cus-
tom fabricate indenters (rigid with respect to the shells) with
the range of radii of curvature shown in Fig. 1e). More in-
formation on how the indenters are fabricated is given in the
Materials and Methods section.

In Fig. 4, we present a series of representative experimen-
tal and FEA snapshots of the shells, for increasing values of
the ratio of shell-to-indenter radii, Γ. In experimental frames,
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Fig. 4 Varying the shape of the indenters a) Snapshots from ex-
periments with elastomeric shells indented at the pole for a variety
of indenters, ranging from point load (Γ = 0) to plate load (Γ = ∞).
b) The same scenario with the same snapshots in FEA simulations.
The color map corresponds to strain energy density. The color and
energy scale correspondence is adjusted for each of the images to
aid in highlighting localization. Red circles indicate location of s-
cones. Dotted red lines are drawn over ridges that connect s-cones
along where shell is inverted. Solid red lines are drawn over gullies
that connect s-cones to the pole of the shell (only present for Γ < 1).
No localization (indicated by grey area) occurs for indenters with
Γ = 1,1.5, or 2.

s-cones are identified by sharp corners in the ridge, as imaged
by the white reflection line, and in the FEA simulations they
are identified by small regions with a sharp increase in en-
ergy density. Localization occurs and s-cones form for all of
the indenters, except for Γ = 1,1.5 and 2. In the neighbor-
hood of Γ = 1, the indenter has a curvature close to that of
the shell. As a result, upon indentation their two surfaces re-
main in complete contact, preventing the formation of s-cones,
which would otherwise require delamination from the inden-
ter. We denote this neighborhood of 1 � Γ � 2 as the “local-
ization band gap”, since the formation of s-cones is forbidden
for these geometries. The lower bound for the localization
band gap is 0.8725 < Γ < 1 (uncertainty of ∼ 3%) and the up-
per bound lies in 2 < Γ < 2.5 (uncertainty of ∼ 22%) TEXT
ABOUT BAND GAP BOUNDARIES ADDED HERE This
band sets two regions with qualitatively different responses;
sharp indenter for Γ � 1 and blunt indenters for Γ � 2. Con-
centrating on the experiments for sharp indenters, the number
of s-cones at onset is a minimum (n= 3) for point load (Γ= 0)
and it increases with increasing Γ, with the maximum number
at onset forming just outside the localization band gap region.
For blunt indenters, n = 5 s-cones form at onset for plate load
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(Γ = ∞), and increasingly more s-cones are observed as Γ is
decreased towards Γ ∼ 2. Gullies that connect the s-cones
to the pole of the shell form for sharp indenters, but not for
blunt indenters21. Above, for the case of point load, we saw
that past the initial formation of 3 s-cones, a forth can emerge
by splitting of a previous one. This mode of transition in the
number of s-cones is also observed for other indenter geome-
tries: n = 4 → 5 for Γ = 0.75, n = 6 → 7 for Γ = 10 and
n = 5 → 6 → 7 for Γ = ∞ (plate load). The FEA simulations
show qualitative good agreement with this experimental sce-
nario with differences in the number of s-cones being at most
by n= 1, possibly due to differences in the details of imperfec-
tions between experiments and FEA, or a consequence of the
fact that multiple states may coexist (as is common in nonlin-
ear systems). TEXT ABOUT CAUSES OF DIFFERENCES
IN EXPERIMENT VS FEA ADDED HERE Moreover, FEA
simulations also exhibit a localization band gap region for
1 � Γ � 2 and the same qualitatively different responses for
sharp indenters versus blunt indenters. In both experiments
and FEM (assuming a hyperelastic constitutive model as de-
scribed in the Materials and Methods section), we see that the
number of s-cones evolves for Γ> 2. Previous studies21, how-
ever, have not seen such an evolution for plate load for the spe-
cific case of using a linear elastic model. Whether the discrep-
ancy is due to the material model used or due to the frictional
nature of contact that we have considered (both ingredients
were used in the FEM to closely reproduce the experiments)
is beyond the scope of this paper and will be addressed in a
future study.

We have just seen that the geometry of the indenter affects
the morphology and number of s-cones at onset. We now pro-
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Fig. 5 Critical indentation for the onset of localization versus the
indenter-shell radii ratio, Γ. No localization occurs between Γ = 1
and Γ = 2 (indicated by the grey region).

ceed by quantifying how the indenter’s geometry also sets the
critical indentation, δc, at the onset of localization, i.e. the δ at
which the first set of s-cones forms. In Fig. 5, we plot the crit-
ical indentation as a function of Γ. As Γ approaches the band
gap region in the neighborhood of Γ = 1, the onset of localiza-
tion is significantly delayed. The critical indentation exhibits a
divergence-like behavior around the band gap region, and the
critical indentation is maximum on either side. The critical
indentation decreases as Γ → 0 or Γ → ∞ (with the exception
of the decrease in δc between point load and Γ = 0.5, which
disrupts the otherwise monotonic behavior to the left of the
localization band gap). TEXT ABOUT NONMONOTONIC
CRITICAL INDENTATION ADDED HERE Excellent quan-
titative agreement is found between experiments and simula-
tions.

The indenter shape also effects the ridge-height, h, which
we define as the vertical distance between the equator of the
hemispherical shell, where it is clamped, and the point on the
shell at which its surface inverts due to the indentation, thereby
forming a ridge. In Fig. 6a), we plot this ridge-height mea-
sured experimentally (open symbols), as a function of indenta-
tion for point load, Γ = 1, Γ = 3, and plate load. For compari-
son, we superpose the corresponding data from the FEA (solid
lines) for the extreme cases of point and plate load. Even for
large values of indentation, the ridge-height h decays approx-
imately linearly with indentation, ε . We therefore calculate
the slope m = dh/dδ , which we plot as a function of the in-
denter’s radii ratio, Γ, in Fig 6b). The ridge-height decreases
the slowest for point indentation, with a rate of m ∼ −0.5,
and the fastest for plate load, with m ∼ −1 (the ridge moves
at the same rate as the indenter). For intermediate indenters
(0 < Γ < ∞) the slope decreases monotonically with Γ and
−0.5 < m <−1.

We now present a geometric argument that rationalizes
these results. The schematic diagram in the top right corner of
Fig. 6a illustrates the deformed configuration of the shell for
Γ < 1. Here, the radius of the shell is R2 = h+ δ/2, which
in return gives h/R2 = 1 − 0.5(δ/R2) and yields the slope
m= dh/dδ =−0.5, for Γ< 1. For Γ> 1, the nature of contact
between the shell and the indenter is qualitatively different, as
shown in the schematic diagram in the bottom left corner of
Fig. 6a. Taking the radius of the indenter, R1, into account
and assuming small deformations, we obtain R2 = h+(δ −∆),
where ∆ is the vertical distance between the pole of the inden-
ter and the ridge-height, h (see schematic in bottom left of
Fig. 6b). Using a trigonometric relationship involving R1, R2,
and a horizontal line constructed between the ridges, we ob-
tain ∆ = δ/(1+Γ). Then, R2 = h+δ [1−1/(1+Γ)] from the
geometric construction, which yields the following slope for
the h-δ curves,

m =
dh
dδ

=−
[

1− 1
1+Γ

]
. (1)
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The dependence of m on Γ predicted by this geometric ar-
gument underlying Eq. (1), which is plotted as the solid line
in Fig. 6b, is in excellent agreement with both the experimen-
tal and FEA data. This confirms that the variation in m is due
to the different geometric nature of the indenter-shell contact
proposed above, and which we explore in more detail next.

In order to achieve the excellent agreement between exper-
iments and simulations highlighted above, we had to treat the
shell-indenter interaction with care, and assume a frictional
contact while neglecting adhesion. TEXT ABOUT NO AD-
HESION ASSUMPTION ADDED HERE This is even more
important since, as we saw, the nature and morphology of the
shell-indenter contact varies for different values of Γ; from
sharp indenters to blunt indenters. To stress the important of
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Fig. 6 Ridge-Height a) Height of the ridge versus indentation for in-
denters with different geometries; experiments (data points) and sim-
ulations (solid lines). The schematics on the top right and bottom left
corners correspond to the cases of sharp indenters, Γ < 1, and blunt
indenters (indenter in red), Γ > 1, respectively. b) Slopes of ridge-
height, m vs. indentation curves from experiments (red squares) and
simulations (blue circles) indenters ranging from Γ = 0 to Γ = ∞.
The theory line corresponds to the prediction from Eq. (1). Inset
illustrates sharp and blunt indenters.

friction, we now focus on the mechanical response during the
indentation process, as quantified by the indentation load, P,
as a function of indentation, ε . A series of P− ε curves for
increasing values of Γ is presented in Fig. 7a. For small in-
dentation, there is a linear regime significant of the shell’s
stiffness, as previously described by12,31. For large indenta-
tions, all curves with Γ< 1 eventually asymptote to an approx-
imately constant value. In contrast, the various curves with
Γ > 1 exhibit an inflection point and fan out; higher values
of Γ result in higher loads. Again, we observe a quantitative
difference between sharp and blunt indenters. For Γ> 1, a sig-
nificantly higher load is required to indent a shell when com-
pared with sharp indenters (Γ < 1) due to the different nature
of the indenter-shell contact. For sharp indenters, the poles
of the indenters and the shells remain in contact throughout
indentation. On the other hand, for blunt indenters, the shell
delaminates from the pole of the indenter, and pushes onto the
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Fig. 7 Mechanical response and the effect of friction. a) Force-
indentation curves from experiments (solid lines) and finite ele-
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shell at its ridges. This requires a substantially higher force
level (as high as a factor of 10 for ε = 0.4, when comparing
Γ = 0 and Γ = 10) and also involves sliding and rolling of the
two surfaces. These two scenarios are illustrated in the inset
of Fig. 6b.

From the detailed comparison between the experimental
and FEA force-indentation curves, we have learned that fric-
tion plays an essential role on the mechanical response. Force-
indentation curves from simulations without friction showed a
much lower mechanical response than what was measured ex-
perimentally. As presented in Fig. 7b), when the coefficient
of friction µ is increased, the load required to indent the shell
is also significantly increased. For example, at ε = 0.45, the
load required to indent a shell for µ = 1.5 is increased by a
factor as large as 5, when compared to doing so for a fric-
tionless indenter-shell contact. Using an independent friction
sliding test (details in Materials and Methods), the friction co-
efficient was experimentally measured to be µ = 1.46±0.53.
The large variation in this measured value can be attributed
to the fact that a dry friction description is oversimplistic for
polymer-polymer surface contacts. Still, in the FEA, we have
treated µ as a fitting parameter, bound within the measured
experimental range. This is appropriate since the experimen-
tal friction coefficients for each of the individual indenters are
not precisely known due to the varying levels of roughness for
indenters of different curvature, imparted by the fabrication
process and set by the resolution of the CNC milling process.

Discussion and Conclusion:

Without a general predictive analytical model of the localiza-
tion process at hand, we are lead to speculate that geomet-
ric frustration underpins the buckling transition from the ax-
isymmetric state into the onset of s-cones. We believe that
the mechanism is related to that recently reported by Dias
et al.32, who studied the mechanics of folding of an annular
flat plate containing a concentric circular crease. Folding the
crease induces out-of-plane buckling of the plate. Further in-
creasing the dihedral angle of the fold, results in increasingly
more non-planar configurations and an increasing storage of
stretching energy at the crease. Geometric and topological
constrains, coupled with the mechanics of plates, dictate the
permissible configurations. Similarly in our system, indenta-
tion introduces geometric frustration that disrupts the isome-
try of the shell’s inverted cap. Once the circular ridge forms,
the angle of the folded region where curvature of the shell in-
verts, increases as the shell is indented further which leads to
a growing storage of strain energy at the ridge (the angle can
be derived using an argument similar to that presented for the
slope of the ridge-height vs. indentation curves). Past a criti-
cal indentation (quantified in Fig. 5) the circular ridge looses
symmetry and stretching, due to its high energetic cost, is fo-

cused onto localized structures, the s-cones.
We now comment on the observation that the number of

s-cones at onset increases, when the curvature of the inden-
ter approaches the shell’s curvature. For this, we establish an
analogy with buckling of confined elastica. When a slender
beam is compressed axially, but its transverse displacement is
constrained by two confining walls 33,34, high-order buckling
modes can be excited (in contrast to the classic mode-one Eu-
ler buckling when the beam is unconstrained). In this case, the
buckling wavelength increases with the lateral confinement
and the geometric constraint of the two confining walls is the
driving mechanism for exciting high-order buckling modes.
Following this analogy, point load indentation in our problem
can be considered as being unconstrained. At the other ex-
treme, when Γ∼ 1, the surfaces of the shell and indenter are in
close contact with each other, preventing the shell from delam-
inating from the indenter, thereby precluding local buckling
(no s-cones form). In the constrained Euler buckling analogy,
this corresponds to the case where the two constraining plates
are separated by a distance equal to the thickness of the strip
such that buckling cannot occur. For Γ > 0, and outside the
localization band gap in the neighborhood of Γ∼ 1, however,
the shell-indenter contact constrains the buckling morphology,
which excites higher order modes (increasing the number of s-
cones) and affecting the onset of localization.

In conclusion, we have presented a rich scenario for the
large deformation of a thin shell under indentation, as the cur-
vature of the indenter is systematically varied, which has a
strong effect on the onset and evolution of localized struc-
tures. The nature of the contact between the shell and the
indenter was found to be a crucial ingredient to the process;
friction between the indenter and the shell significantly affects
the shells’s load-bearing capacity, especially for blunt inden-
ters (Γ > 1), which require significantly higher loads to indent
shells compared to sharp indenters (Γ < 1). The robustness
of the observed localization behavior and the excellent agree-
ment found between experiments and numerics suggest that
there is an underlying mechanism at play that arises from the
strong interplay between geometry and mechanics. We hope
that our exploratory study will help catalyze further theoretical
efforts in this direction. Moreover, given the scale-invariance
of the scenario presented here, our results should find uses at
the microscale for AFM, where it is crucial to understand how
the curvature of the tip, relative to the object being indented,
affects the mechanical response.

Materials and Methods:

Experiments: The shells and the indenters are fabricated using rapid
prototyping. Starting from a computer assisted design, a model of
a mold was created with the targeted shell or indenter geometry.
Molds were then machined from polyacetal with a CNC milling ma-
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chine. Shells were fabricated with a coating technique (Fig. 1a).
Vinylpolysiloxane (a silicone based elastomer) was used to make the
shells. VPS has a shear modulus G0 = 454.6 kPa, a poisson ratio of
ν = 0.5, and the Neohookean strain energy potential coefficients of
C10 = 227300 Pa, and D1 = 2.36× 10−8 Pa−1. The polymer was
poured into a mold, which was then rotated so that the polymer wet-
ted the entire surface of the mold. Then, the excess was poured out
and the mold was left upside-down to allow the excess to drain out
while the polymer cures. The resulting shells had a radius of R2 = 25
mm and a thickness of t = 0.28±0.027 mm, which is set by a com-
bination of the viscosity of the polymer and the length of the curing
time. In a scenario similar to Landau-Levich dip coating for fibers
and plates 35, this fabrication method creates shells with small varia-
tions on their thickness (∼ 9.7%).

Indenter Fabrication: Twelve indenters were designed with a va-
riety of radii of curvature so that the ratio of the radius of the in-
denter and the radius of the shell, Γ = R1/R2 had the following val-
ues: Γ = 0 (point load), 0.5,0.75,0.8725,1,1.5,2,3,5,7,10, and ∞

(plate load) (Fig. 1e). Indenters with Γ ranging from 0.5 to 10 were
cast with a hard polyurethane. The indenter for point load was a
steel screw with a hemispherical cap (1.5 mm radius). The indenter
for plate load was cut from a sheet of acrylic. All indenters can be
considered rigid relative to the elastomeric shells. The polyurethane
used to cast the indenters has a Young’s modulus E = 147 MPa and
the vinylpolysiloxane used to cast the shells has a Young’s modulus
E = 1.36 MPa.

Mechanical Testing: Shells are indented at the pole using the fab-
ricated indenters at a constant speed of 5 mm/min. The compressive
force, F , from the indentation by the imposed displacement, δ , is
recorded using the load cell of an Instron machine with a resolution
of±100µN. The evolution of the deformation of the shell is recorded
with digital images that are captured from underneath the shells.

Friction Tests: The friction from the contact between the shell
and the indenter was measured through friction tests. A block of
vinylpolysiloxane (the shell material) with a force sensor attached
was pulled horizontally along a surface made of polyeurethane (the
indenter material). The coefficient of friction, measured as the aver-
age from ten experiments of the ratio of the force required to pull the
block to the weight of the block, was measured to be µ = 1.46±0.53.

Numerical Simulations: Numerical simulations were performed
using the commercial finite element package ABAQUS/CAE (SIMU-
LIA, Providence, RI). One half of the 3D spherical shell was mod-
eled with a clamped boundary condition on the free edge, indenters
were modeled as analytical rigid shells with a displacement-control
boundary condition. For the material properties, we used an isotropic
hyperelastic model using the material parameters measured indepen-
dently in the experiments. Four-node thin shell elements with re-
duced integration (element type S4R) were used in all simulations
and a mesh sensitivity study was carried out to ensure that the results
are minimally sensitive to the element size. We used the free mesh
scheme available in Abaqus and no initial geometric or material im-
perfection was included in the computational model. To capture the
local instabilities in the structure, we used a stabilizing mechanism
(available in Abaqus/Standard solver) based on automatic addition of
volume-proportional damping, which was decreased systematically

to ensure that the response was insensitive to this change. To model
friction, a penalty formulation was used with the appropriate coeffi-
cient.
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