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We investigate how natural curvature affects the configuration of a thin elastic rod suspended under its own weight, as when a 
single strand of hair hangs under gravity. We combine precision desktop experiments, numerics, and theoretical analysis to 
explore the equilibrium shapes set by the coupled effects of elasticity, natural curvature, nonlinear geometry, and gravity. A phase 
diagram is constructed in terms of the control parameters of the system, namely the dimensionless curvature and weight, where we 
identify three distinct regions: planar curls, localized helices, and global helices. We analyze the stability of planar configurations, and 
describe the localization of helical patterns for long rods, near their free end. The observed shapes and their associated phase 
boundaries are then rationalized based on the underlying physical ingredients.

Hairstyle has a marked effect on a person’s appearance,
for whom hair color, length, and curliness can all be
distinguishing characteristics. The bulk appearance of a
head of hair, in particular, is governed by the shape of the
individual strands and their collisions [1]. This topic is of
great importance to the computer animation industry [2] to
achieve visually realistic representations. Curly hair can
also be taken as an analogue for other instances of naturally
curved filamentary structures that abound in nature and
technology. These include DNA [3], plant tendrils [4], and
pipes and cables [5], all of which can display similar
behavior across widely different length scales. Given their
extreme slenderness, these rodlike structures can undergo
large rotations while remaining in the small strain regime,
and are amenable to a unified framework that couples linear
elasticity and nonlinear geometry. In the absence of natural
curvature, the nonlinear equilibrium equations for rods are
integrable thanks to Kirchhoff’s analogy with the motion of
a spinning top [6]. For naturally curved rods, however,
existing explicit solutions are essentially limited to helices
[7,8], which require the external load to be highly sym-
metric. We have recently found that natural curvature can
dramatically affect the mechanical behavior of rods [9],
both quantitatively and qualitatively. There is, therefore, a
need to develop a predictive framework that is applicable to
naturally curved rods subjected to a nonsymmetric load,
which can result in spatially heterogeneous configurations.
Here, we explore the deceivingly simple problem of

predicting the shape of a naturally curved rod that is
clamped and suspended under its own weight, which we
take to be a representative metaphor of a curly hair. To
tackle this, we perform a combination of precision model
experiments, simulations, and theoretical analysis. In
Fig. 1, we present examples of five rods with increasing

values of their stress-free natural curvature κn, but that are
otherwise identical in all other mechanical properties. Our
experimental fabrication protocol allows for a fine control
of κn, which we therefore take as an independent control
parameter. If the rod is naturally straight [e.g., Fig. 1(a) for
κn ¼ 0] it hangs vertically. For small values of κn, the
configurations are planar [e.g., Figs. 1(b) and 1(c) for
κn ¼ 6 and 38 m−1, respectively]; the rods are straight near
their clamp but develop a curled hook near their free end.
As κn is progressively increased, this hook looses stability
and the rod acquires a nonplanar three-dimensional shape.
A curl first localizes near the free end [e.g., Fig. 1(d) for
κn ¼ 56 m−1] and global helical configurations are
obtained for high values of κn [e.g., Fig. 1(e) for
κn ¼ 62 m−1]. We focus on rationalizing how these shapes
are set by the balance between elasticity, geometry, and

FIG. 1 (color online). Equilibrium shapes of rods suspended
under their own weight: comparison of experiments and
simulations. The natural curvature κn is varied, while the
length L ¼ 20 cm, radius r ¼ 1.55 mm, elasticity parameters
(E ¼ 1290 kPa, ν ¼ 0.5), and volumetric mass ρ ¼ 1200 kg=m3

are kept constant.
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gravity. Our approach is complementary to Ref. [1], where
collisions within an ensemble of hair were treated using a
statistical mechanics approach to describe the overall bulk
shape of a ponytail. Taking an alternative point of depar-
ture, we identify the transitions between planar and non-
planar shapes for an analogue of a single curly hair and
describe the nonplanar shapes in detail.
In our experiments, we custom fabricate rods by inject-

ing vinylpolysiloxane into a flexible polyvinyl chloride
(PVC) tube, whose inner diameter sets the radius of the rod,
r ¼ 1.55 mm. The PVC tube is wound around a cylindrical
object (or laid straight), which sets a constant (or infinite)
radius of curvature on the rod upon subsequent curing and
demolding [9]. Our fabrication procedure allows for the
precise control of the natural curvature in the range
0 < κn ½m−1� < 62, a parameter that we vary systemati-
cally. For helically and tightly wound PVC tubes, this
fabrication procedure creates a constant nonzero but small
natural twist, which we neglect. The Young’s modulus of
the elastomer is measured to be E ¼ 1290� 12 kPa, the
Poisson ratio is ν ≈ 0.5, and the volumetric mass is
ρ ¼ 1200 kg=m3. Each experimental test consists of
mounting a single rod with suspended length in the range
1 < L ½cm� < 20 onto a clamp that is aligned vertically.
The rod is then suspended under its own weight and
allowed to reach static equilibrium, as shown in Fig. 1
(green configurations). Three-dimensional reconstructions
of the rods are produced by taking digital images from two
perpendicular directions and performing image processing
to obtain their centerlines.
We also perform numerical simulations, representative

examples of which are presented in Fig. 1 (red configu-
rations), where all parameters match those of the experi-
ments. Good agreement is found throughout between the
two. The simulations compute the equilibria of an inex-
tensible three-dimensional elastica subjected to its own
distributed weight, and account for both bending and
twisting. The numerical method was developed using the
continuation software package MANLAB [10] and is
described in detail in Ref. [9].
Our first quantitative test is provided by comparing the

experimentally measured and simulated vertical elevation
of the tip, h, between the clamp and the free end of the rod.
In Fig. 2 we plot h as a function of the total arc length L for
three values of the natural curvature κn. Quantitative
agreement is found between experiments (data points)
and simulations (solid lines). For the two lowest values
of κn ¼ 16:6 and 38 m−1, the configurations are planar for
all lengths tested and h decreases monotonically with L.
For κn ¼ 56:2 m−1, however, planar shapes are observed
for L≲ 0.1 m [see Figs. 2(f) and 2(g)] but nonplanar ones
are observed for L≳ 0.1 m [see Figs. 2(h) and 2(i)].
With the aim of rationalizing the behavior observed in

both the experiments and simulations, we use an inexten-
sible rod model with natural curvature [11]. All lengths are

rescaled by the natural radius of curvature, κ−1n . For
example, s̄ ¼ sκn denotes the rescaled arc length,
0 ≤ s̄ ≤ L̄, with its origin at the free end, s̄ ¼ 0. The
dimensionless length L̄ ¼ κnL offers a measure of the rod’s
curliness. All energies are rescaled by Bκn, where B ¼ EI
and I ¼ πr4=4 are the bending stiffness and area moment of
inertia of the rod, respectively.
The configurations are defined in terms of the position of

its centerline r̄ðs̄Þ, and an orthonormal director basis
ðd1ðs̄Þ;d2ðs̄Þ;d3ðs̄ÞÞ, subjected to the condition r̄0 ¼ d3,
with primes denoting derivation with respect to s̄. The
Cartesian basis ei is chosen such that the clamping
condition writes r̄ðL̄Þ ¼ 0 and ðd1;d2;d3Þs̄¼L̄ ¼
ðey;−ex; ezÞ. The material curvatures κ̄1 and κ̄2 and twist
κ̄3 are defined by κ̄i ¼ 1

2
ϵijkdj

0 · dk, where ϵijk is the skew-
symmetric permutation tensor ϵijk ¼ ðei × ejÞ · ek. The
total energy of the rod is then written as

Ē ¼
Z

L̄

0

�
1

2
½ðκ̄1 − 1Þ2 þ κ̄2

2 þ C̄κ̄32�− w̄ s̄ cosβ
�
ds̄; (1)

where C̄ is the ratio between the twisting and bending
moduli and w̄ ¼ w=Bκ3n is the dimensionless weight. The
weight per unit length for a rod with circular cross section is
w ¼ ρπr2g in physical units, g being the acceleration of
gravity. We set C̄ðνÞ ¼ ð1þ νÞ−1 ¼ 2=3 since our rods are
cylindrical and ν ≈ 0.5. Finally, β is the angle between the
tangent d3 and the vertical, such that cos β ¼ d3 · ez, as
illustrated in the schematic of Fig. 2. The first term in
the integrand of Eq. (1) represents the strain energy and
1
2
ðκ̄1 − 1Þ2 considers the natural curvature, which is unity in

this dimensionless description. The second term in the
integrand corresponds to the gravitational potential energy.
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FIG. 2 (color online). Vertical elevation of the tip h versus arc
length of the rod L, for three different natural curvatures
κn ¼ ð16:6; 38:0; 56:2Þ m−1: experiments (circles) and simula-
tions (solid lines). For κn ¼ 56:2 m−1, the configurations F and
G are planar while the configurations H and I are nonplanar.
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The control parameters of the curly rods are therefore their
dimensionless length L̄ and weight w̄.
Our simulations compute the stationary points of the

energy in Eq. (1) for fixed values of L̄ and w̄. In Fig. 3, we
present the phase diagram of the system in the (L̄, w̄)
parameter space, which is explored systematically. The
numerical results (shaded regions) were obtained by
simulating 11 110 equilibrium shapes within the following
ranges of physical properties: Young’s modulus
96 < E ½kPa� < 9600, length 5 < L ½cm� < 50, and natu-
ral curvature 0 < κn ½m−1� < 100. For a direct comparison,
in Fig. 3 we also superpose the results of 170 experiments
in the ranges 0 < L ½cm� < 52 and 0 < κn ½m−1� < 65,
while keeping E ¼ 1290 kPa constant.
The shapes can be classified as (i) planar, (ii) nonplanar

localized helical, and (iii) nonplanar global helical, repre-
sentative examples of which are presented in Figs. 3(j)–3(l),
respectively. The localized helices, in particular, consist
of a helical portion near the free end, underneath a vertical
and straight section closer to the clamp (our threshold for a
straight section is β ≤ 1.5°). A configuration is said to be a
localized helix if the arc length of the helical portion is less
that 95% of the total rod length and a global helix,
otherwise. This classification protocol allows the smooth
local-to-global transition to be represented by a curve in the
phase diagram. The numerical and experimental configu-
rations map onto the same regions of the phase diagram.
We now seek to rationalize the boundaries between these
regions.
The planar (2D) configurations of the suspended rod

[e.g., Figs. 2(f) and 2(g)] can be recovered as a particular
case of our general 3D model by setting κ̄1 ¼ β0 and
κ̄2 ¼ κ̄3 ¼ 0. These shapes have been solved analytically in
Ref. [11] for various limits of L̄ and w̄. Here, we calculated
them numerically by solving the nonlinear boundary-value
problem for βðs̄Þ. Moreover, we have numerically com-
puted their linear stability with respect to out-of-plane
buckling, as a function of the parameters w̄ and L̄. The
resulting curve of marginal stability has two asymptotes for
L̄ ≫ 1. The first corresponds to planar shapes consisting of
a long, vertical tail connected to a hook near the free end.
These configurations lose stability when the free end of the
hook rises high enough to cause an overturning moment
[e.g. Fig. 1(c)]. The corresponding buckling mode is
localized near the free end and, as a result, the threshold
w̄c is independent of L̄, for L̄ ≫ 1. A detailed analysis
yields w̄c ¼ 0.2391 (for L̄ ¼ ∞ and ν ¼ 0.5). This pre-
dicted boundary (thin vertical line between the blue and red
regions in Fig. 3) is in excellent agreement with both the
experiments and the simulations. The second asymptote for
the transition between 2D and global (3D) helical shapes is
observed to scale as w̄c ∼ L̄−2, but a detailed analysis is
beyond the scope of this study. These shapes correspond to
2D configurations involving self-contact, and have no
direct counterpart in the experiments.

Having been able to predict the 2D-to-3D transition, we
now focus on characterizing the helical configurations, with
particular emphasis on long and curly rods, L̄ ≫ 1. Since
tension varies along the rod due to the distributed weight,
the properties of the helices also evolve with arc length.
Inspired by previous analyses of helices subjected to
constant tension [8], we analyze these shapes assuming
that the director d2 is perpendicular to the applied force
(weight), such that d2 · ez ≈ 0 (as justified in the
Supplemental Material [12] for a slowly varying tension).
These configurations can be parametrized by the two Euler
angles βðs̄Þ and γðs̄Þ (shown schematically in Fig. 4), as
d1¼ cosβð−sinγexþcosγeyÞþsinβez, d2 ¼ − cos γex −
sin γey and d3 ¼ − sin βð− sin γex þ cos γeyÞ þ cos βez.
When the corresponding strains κ̄1 ¼ γ0 sin β, κ̄2 ¼ −β0,
and κ̄3 ¼ γ0 cos β are inserted into the expression for the
total energy in Eq. (1), we find that Ē depends on γ0 but not
on γ, as a consequence of the cylindrical invariance about
ez. Optimizing the resulting Ē with respect to γ0 yields γ0 ¼
κn sin β=sin2β þ C̄cos2β and, after eliminating γ0, we obtain
a reduced expression for the energy of helical shapes

Ē3D ¼
Z

L̄

0

�
fðw̄ s̄; βðs̄ÞÞ þ 1

2
β0ðs̄Þ2

�
ds̄; (2)

10
−3

10
−2

10
−1

10
0

10
1

10
0

10
1

10
2

1

D
im

en
si

on
le

ss
 C

ur
va

tu
re

, 

J

K

L
-2

1

10
−3

10
0

10
1

3
10

−2

D
im

en
si

on
le

ss
 C

ur
va

tu
re

,

J

L
-2

1

2D-3D Boundary (Sim.)

Global Boundary (IL)

Global Boundary (Sim.)
Planar (Exp.)
Localized (Exp.)
Global (Exp.) Linear stability,

Dimensionless eight, W

FIG. 3 (color online). Phase diagram for the rod configurations:
planar (2D) and nonplanar (3D, global and localized helices).
Each experimental data point is plotted on the (L̄, w̄) space,
whereas only the phase boundaries are shown for the numerics.
Theoretical curves for the planar-to-localized and localized-
to-global transitions are superposed on the data. Three
experimental reconstructions are shown as insets: (j) planar
(blue, κn ¼ 49:5 m−1, L ¼ 10 cm), (k) localized helix (red,
κn ¼ 49:5 m−1, L ¼ 40 cm), and (l) global helix (green,
κn ¼ 62:3 m−1, L ¼ 20 cm).
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where fðu; βÞ ¼ 1
2
ð1þ tan2β=CÞ−1 − u cos β. The equilib-

rium configurations are stationary points of this energy
with respect to βðs̄Þ. To compute them, we first introduce a
local helix approximation, which we later refine by an inner
layer theory.
In Fig. 4 we quantify a representative example of a

localized curl in the limit of L̄ ≫ 1 by measuring βðs̄Þ from
both the 3D experimental reconstructions and the numerical
configurations, finding good agreement between the two.
The rod is straight near the clamp, β ≈ 0, while β increases
in an oscillatory manner towards the free end at s̄ ¼ 0. To
analyze these localized shapes, we first assume that βðs̄Þ
varies slowly with s̄, implying that the squared derivative in
Eq. (2) can be neglected. We refer to this as the local helix
(LH) approximation. The minimum energy is obtained by
locally optimizing f with respect to β: ∂f=∂β ¼ 0. We
recover the equation for the helical solutions of a spring
subjected to constant tension [8]. It is known that the
solution β of this implicit equation undergoes a pitchfork
(symmetry-breaking) bifurcation as w̄ s̄ is varied (purple
curve in Fig. 4). The straight, vertical configuration, β ¼ 0,
is always an extremum of f, but it is unstable beyond
s̄�LH ¼ ðw̄ C̄Þ−1, where ∂2f=∂β2 ¼ w̄ s̄−C̄−1 becomes neg-
ative. For s̄ ≥ s̄�LH, the upper part of the rod is subjected to a
sufficiently large tension due to the weight of the portion
underneath, causing it to remain vertical. On the other hand,
for 0 ≤ s̄ ≤ s̄�LH, the tension is low and the optimum value
of β is nonzero, resulting in a helical configuration. This
prediction captures the overall shape of the rod (purple
curve in Fig. 4): the LH approximation agrees qualitatively
with simulations and experiments even if it does not work
well near the transition point, s̄ ¼ s̄�LH, or near the free
end, s̄ ¼ 0.

In the vicinity of the transition point, s̄ ¼ s̄�LH, the LH
approximation fails because β varies quickly (see Fig. 4).
Taking an alternative approach to the LH approximation
above, we study this region using an inner layer (IL)
approximation. Thederivativeβ0ðs̄Þ is now restored inEq. (2),
and f is expanded near s̄�LH for small β as
f ≈ f0 þ 1

2
f2β2 þ ð1=24Þf4β4, where f2 ¼ ∂2f=∂β2 ¼

w̄ðs̄ − s̄�Þ, and f4 ¼ ∂4f=∂β4 ¼ 3ð4 − 3C̄=C̄2Þ. Dropping
terms that are independent of β, we then have to minimize the
functional

R ððw̄ðs̄ − s̄�Þ=2Þβ2 þ ðf4=24Þβ4 þ 1
2
β02Þ ds̄

within the inner layer. By the change of variable S ¼ s̄ −
s̄�=w̄−1=3 and unknown BðSÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

f4=12
p

w̄−1=3βðs̄Þ, the
above functional can be rewritten as 1

2

R ðSB2 þ B4þ
B02Þ dS. The Euler-Lagrange condition yields the second
Painlevé equation, B00ðSÞ¼SBðSÞþ2B3ðSÞ. Interestingly,
this equation arises in domains such as nonlinear optics,
Bose-Einstein condensation, and random matrix theory
[13]. It has a unique solution BHMLðSÞ connecting the
symmetric solution B → 0 for S → þ∞ to the bifurcated
solution B ∼

ffiffiffiffiffiffiffiffiffiffiffi−S=2p
for S → −∞, known as the Hastings-

McLeod solution [14]. In terms of the original variables, the
solution reads

βILðs̄Þ ¼
2C̄w̄1=3ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 − 3C̄

p BHML

�
s̄ − s̄�LH
w̄−1=3

�
: (3)

This inner layer solution successfully describes the smooth
transition between the helical and straight portions of rod near
s̄�LH, as shown in Fig. 4.
Returning to the phase diagram of Fig. 3, we can now

predict the transition from the localized to global helical
configurations. With the same localization criterion used
above, this phase boundary is expected to occur for
βILð0.95L̄Þ ¼ 1.5° (thick gray curve in Fig. 3): this is in
excellent agreement with the numerical and experimental
results when the inner layer is indeed small, L̄ ≫ 1, w̄ ≪ 1
(see the Supplemental Material [12] for more details on the
LH boundary). This, combined with our results above for
the 2D-to-3D transition where a planar configuration
becomes unstable, completes our rationalization of the
phase diagram of Fig. 3.
Beyond a predictive description of the aesthetics of curly

hair, our results can be directly applicable to a variety of
engineering systems such as naturally curved fibers, wires,
cables, and pipes. All of these rodlike structures are often
manufactured, stored, and transported in spooled configu-
rations, thereby imparting an intrinsic curvature, which can
now be readily quantified using our framework as an
inverse problem.
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