
HAL Id: hal-01447346
https://hal.science/hal-01447346

Submitted on 26 Jan 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On a fixed-point algorithm for structured low-rank
approximation and estimation of half-life parameters

Fredrik Andersson, Magnus Carlsson, Herwig Wendt

To cite this version:
Fredrik Andersson, Magnus Carlsson, Herwig Wendt. On a fixed-point algorithm for structured low-
rank approximation and estimation of half-life parameters. 24th European Signal Processing Confer-
ence (EUSIPCO 2016), Aug 2016, Budapest, Hungary. pp. 326-330. �hal-01447346�

https://hal.science/hal-01447346
https://hal.archives-ouvertes.fr


  

  

Open Archive TOULOUSE Archive Ouverte (OATAO) 
OATAO is an open access repository that collects the work of Toulouse researchers and 

makes it freely available over the web where possible. 

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/ 

Eprints ID : 17203

The contribution was presented at EUSIPCO 2016:  

http://www.eusipco2016.org/

To cite this version : Andersson, Fredrik and Carlsson, Magnus and Wendt, 

Herwig On a fixed-point algorithm for structured low-rank approximation 

and estimation of half-life parameters. (2016) In: 24th European Signal 

Processing Conference (EUSIPCO 2016), 29 August 2016 - 2 September 

2016 (Budapest, Hungary). 

Any correspondence concerning this service should be sent to the repository 

administrator: staff-oatao@listes-diff.inp-toulouse.fr



ON A FIXED-POINT ALGORITHM FOR STRUCTURED LOW-RANK APPROXIMATION

AND ESTIMATION OF HALF-LIFE PARAMETERS

Fredrik Andersson, Marcus Carlsson

Lund University

Centre for Mathematical Sciences

Box 118, 22100, Lund, Sweden

Herwig Wendt

University of Toulouse

CNRS, IRIT UMR 5505

Toulouse, France

ABSTRACT

We study the problem of decomposing a measured signal as a

sum of decaying exponentials. There is a direct connection to

sums of these types and positive semi-definite (PSD) Hankel

matrices, where the rank of these matrices equals the num-

ber of exponentials. We propose to solve the identification

problem by forming an optimization problem with a misfit

function combined with a rank penalty function that also

ensures the PSD-constraint. This problem is non-convex, but

we show that it is possible to compute the minimum of an

explicit closely related convexified problem. Moreover, this

minimum can be shown to often coincide with the minimum

of the original non-convex problem, and we provide a simple

criterion that enables to verify if this is the case.

Index Terms— Low rank approximation, structured ma-

trices, fixed-point algorithms.

I. INTRODUCTION

We consider the problem of approximating a given matrix

F by a structured matrix (i.e. belonging to some subspace

M) that is low rank and Positive Semi-Definite (PSD). While

structured low rank approximation (SLRA) problems arise

frequently in many contexts, cf., e.g., [1]–[3], the problem

with an additional PSD constraint has so far received limited

attention. As an application we consider the estimation of

superimposed decaying signals with different half-lives. In

other words, given a signal f of the form

f(t) =
K
∑

k=1

cke
−t/Tk + ǫ(t), (1)

where ck > 0, Tk > 0 and ǫ represents either random

noise or structured artifacts in the measurement, we present

methods for estimation of the parameters K, Tk and ck,

k = 1, . . . ,K. We remark that, in the case when K is

known and ǫ is negligible, one can solve (1) by standard

methods, such as ESPRIT. The approach of this paper

is to construct a low-rank approximation of the Hankel

matrix that is generated from the measurements, where the

approximation is forced to have a Hankel structure and to

be PSD, a combination that ensures that the corresponding

signal is of the desired type [4]. Once such an approximation

is computed, the parameters can be obtained by e.g. ESPRIT.

The approximation is computed using a fixed-point method

based on convex envelope theory. The method is guaranteed

to converge to the minimum of the convex envelope of

the original problem. Furthermore, this minimum is often

identical with the global minimum of the original (non-

convex) problem, and the method provides a way to verify

if this is the case.

II. STRUCTURED LOW-RANK PSD MATRIX

APPROXIMATION

II-A. Convex envelopes

Let H denote the vector space of self-adjoint complex

matrices. Given F ∈ H we first consider the (unstructured)

problem

argmin
A∈H, A≥0

τ2rank(A) + ‖A− F‖2, (2)

where τ > 0 is a fixed parameter. Setting

R(A) =

{

rank(A) A ≥ 0
∞ else

, (3)

the problem (2) can be reformulated as finding the minimum

of

I(A) = τ2R(A) + ‖A− F‖2, A ∈ H. (4)

A key observation for this paper is that the Fenchel-

conjugate, denoted I∗, and double-Fenchel-conjugate (i.e.

the convex envelope) of I can be computed explicitly. More

precisely, letting (λn(A))
N
n=1 denote the eigenvalues of any

matrix A ∈ H (ordered decreasingly), we have

I∗(A)=
N
∑

n=1

max
((

max(λn(A/2 + F )2, 0)
)2− τ2, 0

)

. (5)

If we define rτ : R → [0,∞] by

rτ (λ) =

{

τ2 − (max{τ − λ, 0})2 λ ≥ 0
∞ λ < 0

, (6)

and set

Rτ (A) =
N
∑

n=1

rτ (λn(A)),
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Fig. 1. Functions rτ (λ) and sτ,2(λ) defined in (6) and (8).

then we also have (compare with (4))

I∗∗(A) = Rτ (A) + ‖A− F‖2.

The global minimizer of both I and I∗∗ can easily be

found explicitly. However, if we add also a linear constraint

to (2), i.e., demand that A be in some subspace M, then

this is no longer the case. Being convex, one may attempt to

minimize the functional I∗∗ over M using several standard

algorithms for convex optimization (see [5] for an overview),

but to our knowledge no algorithm applies without modifica-

tion since I∗∗ can assume ∞ and is neither C1 nor strictly

convex.

In this paper we further regularize to make it strictly

convex by addition of the term (q − 1)‖A − F‖2, where

q > 1 is fixed, i.e.

Ireg(A) = Rτ (A) + q‖A− F‖2.

We will here present the extension of an algorithm from [6]

which is guaranteed to find the minimum of Ireg in any

subspace M.

II-B. The proximal operator

Following the theoretical setup in [6], we now compute

the proximal-type operator

S(W ) = argmin
Z∈H

I∗(2(Z − F )) +
1

q − 1
‖Z −W‖2, (7)

where W ∈ H and Z = A/2 + F is introduced to sim-

plify the calculations, since this linear combination appears

naturally in (5). To evaluate this we introduce

sτ,q(λ) =







λ/q qτ ≤ λ

τ τ ≤ λ ≤ qτ
λ λ ≤ τ

. (8)

If UΛU∗ is the spectral decomposition of W , it easily

follows by von-Neumann’s inequality that

S(W ) = U Λ̃U∗

where Λ̃ is diagonal with diagonal elements sτ,q(λn(W )).
(Using the notation of functional calculi for self-adjoint

matrices we simply have S(W ) = sτ,q(W ), cf., e.g., [7]).

The functions rτ and sτ,2 are illustrated in Fig. 1.

1 f u n c t i o n A= f i x e d p o i n t ( F , t au , N i t e r ) ,

2 W=0*F ;

3 f o r n =1: N i t e r ,

4 [ u , e ]= e i g (2* F+PMp(W) , ' v e c t o r ' ) ;

5 e=e / 2 . * ( e>2* t a u )+ t a u * ( e≥t a u&e≤2* t a u )+ e . * ( e<t a u ) ;

6 W=u* d i a g ( e )* u ' ;

7 end ;

8 A=2*F−PM(W) ;

Table I. MATLAB implementation of the fixed-point algo-

rithm of Theorem 1 for the case of minimizing Ireg with

q = 2. It is assumed that PM and PMp are implementations

of the projection operators PM and PM⊥ , respectively.

II-C. Fixed-point algorithm

We denote by PM and PM⊥ the orthogonal projections

onto M and onto its complement M⊥, respectively, and set

B(W ) = S (qF + PM⊥(W )) . (9)

The following theorem is obtained by arguments similar to

those leading to [6, Theorem 5.1]:

Theorem 1. The Picard iteration Wn+1 = B(Wn) con-

verges to a fixed point W ◦. Moreover, PM(W ◦) is unique

and

A◦ =
1

q − 1

(

qF − PM(W ◦)
)

,

is the unique solution to

argmin
A∈M

Rτ (A) + q‖A− F‖2. (10)

Note that the function Rτ (A) induces that the minimum in

(10) is effectively constrained to PSD matrices. Furthermore,

the terms in q in (10) arise from making the objective

functional strictly convex. The fixed-point algorithm for

finding A◦ given F and τ is summarized in MATLAB code

in Table I for the choice q = 2 (and can be adapted for any

number q greater than 1 by suitable modifications, cf., [6]).

A key observation is that Theorem 1 often provides a

solution to the original problem, and that whether this is the

case or not can be verified by inspection of the eigenvalues

of W ◦. This result can be obtained following arguments

analogous to those in [6, Theorem 5.2].

Theorem 2. Let W ◦ and A◦ be as in Theorem 1. Then A◦

solves

argmin
A

Rτ (A) + ‖A−W ◦‖2. (11)

Moreover, if W ◦ has spectral decomposition UΛU∗, then

A◦ = U Λ̃V ∗, where Λ̃ is a diagonal matrix whose diagonal

values satisfy










λ̃j = λj , if λj > τ

0 ≤ λ̃j ≤ λj , if λj = τ

λ̃j = 0, if λj < τ

. (12)



Fig. 2. Illustration of Theorem 2. Black crosses indicate

(sorted) eigenvalues of F , red circles indicate eigenvalues

of W ◦ (λj) and the blue dots indicate eigenvalues of A◦.

Left: Global optimum of (13) reached; No λj = τ . Right:

Global optimum of (13) not reached; λj = τ exist.

Finally, if ∀j, λj )= τ , then A◦ is the solution to the non-

convex problem

argmin
A≥0,A∈M

τ2rank(A) + q‖A− F‖2. (13)

Note that (11) has the peculiar property that the global

minimum (over A ∈ H) coincides with the restricted

minimum (over A ∈ M) in (10).

Theorem 2 says that if the eigenvalues of W ◦ are all

distinct from τ at convergence, then the fixed-point algorithm

of Theorem 1 has converged to the solution of the non-

convex problem (13), which is simply a rescaling of the

original problem (2). The situation is illustrated in Figure 2.

In the left panel the global minimum of (13) is obtained. This

can be seen because there is no j such that λj = τ . It is also

clear that the first three eigenvalues of W ◦ and A◦ coincide,

as stipulated by (12). In the right panel, the global minimum

of (13) is not reached. In this case |λ3−τ | < 1e−10 and λ̃3

is smaller than λ3. Note also that there are several values of

λj that are close to τ . This partially explains why the values

of λ̃j for j ≥ 4 are not as close to zero as in the case where

the global minimum of (13) and the minimum of the convex

envelope counterpart coincide.

III. ESTIMATION OF HALF-LIFE PARAMETERS

III-A. PSD low rank Hankel matrices

We now provide the link between the above results and

estimation of half-life parameters. A Hankel matrix Hf can

be thought of as a summation operator acting on g ∈ C
N

via
(

Hf (g)
)

n
=

N
∑

m=1

fm+ngm,

whose continuous counterpart is the integral operator

Γf (g)(t) =

∫ 1

0

f(t+ s)g(s) ds. (14)

The connection between these two operators is studied in

[8], where it is shown that Γf has rank K and is PSD if and

only if f is of the form

f(x) =

K
∑

k=1

cke
ξkt (15)

where ck > 0 and ξk ∈ R. Results of this type for Hankel

matrices date back to 1911 (Fischer’s theorem, [4]), but are

unfortunately not as clean as the situation for continuous

variables. We refer to [8] for a more thorough discussion of

these matters. For the purposes of this paper it is sufficient

to note that a given Hankel operator Hf has rank K < N
and is PSD if f comes from a sampling of (15), and the

converse also holds “generically”.

III-B. Half-life parameter estimation

Let f be a sampling of the signal (1). By the previous

section we see that if the noise ǫ is zero, then Hf will be

a PSD matrix and have rank K. In the presence of noise,

neither of these statements become true. To remove the noise

from the signal, we thus pose the following problem

argmin
g: Hg≥0

τ2rank(Hg) + q‖Hg −Hf‖2. (16)

This problem is non-convex and hence can not be expected

to be solved using standard (gradient type) optimization

methods. However, if we let M be the subspace of Hankel

matrices, then by Theorem 1 with F = Hf and A = Hg , the

algorithm of Theorem 1 solves the closely related problem

argmin
g

Rτ (Hg) + q‖Hg −Hf‖2. (17)

Moreover, if the eigenvalues of the fixed point W ◦ are all

distinct from τ , then it also solves (16) (cf., Theorem 2).

Once the algorithm has converged to a function of the form

(15), one may use standard methods for the estimation of

the parameters K, Tk and ck.

III-C. Choosing τ and q

We finally discuss the relationship between the desired

rank K, the penalty level τ and the regularization parameter

q, in the presence of noise. Given f of the form (1), let

fp denote the noise free part and ǫ the noise. By the

previous sections, we know that Hfp has rank K, whereas

Hǫ most likely has full rank. If λK(Hfp) ≤ λ1(Hǫ), it

is not likely that the method presented in this paper can
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Fig. 4. Empirical probability for convergence of the algo-

rithm to the global minimum of the non-convex problem

(16).

recover all K parameters Tk, k = 1, . . . ,K, accurately.

However, when λK(Hfp) > λ1(Hǫ), a choice of τ such that√
qλK(Hfp) < τ <

√
qλ1(Hǫ) yields accurate estimates

for Tk. Of course, in a real situation, neither λK(Hfp)
nor λ1(Hǫ) are known, but under the assumption that the

noise level is below λK(Hfp), both can be approximated by

λK(Hf ) and λK+1(Hf ) (since eigenvalues depend contin-

uously on perturbations). We thus arrive at the recommen-

dation √
qλK(Hf ) < τ <

√
qλK+1(Hf ) (18)

for obtaining an approximation for f with K exponential

functions and thus estimates for Tk. To motivate this choice

theoretically, note that under our assumptions on the data,

the (K+1)st eigenvector will contain mainly noise, and we

would like the functional I to be such that it is decreased

when this eigenvector is excluded. The exclusion of this vec-

tor will lead to an increase of the data fit term ‖Hg −Hf‖2
by qλ2

K+1
(Hf ), whereas τ2rank(Hg) will increase by τ2,

thus yielding τ >
√
qλK+1(Hf ). For the other inequality in

(18) one can argue similarly.

Concerning the regularization parameter q, we note that

the function sτ,q becomes the identity function in the limit

q = 1, and consequently the algorithm converges slowly

for values near 1. We have found that q = 2 works well

in practice. The numerical illustrations reported below have

been conducted with τ =
√
2(λK(Hf ) + λK+1(Hf ))/2.

IV. NUMERICAL ILLUSTRATIONS

Let us look at some numerical examples to illustrate the

theoretical results presented in the previous sections. Before
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Fig. 5. Median values of λK(Hf ), λK+1(Hf ), λK(Hfp)
and τ .

doing so, it should be stressed that the problem of detecting

half-life parameters is quite different from the usual (com-

plex) frequency estimation problem [9] since it becomes

severely ill-posed in the absence of oscillations. A reason

for this is that the functions that are composed of decaying

exponentials are close to parallel (in terms of orthogonal

basis), and a linear combination of incorrect exponentials

may give a good fit to the function. Accurate estimation

of the decay parameters is therefore a hard problem, see

[10], [11], and traditional means of measuring the impact

of noise, like the Signal-to-Noise Ratio (SNR), fall short

in capturing the difficulties of this problem. Also, since the

only information that distinguishes the different exponentials

from each other is the decay rate, or ratio between their

largest and smallest values, it is implicit in the problem that

the amount of information differs substantially in different

parts of the signal. To conclude, it is hard to tailor a test

environment that would fit all of the particularities of this

specific problem.

The numerical results that we present here are therefore

nevertheless based on the standard tests that usually are

conducted in the signal processing community, that is, quan-

tifying the impact of white Gaussian noise for different SNR

values. We choose a signal that is composed of K = 3
exponential functions, with half times T1 = 0.01, T2 = 0.05
and T3 = 0.3, on the interval [0, 1]. The corresponding

coefficients ck, k = 1, 2, 3, are chosen so that the three

exponentials have the same ℓ2 norm. The exponentials are

depicted in Fig. 3, where the sum is also shown as well as

a realization of a noisy signal (SNR=27.5dB). Results are

obtained for 100 independent realizations of noise for each

SNR value, the matrix size is N = 256 and q = 2.

The fixed-point algorithm in Table I is guaranteed to

converge to a W ◦ from which the minimum of (17) can

be computed, and Theorem 2 provides a test for when this

minimum coincide with the minimum of the non-convex

problem (16). This property is illustrated in Fig. 4, which

plots the empirical probability of the minima of (16) and

(17) to coincide, and hence of the output of the algorithm to

succeed in finding the global minimum to the original non-



convex problem. We see that this success rate is 100% for

large values of SNR, and then rapidly drops to zero below

a certain threshold SNR (for this specific example, below

≈ 27.5dB). This behavior is further investigated in Fig. 5,

which plots the eigenvalues λK(Hf ), λK+1(Hf ), λK(Hfp)
as well as the values selected for τ (medians over 100

realizations) and shows that the threshold value for the SNR

above which the algorithm succeeds in finding the global

minimum of the non-convex problem corresponds with the

SNR level above which the penalty level τ is smaller than

λK(Hfp) (see also the discussion of Fig. 2).

While the fixed-point algorithm in Table I does not always

succeed in finding the global minimum of the non-convex

problem (16), it is guaranteed to find the solution of (17).

Fig. 6 illustrates the reconstructions of the function fp
obtained when the minimum of (16) does not and when it

does correspond with the minimum of (17) (left and right

column, respectively). The results indicate that even in the

situation where the solution found by the algorithm is not

identical with the minimum of (16), the reconstruction and

the estimates of the parameters Tk are of good quality.

V. CONCLUSIONS

A fixed-point algorithm for the estimation of half life

parameters is investigated. The theory is based on explicit

formulas for convex envelopes and structure results for PSD

Hankel matrices. The algorithm converge to the minima

of a modified convex problem, and we show that for low

to moderate noise levels, this minima coincides with the

minima of the original non-convex functional, which is easily

verified based on the theory.
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