
HAL Id: hal-01447257
https://hal.science/hal-01447257

Preprint submitted on 26 Jan 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Recursive computation of the invariant distribution of
Markov and Feller processes

Gilles Pagès, Clément Rey

To cite this version:
Gilles Pagès, Clément Rey. Recursive computation of the invariant distribution of Markov and Feller
processes. 2017. �hal-01447257�

https://hal.science/hal-01447257
https://hal.archives-ouvertes.fr


Recursive computation of the invariant distribution of Markov and

Feller processes

Gilles Pagès1 and Clément Rey1

1Université Pierre et Marie Curie, LPMA, 4 Place Jussieu, 75005 Paris, France

January 26, 2017

Abstract

This paper provides a general and abstract approach to approximate ergodic regimes of Markov and
Feller processes. More precisely, we show that the recursive algorithm presented in [7] and based on
simulation algorithms of stochastic schemes with decreasing step can be used to build invariant measures
for general Markov and Feller processes. We also propose applications in three di�erent con�gurations:
Approximation of Markov switching Brownian di�usion ergodic regimes using Euler scheme, approxima-
tion of Markov Brownian di�usion ergodic regimes with Milstein scheme and approximation of general
di�usions with jump components ergodic regimes.
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1 Introduction

In this paper, we propose a method for the computation of invariant measures of Markov processes
(denoted ν). In particular, we study a sequence of empirical stochastic measures (νn)n∈N∗ which can be
recursively computed using a discrete process simulated with a sequence of vanishing step γ = (γn)n∈N
and transition semigroups (Qγn)n∈N∗ . We show that limn→∞ νnf = νf a.s., for a class of test functions
f . The recursive algorithm which is employed to build (νn)n∈N∗ considering that (Qγn)n∈N∗ is given, has
been introduced in the seminal paper [7].

Invariant mesasures are crucial in the study of the long term behavior of stochastic di�erential sys-
tems. We invite the reader to refer to [5] and [2] for an overview of the subject. The construction of
invariant measure for stochastic systems has already been widely explored in the literature. In [16], the
author provides a computation of the invariant distribution for some solutions of Stochastic Di�erential
Equations but in many cases there is no explicit formula for ν. A �rst approach consists in studying the
convergence of the semigroupoup of the Markov process (denoted (Pt)t>0) with in�nitesimal generator
A towards the invariant measure ν as it is done in [4] for the variation topology. If (Pt)t>0 can be
computed, one can approximate ν controlling only the error between (Pt)t>0 and ν. If the process with
semigroup (Pt)t>0 can be simulated, we can use a Monte Carlo method to estimate (Pt)t>0 producing a
second term in the error analysis. When the process with semigroup (Pt)t>0 can not be simulated with
reasonnable time, a solution consists in simulating an approximation for the semigroup (Pt)t>0, using
(Qγn)n∈N∗ (given a step sequence (γn)n∈N). The semigroup (Qγn)n∈N∗ is supposed to weakly converge
towards (Pt)t>0. A natural construction rely on numerical homogeneous schemes ((γn)n∈N is constant
and equal to the time step γ0). This approach induced two more terms to control in the approximation
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of ν in addition to the error between (Pt)t>0 and ν: The �rst one is due to the approximation of (Pt)t>0

by (Qγn)n∈N∗ and the second one is due to the Monte Carlo error involved in the computation of the law
of the process simulated with (Qγn)n∈N∗ .

Nevertheless, for Brownian di�usions, many e�orts have been done in order simplify this problem. In
[17], the author suggests an elegant procedure to simplify this last approach. He considers the case where
the process simulated with (Qγn)n∈N∗ (where (γn)n∈N is still constant) has an invariant measure νγ0 . In a
�rst step, he shows that limn→∞ νnf = νγ0f , and then he proves that limγ0→0 ν

γ0 = ν. Consequently, he
gets rid of the Monte Carlo approximation (since there is no estimation procedure for the computation
of (Pt)t>0 or (Qγn)n∈N∗), and there are only two terms to treat in the error. He manages to control this
error under a uniform ellipticity condition that is not necessary in our work. He also extended these
results in [18].
Another approach has been proposed in [1] and avoid asymptotic analysis with respect to the size of the
time step. In this paper, the authors prove directly that the random discrete process simulated with
(Qγn)n∈N∗ , with (γn)n∈N vanishing to 0, converges weakly toward ν. Therefore, there are two terms to
treat in the error: The �rst one is due to this convergence and the second one to the Monte Carlo error
involved in the computation of the law of the process simulated with (Qγn)n∈N∗ . The reader may notice
that in all those cases, strong ergodicity assumptions are required for the process with in�nitesimal gen-
erator A.

Inspired among others by the ideas from [17] and [1], in [7], the authors designed a recursive algorithm
with decreasing step and showed that the sequence (νn)n∈N∗ built with a discrete process that can be
simulated using a sequence of vanishing step γ = (γn)n∈N and transition semigroups (Qγn)n∈N∗ directly
converges towards ν. This initial paper treated the case where (Qγn)n∈N∗ is the transition semigroup of
an inhomogeneous Euler scheme with decreasing step associated to a strongly mean reverting ergodic
Brownian di�usion process. In this paper, they introduce the recursive algorithm to build the sequence of
random measures (νn)n∈N∗ given (Qγn)n∈N∗ (which is the procedure that is used in every work we mention
from now and is also the one we use in this paper). Moreover, they prove that limn→∞ νnf = νf a.s.
for a class of test functions which is larger than the domain (denoted D(A)) of A and contains test
functions with polynomial growth. They also obtained rates and limit gaussian laws for the convergence
of (νn(f))n∈N∗ for test functions f which can be written f = Aϕ. Finally they do not require that
the invariant measure ν is unique controversially to the results obtained in [17] and [1] for instance. In
the case where ν is an invariant distribution of a stochastic di�usion, many complementary works to [7]
have been led. The authors extended their �rst results in [8], where they achieve convergence towards
invariant measures for Euler scheme of Brownian di�usions using weak mean reverting assumptions for
the dynamical stochastic system. Thereafter, in its thesis [9], the author extended the class of function
for which we have limn→∞ νnf = νf a.s. from test functions f with polynomial growth to test functions
with exponential growth. Finally, in [13], the author generalized those results to the construction of in-
variant measures for Levy di�usion processes still using the algorithm from [7]. He thus opened the door
to treat not only approximation of Brownian di�usions' ergodic regime but also a larger class of processes.

The aim of this paper is to show that the algorithm presented in [7] enables to approximate invariant
measures (when there exists without being necessarily unique) for general Markov and Feller processes.
We present a general framework adapted to the construction of invariant measures for Markov processes
under general mean reverting assumption (which includes weak mean reverting assumptions). Then,
we provide some applications for three di�erent con�gurations always under weak mean reverting as-
sumptions. The �rst one treats the case of the Euler scheme for Markov Switching di�usions for test
functions with polynomial growth. This particular case has already been studied in [10] under strong
ergodicity assumptions (which includes among others strong mean reverting assumption). Then, we
prove convergence for the Milstein scheme for test functions with polynomial or exponential growth.
Finally, we consider the Euler scheme for general di�usion processes with jump and test functions with
polynomial growth. In particular, this last results involves Levy processes (as in [13]) but also piecewise
deterministic Markov processes or di�usions processes with censored jump.

In a �rst step we present some general useful results in this study. Then we present the general and
abstract framework in order to obtain convergence toward an invariant measure of a general Markov and
Feller processes. The end of this paper is devoted to the miscellaneous examples mentioned above.
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2 Preliminary results

In this paper, we propose a general approach to compute invariant measures for Markov and Feller
processes. In this section, we give some well known general results that we employ to show that con-
vergence. We begin with some notations. For E a locally compact separable metric space, we denote
C0(E) the set of continuous functions that vanish a in�nity. We equip this space with the sup norm
‖f‖∞ = supx∈E |f(x)| and then (C0(E), ‖.‖∞) is a Banach space. We will denote B(E) the σ-algebra of
Borel subsets of E and P(E) the family of Borel probability measures on E.

To be a bit more speci�c, we consider the generator of a Markov and Feller process denoted by A.
In this paper, our main purpose is to build a measure ν̃ and show that there exists a stationary solution
to the Martingale problem (A, ν̃). In this case we also say that ν̃ is an invariant measure for the Feller
process with generator A. We recall the de�nition of the martingale problem.

De�nition 2.1. Let ν̃ ∈ P(E) with E a locally compact and separable metric space and let A be a linear
operator de�ned on a subset D(A) of C0(E). We say that a process (Xt)t>0 is a solution of the martingale
problem (A, ν̃) if X is progressive and we have P(X0)−1 = ν̃ and for every f ∈ D(A), the process (Yt)t>0

such that Yt = f(Xt)−
t∫

0

Af(Xs)ds, for every t > 0, is a martingale.

However, we will not stick to that de�nition to prove the existence of a stationary solution for the
martingale problem (A, ν̃). Instead, we use the Echeverria Weiss theorem which provides a way to obtain
the existence of a solution for the martingale problem (A, ν̃) under a practical property for our approach.
Now, we give this theorem which can be �nd in [2] (Theorem 9.17).

Theorem 2.1. (Echeverria Weiss). Let E be a locally compact and separable metric space and let A
be a linear operator of C0(E) satisfying the positive maximum principle1 and such that D(A) is dense in
C0(E). If ν̃ ∈ P(E) satis�es

∀f ∈ D(A),

∫
E

Afdν̃ = 0, (1)

then there exists a stationary solution to the martingale problem (A, ν̃).

For our approach, one main advantage of this result is that the only property we will have to prove
of obtain the existence of a stationary solution to the martingale problem (A, ν̃) is (1). Indeed, for Feller
processes, we have the following useful result

Proposition 2.1. Let A be the generator of a Feller semigroup. The space D(A) is dense in C0(E).
Moreover, A satis�es the positive maximum principle.

The proof of this result can be found in [15] (Chapter VII, Proposition 1.3 and Proposition 1.5) or [2]
(Chapter IV, Theorem 2.2). Consequently, this paper will be devoted to the construction of a measure
ν̃, and then to the proof of (1) with this measure. Using the results mentioned in this section, property
(1) is su�cient to prove that ν̃ is an invariant measure for the process with in�nitesimal generator A. To
be more concrete, in this paper, the measure ν̃ will be built as the limit of a sequence of random measure
(νn)n∈N∗ that we specify in the sequel. When (1) holds for this limit, we say that the sequence (νn)n∈N∗

converges towards an invariant measure of the Feller process with generator A. In order to obtain (1)
for this measure, we will employ the following well known results.

Lemma 2.1. (Kronecker). Let (an)n∈N∗ and (bn)n∈N∗ be two sequences of real numbers. If (bn)n∈N∗

is non-decreasing, positive, with limn→∞ bn =∞ and
∑
n>1 an/bn converges in R, then

lim
n→∞

1

bn

n∑
k=1

ak = 0.

Theorem 2.2. (Chow). Let (Mn)n∈N∗ be a real valued martingale with respect to some �ltration
F = (Fn)n∈N. Then

∀r ∈ (0, 1], lim
n→∞

Mn = M∞ ∈ R a.s.

on the event { ∞∑
n=1

E[|Mn −Mn−1|1+r|Fn−1] <∞
}
.

1∀f ∈ D(A), f(x0) = sup{f(x), x ∈ E} > 0, x0 ∈ E ⇒ Af(x0) 6 0.
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3 Convergence to invariant distribution - A general approach

This section presents a general approach inspired from the seminal work in [7] to construct (νn)n∈N∗ and
prove that it converges towards an invariant measure of a Markov and Feller with in�nitesimal generator
A as soon as it is built with a sequence of approximating semigroup of that Markov and Feller process.

3.1 Presentation of the framework

In this part, we present the recursive algorithm in order to build (νn)n∈N∗ and also the general hypothesis
that are required to obtain convergence towards an invariant distribution of a Markov and Feller process.
In other words, we give some general assumptions on (νn)n∈N∗ in order to obtain (1) for limn→∞ νn .

3.1.1 Construction of the random measures

In this paper we consider a locally compact and separable metric space E. We introduce a sequence of
�nite transition measures Pn(x, dy), n ∈ N∗ from E to itself. This means that for each �xed x and n,
Pn(x, dy) is a probability measure on (E,B(E)) with the Borel σ-�eld and, for each bounded measurable
function f , the mapping

x 7→ Pnf(x) :=

∫
E

f(y)Pn(x, dy)

is Borel measurable. We also suppose that Pnf ∈ C0(E) for every measurable function f ∈ C0(E) and
n ∈ N∗. Now we associate the sequence P to a time grid with vanishing steps. Let γ := (γn)n∈N∗ such
that

∀n ∈ N∗, 0 6 γn 6 γ <∞, lim
n→∞

γn = 0 and lim
n→∞

Γn = +∞ (2)

with the notations Γ0 = 0 and Γn =
∑n
k=1 γk. From now, we will use the notation Pγn = Pn.

De�nition 3.1. We de�ne the family of discrete linear operator (P γn )n∈N∗ from C0(E) to itslef in the
following way.

P γ0 f(x) = f(x), P γn+1f(x) = P γnP
γ
n+1f(x) = P γn

∫
Rd

f(y)Pγn+1(x, dy).

Remark 3.1. If we de�ne more generally (P γn,m)n,m∈N;n6m by

P γn,nf(x) = f(x), ∀n,m ∈ N∗, n 6 m, P γn,m+1f(x) = P γn,mP
γ
m+1f(x),

we have the following semiroup property: for n,m, k ∈ N, n 6 m 6 k, P γn,kf = P γn,mP
γ
m,kf .

We consider now a second sequence of �nite transition probability measures Qγn(x, dy), n ∈ N∗. More-
over, we introduce the corresponding semigroup Qγ de�ned in a similar way as P γ with Pγ replaced
by Qγ . Finally, we assume that there exists a continuous Feller semigroup (Pt)t> such that for every
t ∈ {Γn, n ∈ N}, then PΓn = P γn . We do not make such assumption for (Qγn)n∈N. In our framework, Qγ

is thus considered as the approximation discrete semigroup of (Pt)t> on the time grid {Γn, n ∈ N}. In
the sequel we will denote by A the in�nitesimal generator of P and ν will denote an invariant measure
for A. We now propose the construction of (νn)n∈N∗ which inspired from [7]. We de�ne the Markov
process X := (Xn)n∈N in the following way

X0 ∈ E, P(Xn+1 ∈ dy|Xn) = Q
γ
n+1(Xn, dy) (3)

The main di�erence with [7] is that we do not suppose that Qγ is the semigroup associated to the Euler
scheme of a Brownian di�usion process. In this study, we simply consider approximations of Markov
processes that can be simulated. At this point, we are going to de�ne a weighted empirical measure with
X. This construction is totally similar to the one in [7] but with the Euler scheme replaced by (Xn)n∈N.
First, we introduce the weights. Let η := (ηn)n∈N∗ such that

∀n ∈ N∗, ηn > 0, lim
n→∞

Hn =∞, (4)
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with the notation Hn = Hη,n =
∑n
k=1 ηk. Now we present the algorithm initially introduce in [7]. First,

for x ∈ E, let δx denote the Dirac mass at point x. For every n ∈ N∗, we de�ne the random weighted
empirical random measures as follows

νηn(dx) =
1

Hn

n∑
k=1

ηkδXk−1
(dx). (5)

The aim of this paper is to show that limn→∞ νηnf = νf a.s., for a class of test functions f . This will
hold as soon as (νn)n∈N∗ is tense, (1) is satis�ed with ν̃ replaced by limn→∞ νn and f(x) = o

|x|→∞
g(x)

with supn∈N∗ νn(g) <∞.

3.1.2 Assumptions on the random measures

In this section, we present the hypothesis that we require in order to prove that convergence. Those
assumptions are related to the increments of the approximation semigroup Qγ , also called pseudo gener-
ator of Qγ . More particularly a �rst assumption concerns the recursive control of this pseudo generator
while the second describe its connection to the in�nitesimal generator A. We begin with some de�nitions.

Let us de�ne the family of linear operators Ãγ := (Ãγn)n∈N∗ from C0(E) to itslef, in the following way

∀f ∈ C0(E), x ∈ E, n ∈ N∗, Ãγnf =
Qγnf − f
γn

. (6)

The reader may notice that Ãγ is also called the pseudo generator of the semigroup Qγ . In order to
obtain our results, it is necessary to introduce some hypothesis concerning the stability of the semigroup
Qγ . A key point in our approach, as it is the case for most studies concerning invariant distributions, is
the existence of a Lyapunov function. We say that V is a Lyapunov function if

LV V : E → [v∗,+∞), v∗ > 0 and lim
|x|→∞

V (x) =∞. (7)

A classical interest of Lyapunov functions is is to show the existence and sometimes uniqueness of
the invariant measure for the process with in�nitesimal generator A. We invite the reader to refer to the
large literature on the subject for more details: See for instance[5], [2] or [12].

Recursive control
In our framework, we introduce a well suited stability assumption for the pseudo generator in order to

obtain existence (in weak sense) of the limit of of the sequence of random measures (νn)n∈N. This will
be done using a tightness property. We now give this assumption that will be mentioned from now as
the recursive control of the pseudo generator Ãγ :

Let v∗ > 0, V : E → [v∗,∞), ψ, φ ∈ [v∗,∞)→ R+, such that Ãγnψ ◦ V exists for every n ∈ N∗. Then
we assume that there exists α > 0 and β ∈ R+, such that

IQ,V (ψ, φ)

{
∃n0 ∈ N∗,∀n > n0, x ∈ E, Ãγnψ ◦ V (x) 6 V −1(x)ψ ◦ V (x)(β − αφ ◦ V (x)).
∃λ ∈ [0, 1), Cλ > 0,∀y > v∗, ψ(y)(β − λαφ(y)) 6 Cλy.

(8)

Let us notice that the second part of the assumption IQ,V (ψ, φ) is satis�ed as soon as limy→∞ φ(y) =∞.
The function φ controls the mean reverting property. In particular, we say that we have strong mean
reverting property if φ = Id and that we have weak mean reverting property when φ(y) = ya, a ∈ (0, 1)
for every y ∈ [v∗,∞). The function ψ is referred in this paper as the test function and is related to
the set of functions f for which we have limn→∞ νηn(f) = ν(f), when ν is the unique invariant measure
of the process with in�nitesimal generator A. This assumption is crucial to prove the tightness of the
sequence (νηn)n∈N∗ and consequently to obtain the existence of a limit point (not necessarily unique) for
this sequence.
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In�nitesimal approximation
This part presents the assumption that enable to show that any limit point of the sequence (νηn)n∈N∗

is an invariant measure for the Markov and Feller process with in�nitesimal generator A. We aim to
estimate the distance between an invariant measure of P and νηn (see (5)) for n large enough. In order to
do it, we introduce an additional hypothesis concerning the distance between Ãγ , the pseudo generator
of Qγ , and A, the in�nitesimal generator of P .

We assume that

E(Ãγ , A) ∃n0 ∈ N∗,∀n > n0,∀f ∈ D(A),∀x ∈ E |Ãγnf(x)−Af(x)| 6 Λf (x, γn), (9)

where Λf : Rd × R+ → R+ can be decomposed in the following way:

Let q ∈ N. We introduce g = (g1, . . . , gq) and Λ̃f = (Λ̃f,1, . . . , Λ̃f,q) two families of functions with

gi : Rd → R+ and Λ̃f,i : E × R+ × RNi × Gi → R+. Moreover, for every i ∈ {1, . . . , q}, we introduce
a positive �nite measure πi de�ned on a measurable space (Gi,Gi), and a family of random processes
(Ui(x,Θi))Θi∈Gi taking values in RNi , Ni ∈ N∗. We suppose that we have

∀x ∈ Rd,∀t ∈ [0, γn0
], Λf (x, t) =

q∑
i=1

∫
Gi

E[Λ̃f,i(x, t, Ui(x,Θi)t,Θi)]πi(dΘi)gi(x)

with supx∈E,t∈[0,γn0
],i∈{1,.,q}

∫
Gi

E[Λ̃f,i(x, t, Ui(x,Θi)t,Θi)]πi(dΘi) < ∞. Using this decomposition, we

assume that for every couple of functions (Λ̃f,i, gi), i ∈ {1, . . . , q}, one the following assumption holds,

that is Eloc(Λ̃f,i, gi) or Eergo(Λ̃f,i, gi).

I) Locally compact case We say that Eloc(Λ̃f,i, gi) holds if gi is locally compact and: for every
u ∈ RNi , for every Θi ∈ Gi and every compact subset K of E we have

lim
t→0

sup
x∈K

Λ̃f,i(x, t, u,Θi) = 0. (10)

Moreover, we assume that there exists t0 > 0 and a compact subset K0 of E such that

∀x ∈ E \K0,∀t ∈ [0, t0],∀u ∈ RNi ,∀Θi ∈ Gi, Λ̃f,i(x, t, u,Θi) = 0. (11)

II) Case supn∈N∗ ν
η
n(gi) <∞ a.s. We say that Eergo(Λ̃f,i, gi) holds if gi is locally compact, supn∈N∗ ν

η
n(gi) <∞

and one of the following properties holds:

For every compact subset K of E and all Θi ∈ Gi, we have

lim
t→0

sup
x∈K

Λ̃f,i(x, t, Ui(x,Θi)t,Θi) = 0 a.s., and (12)

lim
|x|→∞

sup
t∈[0,γn0 ]

Λ̃f,i(x, t, Ui(x,Θi)t,Θi) = 0 a.s.

or the following holds instead: For every Θi ∈ Gi,

lim
t→0

sup
x∈E

Λ̃f,i(x, t, Ui(x,Θi)t,Θi)gi(x) = 0 a.s, (13)

The reader may notice that the measures πi, i ∈ {1, . . . , q} are not supposed to be probability
measures. However, in many cases, those measures are built using some probability measures. This
representation assumption is related to the fact that the transition functions Qγn(x, dy), x ∈ E can be
represented using random variables (which does not depend from γ) through the variable Θi and using
random processes through (Ui(x,Θi)t)t>0. This approach is well adapted to stochastic approximations
that can be associated to a time grid such as numerical schemes for stochastic di�erential equation with
a Brownian part or/and a Jump part.

This concludes the part concerning the assumption and we can focus on the main results concerning
this abstract approach.
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3.2 Convergence

3.2.1 Almost sure tightness

From the recursive control assumption, we obtain the tightness of (νηn)n∈N∗ . This is one of the purpose
of the following Theorem. We recall that tightness implies that the sequence has at least one limit point.
Another interest of this result is that the functions φ and ψ are not speci�ed explicitly and then this
framework apply to many diverse con�gurations.

Theorem 3.1. Let s ∈ (1, 2], v∗ > 0, V : E → [v∗,∞), ψ, φ : [v∗,∞)→ R+. We assume that ψ is lower
bounded, that IQ,V (ψ, φ) (see (8)) hold and that

P-a.s. sup
n∈N∗

− 1

Hn

n∑
k=1

ηkÃ
γ
k(ψ ◦ V )1/s(Xk−1) <∞. (14)

Then
P-a.s. sup

n∈N∗
νηn(V −1.φ ◦ V.(ψ ◦ V )1/s) <∞. (15)

Finally, if LV (see (7)) holds, and the function x 7→ x−1φ(x)ψ(x)1/s tends to in�nity as x goes to in�nity,
then the sequence (νηn)n∈N∗ is tight. Consequently, if the sequence (νηn)n∈N∗ has a unique weak limit ν then
for every continuous function f satisfying f = o(V −1.φ ◦ V.(ψ ◦ V )1/s), we have limn→∞ νηn(f) = ν(f).

Proof. Using (8), there exists n0 ∈ N such that for every n > n0, we have

E
[ψ ◦ V (Xn+1)

ψ ◦ V (Xn)
|Fn
]
6 1 + γn+1

β − αφ ◦ V (Xn)

V (Xn)
.

Since the function de�ned on R∗+ by y 7→ y1/s is concave, we use the Jensen's inequality and obtain

E
[ψ ◦ V (Xn+1)1/s

ψ ◦ V (Xn)1/s
|Fn
]
6
(

1 + γn+1
β − αφ ◦ V (Xn)

V (Xn)

)1/s

61 +
γn+1(β − αφ ◦ V (Xn))

sV (Xn)
.

Now, we use (8) and it follows that there exists λ ∈ [0, 1), Cλ > 0, such that

Q
γ
n+1(ψ ◦ V )1/s(Xn) 6(ψ ◦ V )1/s(Xn) +

γn+1

s
(ψ ◦ V )1/s(Xn)V −1(Xn)(β − αφ ◦ V (Xn))

6(ψ ◦ V )1/s(Xn) + γn+1ψ ◦ V (Xn)1/s−1
(Cλ
s
− α(1− λ)

s
V −1(Xn)φ ◦ V (Xn)

)
.

or equivalently,

V −1(Xn)φ ◦ V (Xn)ψ ◦ V (Xn)1/s 6 − s

α(1− λ)
Ãγn+1(ψ ◦ V )1/s(Xn) +

Cλ
α(1− λ)

( inf
x>v∗

|ψ(x)|)1/s−1.

Consequently, the result follows from (14), E[ψ ◦ V (Xn0
)] <∞, and the fact that ψ is lower bounded on

[v∗,∞).

3.2.2 Identi�cation of the limit

In Theorem 3.1, we obtained tightness of (νηn)n∈N∗ . It remains to show that any limit point of this
sequence is an invariant measure for the process with in�nitesimal generator A. This is the interest of
the following Theorem which uses the in�nitesimal approximation.

Theorem 3.2. Let n0 ∈ N∗. We assume that for every f ∈ D(A), we have

P-a.s. lim
n→∞

νηn(Ãγkf) = 0. (16)

We also assume that E(Ãγ , A) (see (9)), holds. Then

P-a.s. lim
n→∞

νηn(Af) = 0 (17)

It follows that, P−a.s., every (weak) limiting distribution νη∞ of the sequence (νηn)n∈N∗ is an invariant
distribution for the semigroup (Pt)t>0 with in�nitesimal generator A.
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A direct consequence of this result is that if (νηn)n∈N∗ is almost surely tight and the semigroup
(Pt)t>0 with in�nitesimal generator A admits a unique invariant measure ν, then almost surely (νηn)n∈N∗

converges to ν.

Proof. First we write

νηn(Ãγkf)− νηn(Af) =
1

Hn

n∑
k=1

ηkÃ
γ
kf(Xk−1)− ηkAf(Xk−1).

Now we use the short time approximation E(Ãγ , A) (see (9)) and it follows that there exists n0 ∈ N∗
such that

1

Hn

n∑
k=n0

ηkÃ
γ
kf(Xk−1)− ηkAf(Xk−1) =

C

Hn

n∑
k=n0

ηkΛf (Xk−1, γk).

Moreover, we have the following decomposition

∀x ∈ Rd,∀t ∈ [0, γn0 ], Λf (x, t) =

q∑
i=1

∫
Gi

E[Λ̃f,i(x, γ, Ui(x,Θi)t,Θi)]πi(dΘi)gi(x)

with for every Θi ∈ Gi, Ui(x,Θi) = (Ui(x,Θi)t)t>0 a RN -valued random process and

sup
x∈E,t∈[0,γn0 ],i∈{1,.,q}

∫
Gi

E[Λ̃f,i(x, t, Ui(x,Θi)t,Θi)]πi(dΘi) <∞.

Now we assume that Eergo(Λ̃f,i, gi) (see (12) and (13)) holds for Λf,i. If Eloc(Λ̃f,i, gi) (see (10) and (11))

holds instead of Eergo(Λ̃f,i, gi), the proof is similar by simpler so we leave it out. In order to obtain the
desired convergence, we �rst �x Θi ∈ Gi and study

1

Hn

n∑
k=n0

ηkΛ̃f,i(Xk−1, γk, Ui(Xk−1,Θi)γk ,Θi)gi(Xk−1).

We assume that (12) holds. If instead (13) is satis�ed, the proof is similar but simper so we leave it
to the reader. For R > 0, we denote BR = {x ∈ E, |x| 6 R}. Using Eergo(Λ̃f,i, gi) (see (12)), we have

immediately limn→∞ Λ̃f,i(Xn−1, γn, Ui(Xn−1,Θi)γn ,Θ)1|Xn−1|6R = 0 a.s. Then, since gi is a continuous
function, as an immediate consequence of the Cesaro's lemma, we obtain

lim
n→∞

1

Hn

n∑
k=n0

ηkΛ̃f,i(Xk−1, γk, Ui(Xk−1,Θi)γk ,Θ)gi(Xk−1)1{|Xk−1|6R} = 0 a.s.

Moreover, using (12), for every n > n0, we have lim|x|→∞ Λ̃f,i(x, γn, Ui(x,Θi)γn ,Θi) = 0 a.s.. Then,
almsot surely, we obtain

1

Hn

n∑
k=n0

ηkΛ̃f,i(Xk−1, γk, Ui(Xk−1,Θi)γk ,Θi)g(Xk−1)1{|Xk−1|>R}

6 sup
|x|>R,t∈[0,γn0

]

|Λ̃f,i(x, t, Ui(x,Θi)t,Θi)| sup
n∈N∗

νηn(gi).

We let R tends to in�nity and since supn∈N∗ ν
η
n(gi) < ∞, the left hand side of the above equation

converges almost surely to 0. It remains to obtain the hypothesis of the Dominated Convergence Theorem.
We have, for every n ∈ N∗, n > n0,

E[

∫
Gi

1

Hn

∣∣ n∑
k=n0

ηkΛ̃f,i(Xk−1,γk, Ui(x,Θi)γk ,Θi)gi(Xk−1)
∣∣πi(dΘi)]

6 sup
x∈E,t∈[0,γn0

]

E[

∫
Gi

|Λ̃f,i(x, t, Ui(x,Θi)t,Θi)|πi(dΘ)] sup
n∈N∗

νηn(gi).
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with supx∈E,t∈[0,t0] E[
∫
Gi

|Λ̃f,i(x, t, Ui(x,Θi)t,Θi)|πi(dΘi)] <∞. Consequently, it follows from the Domi-

nated Convergence Theorem that

lim
n→∞

1

Hn

n∑
k=1

ηkÃ
γ
kf(Xk−1)− νηnAf = 0.

It follows that almost surely limn→∞ νηnAf = 0 for every f ∈ D(A). Since Af beglongs to C0(E), we
obtain that νη∞(Af) = 0 a.s. for any limit point νη∞ of the sequence νηn and the conclusion follows from
the Echeverria Weiss theorem (see Theorem 2.1).

3.2.3 General approach to prove (14) and (16)

Through Theorem 3.1 and Theorem 3.2, we showed how to obtain existence of limit points for (νηn)n∈N∗

and how to identify these limit points to invariant measures for A. This simply requires a recursive
control assumption, an in�nitesimal approximation hypothesis and also (14) and (16). This section is
dedicated to the study of (14) and (16). This assumptions are not trivial to verify in most cases but a
general approach can be used. We present it from here.

Let ρ ∈ (1, 2] and an increasing function εI : R+ → R+. For f, g : E → R and (Xn)n∈N a sequence of
random variables with Xn ∈ σ(Xi, i ∈ {0, . . . , n}) for every n ∈ N, we assume that there exists n0 ∈ N,
and C > 0 such that, for every n > n0,

ĨX(f, g,X, ρ, εI) E[|f(Xn+1)− Xn|ρ|Xn] 6 CεI(γn+1)|g(Xn)|. (18)

and

SWI,γ,η(g, ρ, εI)

∞∑
n=1

∣∣∣ ηn
Hnγn

∣∣∣ρεI(γn)E[|g(Xn)|] <∞. (19)

and we will also use the notation SWI,γ,η(g, ρ, εI) We will also use the hypothesis

SWII,γ,η(f)

∞∑
n=0

(ηn+1/γn+1 − ηn/γn)+

Hn+1
E[|f(Xn)|] <∞. (20)

with the convention η0/γ0 = 1. One notices that this last assumption holds as soon as the sequence
(ηn/γn)n∈N∗ is non increasing We propose a �rst result which enlightens the interest of these hypothesis
and will be of particular interest when f = (ψ ◦ V )1/s in the study of the tightness and when f ∈ D(A)
for the identi�cation part.

Lemma 3.1. Let ρ ∈ (1, 2], g : E → R+, f : E → R, such that Ãγnf exists for every n ∈ N∗,
εI : R+ → R+ an increasing function and (Xn)n∈N a sequence of random variables with Xn ∈ σ(Xi, i ∈ {0, . . . , n})
for every n ∈ N
We assume IX(f, g,X, ρ, εI) (see (18)) and SWI,γ,η(g, ρ, εI) (see (19)) hold. We have the following
properties

A. If f : E → R+ and SWII,γ,η(f) (see (20)) holds, then

P-a.s. sup
n∈N∗

− 1

Hn

n∑
k=1

ηkÃ
γ
kf(Xk−1) <∞. (21)

B. If f is bounded and

lim
n→∞

1

Hn

n∑
k=1

|ηk+1/γk+1 − ηk/γk| = 0, (22)

Then

P-a.s. lim
n→∞

1

Hn

n∑
k=1

ηkÃ
γ
kf(Xk−1) = 0 (23)
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Proof. We write

−
n∑
k=1

ηkÃ
γ
kf(Xk−1) =−

n∑
k=1

ηk
γk

(f(Xk)− f(Xk−1)) +

n∑
k=1

ηk
γk

(f(Xk)− Q
γ
kf(Xk−1))

We study the �rst term of the right hand side.First we write

− 1

Hn

n∑
k=1

ηk
γk

(f(Xk)− f(Xk−1)) =
η1

Hnγ1
f(X0)− ηn

Hnγn
f(Xn) +

1

Hn

n∑
k=2

(ηk
γk
− ηk−1

γk−1

)
f(Xk−1).

First, we assume that f : E → R+ and SWII,γ,η(f) (see (20)) holds. From SWII,γ,η(f) (see (20))
together with Kronecker's lemma, we obtain

lim
n→∞

1

Hn

n∑
k=2

(ηk
γk
− ηk−1

γk−1

)
+
E[f(Xk−1)] = 0,

and since f is positive, we deduce that

sup
n∈N
− 1

Hn

n∑
k=1

ηk
γk

(f(Xk)− f(Xk−1)) <∞ a.s.

Now, when f is bounded, we deduce from (22), that limn→∞ ηn/(Hnγn) = 0 and

lim
n→∞

1

Hn

n∑
k=1

ηk
γk

(f(Xk)− f(Xk−1)) = 0 a.s.

.
This concludes the study of the �rst term and now we focus on the second one. From Kronecker

lemma, it remains to prove the almost sure convergence towards zero of the martingale (Mn)n∈N∗ such
that M0 := 0 and for every n ∈ N∗,

Mn :=

n∑
k=1

ηk
γkHk

(f(Xk)− Q
γ
kf(Xk−1)).

From the Chow's theorem, this convergence will be a consequence of the �niteness of the series

n∑
k=1

( ηk
γkHk

)ρ
E[|f(Xk)− Q

γ
kf(Xk−1)|ρ].

Moreover

E[|f(Xk)− Q
γ
kf(Xk−1)|ρ|Xk−1]1/ρ 6E[|f(Xk)− Xk−1|ρ|Xk−1]1/ρ

+E[|Xk−1 − Q
γ
kf(Xk−1)|ρ|Xk−1]1/ρ

with

E[|Xk−1 − Q
γ
kf(Xk−1)|ρ|Xk−1] 6E[|E[Xk−1 − f(Xk)|Fk−1]|ρ|Xk−1]

6E[|f(Xk)− Xk−1|ρ|Xk−1]

We conclude using IX(f, g,X, s, εI) (see (18)) with SWI,γ,η(g, s, εI) (see (19)).

The following Lemma presents a L1-�niteness property that we can obtain under recursive con-
trol hypothesis and strong mean reverting assumption (φ = Id). This result is thus useful to prove
SWI,γ,η(g, ρ, εI) (see (19)) or SWII,γ,η(f) (see (20)) for well chosen functions f and g in this particular
situation.
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Lemma 3.2. Let v∗ > 0, V : E → [v∗,∞), ψ : [v∗,∞)→ R+, such that Ãγnψ ◦V exists for every n ∈ N.
We assume that IQ,V (ψ, Id) (see (19)) hold and that E[ψ ◦ V (Xn0)] <∞ for every n0 ∈ N∗. Then

sup
n∈N

E[ψ ◦ V (Xn)] <∞ (24)

Proof. First, we deduce from (8) that there exists n0 ∈ N such that for n > n0, IQ,V (ψ, Id) can be
rewritten

E[ψ ◦ V (Xn+1)|Xn] 6ψ ◦ V (Xn)(1− γn+1αV
−1(Xn)V (Xn)) + γn+1βψ ◦ V (Xn)V −1(Xn)

6ψ ◦ V (Xn)(1− γn+1(1− λ)α) + γn+1Cλ.

Applying a simple induction we deduce that E[ψ ◦ V (Xn)] 6 E[ψ ◦ V (Xn0)] ∨ Cλ.
(1−λ)α .

The same results holds if with assume only that E[ψ ◦V (Xn0
)] <∞ for the same n0 as in IQ,V (ψ, Id)

(see (19)). Now, we provide a general way to obtain SWI,γ,η(g, ρ, εI) and SWII,γ,η(f) for some speci�c
g and f as soon as a recursive control hypothesis hold but without making strong mean reversion
assumptions.

Lemma 3.3. Let v∗ > 0, V : E → [v∗,∞), ψ, φ : [v∗,∞) → R+, such that Ãγnψ ◦ V exists for every
n ∈ N. We also introduce the non increasing sequence (Θn)n∈N∗ such that

∑
n>1 Θnγn <∞. We assume

that IQ,V (ψ, φ) (see (8)) hold. Then

∞∑
n=1

ΘnγnE[V −1(Xn−1)φ ◦ V (Xn−1)ψ ◦ V (Xn−1)] <∞ (25)

In particular, let ρ ∈ (1, 2] and an increasing function εI : R+ → R+. If, we also assume

SWI,γ,η(ρ, εI)
(
γ−1
n εI(γn)

( ηn
Hnγn

)ρ)
n∈N∗

is non increasing and

∞∑
n=1

( ηn
Hnγn

)ρ
εI(γn) <∞, (26)

then we have SWI,γ,η(V −1φ ◦ V ψ ◦ V, ρ, εI) (see (19)). Moreover, if

SWII,γ,η
(
γ−1
n

(ηn+1/γn+1 − ηn/γn)+

Hn

)
n∈N∗

is non increasing and

∞∑
n=1

(ηn+1/γn+1 − ηn/γn)+

Hn
<∞,

(27)
then we have SWII,γ,η(V −1φ ◦ V ψ ◦ V ) (see (20)).

Proof. There exists n0 ∈ N such that for n > n0, IQ,V (ψ, φ) can be rewritten

γn+1V
−1(Xn)ψ ◦ V (Xn)(φ ◦ V (Xn)− β/α) 6

ψ ◦ V (Xn)− E[ψ ◦ V (Xn+1)|Xn]

α
.

Using (8), and since the sequence (Θn)n∈N∗ is non increasing, we obtain a telescopic decomposition
as follows

Θn+1γn+1V
−1(Xn)ψ ◦ V (Xn)φ ◦ V (Xn) 6Θn+1

ψ ◦ V (Xn)− E[ψ ◦ V (Xn+1)|Xn]

α(1− λ)
+ γn+1Θn+1Cλ/α

6
Θnψ ◦ V (Xn)−Θn+1E[ψ ◦ V (Xn+1)|Xn]

α(1− λ)
+ γn+1Θn+1

Cλ
α(1− λ)

.

Taking expectancy and summing for every n > n0 yields the result as ψ takes positive values and E[ψ ◦
V (Xn0

)] <∞. The second part of the result is a consequence of Chow's theorem.

This result concludes the general approach to prove convergence. The next part of this paper is
dedicated to show how the approach we propose is well adapted to many diverse and classical applications.
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4 Applications

In this section, we apply the general approach presented above to practical cases. Before doing it, we give
some standard notations and properties that will be used extensively in the sequel. First, for α ∈ (0, 1]
and f a α-Hölder function we denote [f ]α = supx 6=y |f(y)− f(x)|/|y − x|α.

Now, let d ∈ N. For any Rd×d-valued symmetric matrix S, we de�ne λS := sup{λS,1, ..λS,d, 0}, with
λS,i the i-th eigenvalue of S.

We follow with some useful polynomial inequalities. Let u, v ∈ R+, then

∀α ∈ (0, 1), (u+ v)α 6uα + vα. (28)

∀α > 1, (u+ v)α 6uα + α2α−1(uα−1v + vα). (29)

Let l ∈ N∗. We have also

∀α > 0, ui ∈ Rd, i = 1, . . . , l,
∣∣ l∑
i=1

ui
∣∣α 6 l(α−1)+

l∑
i=1

|ui|α. (30)

We also recall the Burkhoder Davies Gundy (BDG) inequality for discrete martingales. Let p > 1
and (M̃n)n∈N a Rd-valued martingale and de�ne Fn

M̃
= σ(M̃k, k ∈ {0, . . . , n}). Then, there exists Cp > 0

such that

E[|M̃n|p] 6 Cp

n−1∑
k=0

E[|M̃k+1 − M̃k|2|FkM̃ ]p/2 (31)

In the following, we propose some applications for three di�erent con�gurations always under weak
mean reverting assumptions. The �rst one treats the case of the Euler scheme for Markov Switching
di�usions for test functions with polynomial growth. The second, we prove convergence for the Milstein
scheme for test functions with polynomial or exponential growth. Finally, we consider the Euler scheme
for general di�usion processes with jump and test functions with polynomial growth. For each of the three
applications, we give the proof of the recursive control assumption, of the in�nitesimal approximation
hypothesis and also of (14) and (16). We invite the reader to refer to the previous section to see how
this assumptions interact together in order to obtain convergence and to identify the limit. The reader
may notice that each of these three applications are treated independently from one another and then
can be read in any desired order.

4.1 The Euler scheme for a Markov Switching di�usion

In this part of the paper we study ergodic regimes for Markov switching Brownian di�usions. This study
is a complement to the study made in [10]. More particularly they treat the convergence (νηn)n∈N∗ under
strong mean reverting assumption that is φ = Id. In this paper, we do not restrict to that case and
consider weak mean reverting assumption that is φ(y) = ya, a ∈ (0, 1] for every y ∈ [v∗,∞). Similarly as
in their study we consider polynomial test functions ψ such that ψ(y) = yp, p > 1 for every y ∈ [v∗,∞).
Nevertheless, a slight di�erence with this paper is that they consider only p > 4.

Now, we present the Markov switching model, its decreasing step Euler approximation and the
hypothesis necessary to obtain the convergence of (νηn)n∈N∗ built with this Euler scheme. We consider a
d-dimension Brownian motion (Wt)t>0 and (ζt)t>0 a continuous time Markov chain taking values in the
�nite state space {1, ..,M0}, M0 ∈ N∗ with generator Q = (qz,w)z,w∈{1,..,M0} and independent from W .
We are interested in the solution of the d dimensional stochastic equation

Xt = x+

t∫
0

b(Xs, ζs)ds+

t∫
0

σ(Xs, ζs)dWs (32)
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where for every z ∈ {1, ..,M0}, b(., z) : Rd → Rd and σ(., z) → Rd×d, l ∈ {1, . . . d}, are locally bounded
and continuous functions. We recall that qz,w > 0 for z 6= w and qz,1 + q(z, 1) for z, w ∈ {1, ..,M0}. The
in�nitesimal generator of this process is given by

Af(x, z) = 〈b(x, z),∇xf(x, z)〉+

d∑
i,j=1

(σσ∗)i,j(x, z)
∂2f

∂xi∂xj
(x, z) +

M0∑
w=1

qz,wf(x,w) (33)

for every (x, z) ∈ Rd ×{1, ..,M0}. We study the Euler scheme for this process such that for every n ∈ N
and t ∈ [Γn,Γn+1], we have

Xt =XΓn + (t− Γn)b(XΓn , ζt) + σ(XΓn , ζt)(Wt −WΓn) (34)

We will also denote ∆Xn+1 = XΓn+1
−XΓn and

∆X
1

n+1 =γn+1b(XΓn , ζΓn),

∆X
2

n+1 =σ(XΓn , ζΓn)(WΓn+1 −WΓn). (35)

and X
i

Γn+1
= XΓn +

∑i
j=1 ∆X

i

n+1. In the sequel we will use the notation Un+1 = γ
−1/2
n+1 (WΓn+1

−WΓn).
Actually, we introduce a weaker assumption than Gaussian distribution for the sequence (Un)n∈N∗ . Let
q ∈ N∗, p > 0. We suppose that (Un)n∈N∗ is a sequence of independent random variables such that

MN ,q(U) ∀n ∈ N∗,∀q̃ ∈ {1, . . . , q}, E[(Un)⊗q̃] = E[(N (0, Id))
⊗q̃] (36)

Mp(U) sup
n∈N∗

E[|Un|p] <∞ (37)

Now, we assume that the Lyapunov function V : Rd ×{1, ..,M0} → [v∗,∞), v∗ > 0, satis�es LV (see
(7)) with E = Rd × {1, ..,M0}, and

|∇xV |2 6 CV V, sup
x∈Rd,z∈{1,..,M0}

|D2
xV (x, z)| <∞ (38)

and

∀z ∈ {1, ..,M0},∃cV,z > 0,∀x ∈ Rd, V (x, z) 6 cV,z inf
w∈{1,..,M0}

V (x,w) (39)

We also de�ne

∀x ∈ Rd, z ∈ {1, ..,M0}, λψ(x, z) :=
1

2
λD2

xV (x,z)+∇xV (x,z)⊗2ψ′′◦V (x,z)ψ′◦V (x)−1 . (40)

When ψ(y) = yp, we will also use the notation λp instead of λψ. We suppose that there exists C > 0
such that, for every x ∈ Rd, z ∈ {1, ..,M0},

B(φ) |b(x, z)|2 + |σσ∗(x, z)| 6 Cφ ◦ V (x, z) (41)

We now introduce the key hypothesis in order to obtain recursive control for the polynomial case,
that is for p > 1, we have ψ(y) = yp for every y ∈ [v∗,∞). We assume that there exists β ∈ R+, α > 0
and ε > 0, such that for every x ∈ Rd, z ∈ {1, ..,M0}, we have

Rp 〈∇V (x, z), b(x, z)〉+ χp(x, z) 6 β − αφ ◦ V (x, z), (42)

with

χp(x, z) = ‖λp‖∞2(2p−3)+Tr[σσ∗(x, z)] + V 1−p(x, z)

M0∑
w=1

(qz,w + ε)V p(x,w) (43)
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4.1.1 Recursive control

Proposition 4.1. Let v∗ > 0, and φ : [v∗,∞) → R∗+ a continuous function such that φ(y) 6 Cy with
C > 0. Now let p > 1 and de�ne ψ : [v∗,∞)→ R+ such that ψ(y) = yp.
We assume that the sequence (Un)n∈N∗ satis�es MN ,2(U) (see (36)) and M2p(U) (see (37)).
We suppose that (38), B(φ) (see (41)), Rp (see (42)), are satis�ed. Then, there exists α > 0, β ∈ R+

and n0 ∈ N∗, such that

∀n > n0, x ∈ Rd,∀z ∈ {1, ..,M0}, Ãγnψ ◦ V (x, z) 6 V −1(x, z)ψ ◦ V (x, z)(β − αφ ◦ V (x)). (44)

Moreover, when φ = Id we have

sup
n∈N

E[ψ ◦ V (XΓn , ζΓn)] <∞. (45)

Proof. First we write

V p(XΓn+1
, ζΓn+1

)− V p(XΓn , ζΓn) =V p(XΓn+1
, ζΓn)− V p(XΓn , ζΓn)

+V p(XΓn+1
, ζΓn+1

)− V p(XΓn+1
, ζΓn)

We study the �rst term. From the Taylor's formula and the de�nition of λψ (see (40)), we have

ψ ◦ V (XΓn+1
, ζΓn) =ψ ◦ V (XΓn , ζΓn) + 〈XΓn+1

−XΓn ,∇xV (XΓn , ζΓn)〉ψ′ ◦ V (XΓn , ζΓn)

+
1

2
(D2V (ξn+1, ζΓn)ψ′ ◦ V (ξn+1, ζΓn) +∇V (ξn+1, ζΓn)2ψ′′ ◦ V (ξn+1, ζΓn))(XΓn+1 −XΓn)⊗2.

6ψ ◦ V (XΓn , ζΓn) + 〈XΓn+1
−XΓn ,∇xV (XΓn , ζΓn)〉ψ′ ◦ V (XΓn , ζΓn)

+λψ(ξn+1)|ψ′ ◦ V (ξn+1, ζΓn)(XΓn+1 −XΓn)|2.

with ξn+1 ∈ (XΓn , XΓn+1
). First, from (38), we have supx∈Rd λp(x) <∞.

Now, since (Un)n∈N∗ is a sequence of independent random variables satisfying MN ,1(U) (see (36)),
we have

E[XΓn+1 −XΓn |XΓn , , ζΓn ] = γn+1b(XΓn , ζΓn)

E[|XΓn+1 −XΓn |2|XΓn , , ζΓn ] = γn+1Tr[σσ
∗(XΓn , ζΓn)] + γ2

n+1|b(XΓn , ζΓn)|2

Assume �rst that p = 1. Using (41), for every α̃ ∈ (0, α), there exists n0(α̃) such that for every
n > n0(α̃),

‖λ1‖∞γ2
n+1|b(XΓn , ζΓn)|2 6 γn+1(α− α̃)φ ◦ V (XΓn , , ζΓn). (46)

From assumption (43), we conclude that

γ−1
n+1E[V (XΓn+1

, ζΓn)−V (XΓn , ζΓn)|XΓn ] +

2∑
z=1

(qζΓn ,w + ε)V (XΓn , z) 6 β − α̃φ ◦ V (XΓn , ζΓn)

Assume now that p > 1.Since |∇V | 6 CV V (see (38)), then
√
V is Lipschitz. Using (30), it follows

that

V p−1(ξn+1, ζΓn) 6
(√
V (XΓn , ζΓn) + [

√
V ]1|XΓn+1 −XΓn |

)2p−2

62(2p−3)+(V p−1(XΓn , ζΓn) + [
√
V ]2p−2

1 |XΓn+1 −XΓn |2p−2)

We focus on the study of the second term of the remainder. First, using B(φ) (see (41)), for any p > 1,

|XΓn+1
−XΓn |2p 6 cpγ

p
n+1φ ◦ V (XΓn , ζΓn)p(1 + |Un+1|2p).

Let α̂ ∈ (0, α). Therefore, we deduve from M2p(U) (see (37)) that there exists n0(α̂) ∈ N such that
for any n > n0(α̂), we have

E[|XΓn+1
−XΓn |2p|XΓn , ζΓn ] 6 γn+1φ ◦ V (XΓn , ζΓn)p

α− α̂
‖φ/Id‖p−1

∞ ‖λp‖∞2(2p−3)+ [
√
V ]2p−2

1
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To treat the other term we proceed as in (69) with ‖λ1‖∞ replaced by ‖λp‖∞22p−3[
√
V ]2p−2

1 , α
replace by α̂ and α̃ ∈ (0, α̂). We gather all the terms together and using Rp (see (42) and (43)), for
every n > n0(α̃) ∨ n0(α̂), we obtain

E[V p(XΓn+1 , ζΓn)−V p(XΓn , ζΓn)|XΓn , ζΓn ] + V 1−p(x, z)

M0∑
w=1

(qz,w + ε)V p(x,w)

6γn+1pV
p−1(XΓn , ζΓn)(β − αφ ◦ V (XΓn , ζΓn))

+γn+1pV
p−1(XΓn , ζΓn)

(
φ ◦ V (XΓn , ζΓn)(α̂− α̃) + (α− α̂)

V 1−p(XΓn , ζΓn)φ ◦ V (XΓn , ζΓn)p

‖φ/Id‖p−1
∞

)
6γn+1V

p−1(XΓn , ζΓn)(βp− α̃pφ ◦ V (XΓn , ζΓn)).

Now, we focus on the second term. First, since ζ and W are independent, it follows that

E[V p(XΓn+1 , ζΓn+1)− V p(XΓn+1 , ζΓn)|XΓn , ζΓn ,∆Xn+1] = γn+1

2∑
z=1

(qζΓn ,z + o
n→∞

(γn+1))V p(XΓn+1 , z)

Now, we use the same reasoning as in the study of the �rst term and for every z ∈ {1, ..,M0}, we
obtain

E[V p(XΓn+1
, z)− V p(XΓn , z)|XΓn , ζΓn ] 6C(γ

1/2
n+1V

p−1(XΓn , z)φ ◦ V (XΓn , z) + γpn+1φ ◦ V (XΓn , z)
p)

6Cγ1/2
n+1V

p(XΓn , z)

where C > 0 is a constant which can change from line to line. It follows that there exists ε : R+ → R+

satisfying limt→0 ε(t) = 0, such that we have

E[V p(XΓn+1
, ζΓn+1

)− V p(XΓn+1
, ζΓn)|XΓn , ζΓn ] =γn+1

M0∑
z=1

(qζΓn ,z + o
n→∞

(γn+1))E[V p(XΓn+1
, z)|XΓn , ζΓn ]

6γn+1

M0∑
z=1

(qζΓn ,z + ε(γn+1))V p(XΓn , z)

and (44) is a direct consequence of Rp (see (42) and (43)). The proof of (45) is immediate application
of Lemma 3.2 as soon as we notice that the increments of the Euler scheme (for Markov Switching
di�usions) have �nite polynomial moments which imples (24).

4.1.2 In�nitesimal control

Proposition 4.2. We suppose that the sequences (Un)n∈N∗ satis�ess MN ,2(U) (see (36)), M2(U) (see
(37)). We also assume that b and σ are locally bounded functions, that φ has sublinear growth, that B(φ)
(see (41)) holds and that supn∈N∗ ν

η
n(|σ|2) <∞. Then, we have E(Ãγ , A) (see (9)).

Proof. First we recall that D(A) = C2
K(Rd) and we write

f(XΓn+1
, ζΓn+1

)− f(XΓn , ζΓn) =f(XΓn+1
, ζΓn)− f(XΓn , ζΓn)

+f(XΓn+1 , ζΓn+1)− f(XΓn+1 , ζΓn).

Since W and ζ are independent, we have

E[f(XΓn+1
, ζΓn+1

)− f(XΓn+1
, ζΓn)|XΓn , ζΓn ,∆Xn+1] =γn+1

M0∑
z=1

(qζΓn ,z + o
n→∞

(γn+1))f(XΓn+1
, z)
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Using Taylor expansions of order one and two, for every z ∈ {1, ..,M0} and the fact that Un+1 is centered,
we obtain

E[f(XΓn+1 , z)−f(XΓn , z)|XΓn = x, ζΓn ]

=E[f(XΓn + ∆X
1

n+1, z)− f(XΓn , z)|XΓn = x, ζΓn ]

+E[f(XΓn+1
, z)− f(XΓn + ∆X

1

n+1, z)|XΓn = x, ζΓn ]

6

1∫
0

|∇xf(x+ θb(x, ζΓn)γn+1, z)||b(x, ζΓn)γn+1|dθ

+

1∫
0

|D2
xf(x+ b(x, ζΓn)γn+1 + θσ(x, ζΓn)

√
γn+1v, z)||σ(x, ζΓn)

√
γn+1v|2dθpU (dv).

where pN denotes the density of the centered Gaussian random variable taking values in Rd of which
covariance matrix is the identity matrix. Combining the two last inequalities,we obtain,

γ−1
n+1E[f(XΓn+1 , ζΓn+1)− f(XΓn+1 , ζΓn)|XΓn , ζΓn ] 6

M0∑
z=1

qζΓn ,zf(XΓn , z) + o
n→∞

(γn+1)‖f‖∞

+

M0∑
z=1

(|qζΓn ,z|+ o
n→∞

(γn+1))(Λf,1(XΓn , ζΓn , γn+1)|b(XΓn , ζΓn)|+ Λf,2(XΓn , ζΓn , γn+1)|σσ∗(XΓn , ζΓn)|).

Now we de�ne E = Rd × {1, ..,M0}, G1 = [0, 1], Θ1 = θ, π1 the measure de�ned on (G1,B(G1))
(with B(G1) the sigma �elds endowed by the Borelians of G1) by π(dΘ1) = dΘ1 (that is the Lebesgue
measure), and for every (x, z) ∈ Rd×{1, ..,M0} = E, we have Λf,1(x, z, γ) =

∫
G1

Λ̃f,1(x, z, γ,Θ1)π1(dΘ1),

with

Λ̃f,1 : Rd × {1, ..,M0} × R+ × [0, 1] → R+

(x, z, γ, θ) 7→
∑M0

w=1∇xf(x+ θb(x, z)γ,w)|γ|,

and g1(x, z) = |b(x, z)|. We are going to proove that Eloc(Λ̃f,1, g1) (see (10) and (11)) holds. Using
(41) and the fact that φ(x) 6 C|x|, the functions b have sublinear growth: there exists Cb > 0 such that
|b(x, z)|+ 6 Cb(1 + |x|) for every x ∈ Rd and z ∈ {1, ..,M0}. Therefore, since f has compact support,
it follows that there exists t0 > 0 and R > 0 such that sup|x|>R,z∈{1,..,M0} supγ6t0 |Λ̃f,1(x, z, γ, θ)| = 0

for every θ ∈ [0, 1]. Moreover since ∇xf is bounded and b is locally bounded, we conclude that Λ̃f,1,

satis�es Eloc(Λ̃f,1, g1) (see (10) and (11)).

We focus on the other term. We de�ne G2 = Rd × [0, 1], Θ2 = (v, θ), π2 the measure de�ned on
(G2,B(G2)) (with B(G2) the sigma �elds endowed by the Borelians of G2) by π2(dΘ2) = dθpU (dv), and
for every (x, z) ∈ Rd × {1, ..,M0} = E, we have Λf,2(x, z, γ) =

∫
G2

Λ̃f,2(x, z, γ,Θ2)π2(dΘ2), with

Λ̃f,2 : Rd × {1, ..,M0} × R+ × RN × [0, 1] → R+

(x, z, γ, v, θ) 7→
∑M0

w=1D
2
xf(x+ b(x, z)γ + θσ(x, z)

√
γv, w)|√γv|2,

and g2(x, z) = |σ(x, z)|2. We are going to proove that Eergo(Λ̃f,2, g2) (see (12)) holds. We �x v ∈ RN
and θ ∈ [0, 1]. Now using (41) and the fact that φ(x) 6 C|x|, the functions b and σ, have sublin-
ear growth: there exists Cb,σ > 0 such that |b(x, z)| + |σ(x, z)| 6 Cb,σ(1 + |x|) for every x ∈ Rd and
z ∈ {1, ..,M0}. Therefore, since f has compact support, it follows that there exists t0 > 0 and R > 0
such that sup|x|>R,z∈{1,..,M0} supγ6t0 |Λ̃f,2(x, z, γ, v, θ)| = 0. Moreover since D2

xf is bounded and b and

σ are locally bounded, we conclude that we have Eergo(Λ̃f,2, g2) (see (12)).

Besides, it is immediate to show that Eergo( o
n→∞

(γn+1)‖f‖∞, 1) (see (13)) holds.
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Finally, it remains to study E[f(XΓn+1 , ζΓn) − f(XΓn , ζΓn)|XΓn , ζΓn ]. Using once again Taylor ex-
pansions of order one and two, we have

γ−1
n+1E[f(XΓn+1

, ζΓn)−f(XΓn , ζΓn)|XΓn = x, ζΓn = z]− 〈∇xf(x, z), b(x, z)〉 −
d∑

i,j=1

(σσ∗)i,j(x, z)
∂2f

∂xi∂xj
(x, z)

6

1∫
0

|∇xf(x+ θb(x, z)γn+1, z)−∇xf(x)||b(x, z)|dθ

+

1∫
0

|D2
xf(x+ b(x, z)γn+1 + θσ(x, z)

√
γn+1v, z)−D2

xf(x)||σ(x, z)v|2dθpU (dv).

Using the same reasonning as before, one can show that Eloc(Λ̃f,3, g1) (see (10) and (11)) and

Eergo(Λ̃f,4, g2) (see (12)) hold with

Λ̃f,3 : Rd × {1, ..,M0} × R+ × [0, 1] → R+

(x, z, γ, θ) 7→ |∇xf(x+ θb(x, z)γ, z)−∇xf(x, z)|,

and

Λ̃f,4 : Rd × {1, ..,M0} × R+ × RN × [0, 1] → R+

(x, z, γ, v, θ) 7→ |D2
xf(x+ b(x, z)γ + θσ(x, z)

√
γv, z)−D2

xf(x)||v|2

We gather all the terms together and the result follows.

4.1.3 Proof of (14) and (16)

Proposition 4.3. Let p > 1, a ∈ (0, 1], ρ, s ∈ (1, 2] and, ψ(y) = yp, φ(y) = ya and εI(t) = tρ/2. We
suppose that the sequence (Un)n∈N∗ satis�es MN ,2(U) (see (36)) and M2p(U) (see (37)).
We also assume that (38), B(φ) (see (41)) and Rp (see (42)) and SWI,γ,η(ρ, εI) (see (26)) hold. Then
SWI,γ,η(V p+a−1, ρ, εI) (see (19)) hold and we have the following properties

A. If SWII,γ,η (see (27)) and (39) also hold and ρ 6 s(1− (1− a)/p), then we have SWII,γ,η(V p/s)
(see (20)) and

P-a.s. sup
n∈N∗

− 1

Hn

n∑
k=1

ηkÃ
γ
k(ψ ◦ V )s(XΓk−1

, ζΓk−1
) <∞. (47)

Moreover,

P-a.s. sup
n∈N∗

νηn(V p/s+a−1) <∞, (48)

and that if LV (see (7)) holds, then (νηn)n∈N∗ is tight

B. If f ∈ D(A) and (22) also holds, then

P-a.s. lim
n→∞

1

Hn

n∑
k=1

ηkÃ
γ
kf(XΓk−1

, ζΓk−1
) = 0 (49)

Proof. The result is an immediate consequence of Lemma 3.1. It remains to check the assumption of
this Lemma. First, we show SWI,γ,η(V p+a−1, ρ, εI) (see (19)). Since (38), B(φ) (see (41)) and Rp (see
(42)) hold, it follows from Proposition 4.1 that IQ,V (ψ, φ) (see (8)) holds. Then, using SWI,γ,η(ρ, εI)
(see (26)) with Lemma 3.3 gives SWI,γ,η(V p+a−1, ρ, εI) (see (19)). In the same way, since ρ 6 s(1 −
(1− a)/p), we deduce from SWII,γ,η (see (27)) and Lemma 3.3 that SWII,γ,η(V p/s) (see (20)) holds.

Now,we are going to prove ĨX(f, V a+p−1,X, ρ, εI) (see (18)) for f ∈ D(A) and f = V p/s and the proof
of (47) and (49) will be completed. Notice that (48) will follow from IQ,V (ψ, φ) (see (8)) and Theorem
3.1. This is a consequence of Lemma 4.1 which is given below. We notice indeed that Lemma 4.1 and
the fact that under B(φ) (see (41)) and p > 1, we have |σσ∗| 6 CV p+a−1, imply that for every f ∈ D(A)
and f = V p/s, there exists a sequence X, such that ĨX(f, V a+p−1,X, ρ, εI) (see (18)) holds and the proof
is completed.
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Lemma 4.1. Let p > 1, a ∈ (0, 1], ρ ∈ (1, 2] and, ψ(y) = yp and φ(y) = ya . We suppose that the
sequence (Un)n∈N∗ satis�es M2pρ/s(U) (see (37)). Then, for every n ∈ N, we have

∀f ∈ D(A), E[|f(XΓn+1 , ζΓn+1)− f(X
1

Γn , ζΓn)|ρ|XΓn , ζΓn ] 6 Cγ
ρ/2
n+11 ∨ |σσ∗(XΓn , ζΓn)|ρ/2. (50)

with D(A) = {f : Rd×{1, ..,M0},∀z ∈ {1, ..,M0}, f(., z) ∈ C2
K(Rd)}. In other words, for every f ∈ D(A),

we have ĨX(f, |σσ∗|ρ/2,X, ρ, εI) (see (18)) with Xn = f(X
1

Γn , ζΓn) for every n ∈ N and εI(t) = tρ/2 for
every t ∈ R+.

Moreover, if (38), (39) and B(φ) (see (41)) hold and ρ 6 s(1− (1− a)/p), then, for every n ∈ N, we
have

E[|V p/s(XΓn+1
, ζΓn+1

)− V p/s(XΓn , ζΓn)|ρ|XΓn , ζΓn ] 6 Cγ
ρ/2
n+1V

p+a−1(XΓn , ζΓn), (51)

In other words, we have ĨX(V p/s, V p+a−1,X, ρ, εI) (see (18)) with Xn = (ψ ◦ V )1/s(XΓn , ζΓn) for every
n ∈ N and εI(t) = tρ/2 for every t ∈ R+.

Proof. We begin by noticing that

|XΓn+1
−X1

Γn | 6 Cγ
1/2
n+1|σσ∗(XΓn , ζΓn)|1/2|Un+1|

Let f ∈ D(A). We employ this estimation and since for f ∈ D(A) then, for every z ∈ {1, ..,M0},
f(., z) is Lipschitz, and it follows,

∀f ∈ D(A), E[|f(XΓn+1
, ζΓn)− f(X

1

Γn , ζΓn)|ρ|XΓn , ζΓn ] 6Cγρ/2n+1|σσ∗(XΓn , ζΓn)|ρ/2

6Cγρ/2n+1V
aρ/2(XΓn , ζΓn)

6Cγρ/2n+1V
a+p−1(XΓn , ζΓn).

Moreover,

E[|f(XΓn+1
, ζΓn+1

)−f(XΓn+1
, ζΓn)|ρ|XΓn , ζΓn ]

=γn+1

2∑
z=1

(qζΓn ,z + o
n→∞

(γn+1))E[|f(XΓn+1 , z)− f(XΓn+1 , ζΓn)|ρ|XΓn , ζΓn ]

6Cγn+1‖f‖ρ∞,

which concludes the study for f ∈ D(A). We focus now on the case f = V p/s. We notice that (41)
implies that for any n ∈ N,

|XΓn+1
−XΓn | 6 Cγ

1/2
n+1

√
φ ◦ V (XΓn , ζΓn)(1 + |Un+1|)

Once again we rewrite the term that we study as follows

V p/s(XΓn+1 , ζΓn+1)− V p/s(XΓn , ζΓn) =V p/s(XΓn+1 , ζΓn)− V p/s(XΓn , ζΓn)

+V p/s(XΓn+1
, ζΓn+1

)− V p/s(XΓn+1
, ζΓn)

We study the �rst term. Using (29) with α = 2p/s, it follows from (38) that for any z ∈ {1, ..,M0},√
V (., z) is Lipschitz and we have

V p/s(XΓn+1
, z)− V p/s(XΓn , z) 622p/sp/s(V p/s−1/2(XΓn , z)|

√
V (XΓn+1

, z)−
√
V (XΓn , z)|

+|
√
V (XΓn+1

, z)−
√
V (XΓn , z)|2p/s)

622p/sp/s([
√
V ]1V

p/s−1/2(XΓn , z)|XΓn+1
−XΓn |

+[
√
V ]

2p/s
1 |XΓn+1

−XΓn |2p/s).
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We use the assumption ρ 6 s(1− (1− a)/p) and it follows from B(φ) (see (41)) that

E[|V p/s(XΓn+1 , z)− V p/s(XΓn , z)|ρ|XΓn , z] 6 Cγ
ρ/2
n+1V

p+a−1(XΓn , z).

In order to treat the �rst term, we put z = ζΓn in this estimation. It remains to study the second term.
We notice that since ρ 6 s(1 − (1 − a)/p), it is immediate from the previous inequality that for every
z ∈ {1, ..,M0}, we have

E[V pρ/s(XΓn+1 , z)|XΓn , z] 6 CV p+a−1(XΓn , z).

.
We focus on the term to estimate and using this inequality, we obtain

E[|V p/s(XΓn+1
,ζΓn+1

)− V p/s(XΓn+1
, ζΓn)|ρ|XΓn , ζΓn ]

=γn+1

M0∑
z=1

(qζΓn ,z + o
n→∞

(γn+1))E[|V p/s(XΓn+1 , z)− V p/s(XΓn+1 , ζΓn)|ρ|XΓn , ζΓn ]

6Cγn+1

M0∑
z=1

(|qζΓn ,z|+ o
n→∞

(γn+1)(V p+a−1(XΓn , z) + V p+a−1(XΓn , ζΓn))

6Cγn+1V
p+a−1(XΓn , ζΓn),

where the last inequality follows from (39). We rearrange the terms and the proof is completed.

4.2 The Milstein scheme

In this part we treat the case of a Milstein scheme (introduced in [11]) with decreasing step for a Brown-
ian di�usion process. As far as we know, there is no study concerning that scheme for the algorithm we
use as for high weak or strong order numerical scheme. We propose two approaches under weak mean
reverting assumption. The �rst one relies on polynomial and the second one relies on exponential test
functions. More particularly we use an approach with test functions ψ such that ψ(y) = yp, p > 0 for
every y ∈ [v∗,∞). The other approach is based on test functions ψ(y) = exp(λyp), p ∈ [0, 1/2], λ > 0,
for every y ∈ [v∗,∞).

We consider a d-dimension Brownian motion (Wt)t>0. We are interested in the solution of the d
dimensional stochastic equation

Xt = x+

t∫
0

b(Xs)ds+

t∫
0

σ(Xs)dWs (52)

where b : Rd → Rd and σ, ∂xlσ : Rd → Rd×d, l ∈ {1, . . . d}, are locally bounded and continuous functions.
The in�nitesimal generator of this process is given by

Af(x) = 〈b(x),∇f(x)〉+

d∑
i,j=1

(σσ∗)i,j(x)
∂2f

∂xi∂xj
(x) (53)

Now, we introduce the Milstein scheme for (Xt)t>0 such that for every n ∈ N and t ∈ [Γn,Γn+1], we
have

Xt =XΓn + (t− Γn)b(XΓn) + σ(XΓn)(Wt −WΓn)

+

d∑
i,j=1

d∑
l=1

∂xlσi(XΓn)σl,j(XΓn)

t∫
Γn

s∫
Γn

dW j
udW

i
s (54)

with σl : Rd → Rd, x 7→ σl(x) = (σ1,l(x), . . . , σd,l(x)).
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∆X
1

n+1 =γn+1b(XΓn),

∆X
2

n+1 =

d∑
i,j=1

d∑
l=1

∂xlσi(XΓn)σl,j(XΓn)

Γn+1∫
Γn

s∫
Γn

dW j
udW

i
s ,

∆X
3

n+1 =σ(XΓn)(WΓn+1 −WΓn). (55)

and X
i

Γn+1
= XΓn +

∑i
j=1 ∆X

i

n+1. In the sequel we will use the notation Un+1 = γ
−1/2
n+1 (WΓn+1

−WΓn)

and Wn+1 = (Wi,j
n+1)i,j∈{1,...,d} with Wi,j

n+1 = γ−1
n+1

Γn+1∫
Γn

s∫
Γn

dW j
udW

i
s . Actually, for the polynomial case,

we introduce a weaker assumption for the sequence (Un)n∈N∗ and (Wn)n∈N∗ . Let q ∈ N∗, p > 0. We
suppose that (Un)n∈N∗ is a sequence of independent random variables such that U satis�es

MN ,q(U) ∀n ∈ N∗,∀q̃ ∈ {1, . . . , q}, E[(Un)⊗q̃] = E[(N (0, Id))
⊗q̃] (56)

Mp(U) sup
n∈N∗

E[|Un|p] <∞ (57)

Moreover, we assume that (Wn)n∈N∗ is a sequence of independent and centered random variables such
that

Mp(W) sup
n∈N∗

E[|Wn|p] <∞ (58)

Now, we assume that the Lyapunov function V : Rd → [v∗,∞), v∗ > 0, satis�es LV (see (7)) and

|∇V |2 6 CV V, sup
x∈Rd

|D2V (x)| <∞ (59)

We also de�ne

∀x ∈ Rd, λψ(x) :=
1

2
λD2V (x)+∇V (x)⊗2ψ′′◦V (x)ψ′◦V (x)−1 . (60)

When ψ(y) = yp, we will also use the notation λp instead of λψ. We will suppose that, for every x ∈ Rd,

B(φ) |b(x)|2 + |σσ∗(x)|+
d∑

i,j,l=1

|∂xlσi(x)σl,j(x)|2 6 Cφ ◦ V (x) (61)

We now introduce the key hypothesis in order to obtain recursive control for polynomial and expo-
nential form for ψ.

Polynomial case . First for the polynomial case, let p > 0. We assume that there exists β ∈ R+,
α > 0, such that for every x ∈ Rd, we have

Rp 〈∇V (x), b(x)〉+ χp(x) 6 β − αφ ◦ V (x), (62)

with

χp(x) =

{
‖λ1‖∞Tr[σσ∗(x)] if p 6 1

‖λp‖∞2(2p−3)+Tr[σσ∗(x)] if p > 1.
(63)

Exponential case . For the exponential case we modify this assumption in the following way. Let
p 6 1/2. We assume that there exists β ∈ R+, α > 0, such that for every x ∈ Rd, we have

Rp,λ 〈∇V (x), b(x) + κ(x)〉+ χp(x) 6 β − αφ ◦ V (x), (64)

with
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κ(x) =
1

2

d∑
i=1

d∑
l=1

∂xlσi(x)σl,i(x) + λpV p−1(x)
1

φ ◦ V (x)
Tr[σσ∗(x)]∇V (x) (65)

and

χp(x) =
V 1−p(x)

φ ◦ V (x)
Cσ(x)−1 ln(2d/

√
det(Σ(x))) (66)

for Cσ(x) : Rd → R∗+ a continuous function such that infx∈Rd Cσ(x) > 0 and that for every x ∈ Rd,
the matrix Σ(x) ∈ Rd×d de�ned by

Σ(x)i,j = −2Cσ(x)[
√
V ]1v

p−1/2
∗

1

2

d∑
l=1

|∂xlσi(x)σl,j(x)| ∀i, j ∈ {1, . . . , d}, i 6= j,

Σ(x)i,i = 1− 2Cσ(x)(‖D2V ‖∞V p−1(x) Tr[σσ∗(x)] + [
√
V ]1v

p−1/2
∗

1

2

d∑
l=1

|∂xlσi(x)σl,i(x)|) ∀i ∈ {1, . . . , d}

is a positive de�nite matrix.

4.2.1 Recursive control

Polynomial case

Proposition 4.4. Let v∗ > 0, and ψ, φ : [v∗,∞)→ R∗+ a continuous function such that φ(y) 6 Cy with
C > 0. Now let p > 0 and de�ne ψ(y) = yp.
We suppose that (Un)n∈N∗ is a sequence of independent random variables such that U satis�es MN ,2(U)
(see (56)) and M2p∨2(U) (see (57)). Moreover, we assume that (Wn)n∈N∗ is a sequence of independent
and centered random variables such that M2p∨2(W) (see (58)) holds.
We suppose that (59), B(φ) (see (61)), Rp (see (62)), are satis�ed. Then, there exists α > 0, β ∈ R+

and n0 ∈ N∗, such that

∀n > n0, x ∈ Rd, Ãγnψ ◦ V (x) 6 V −1(x)ψ ◦ V (x)(β − αφ ◦ V (x)). (67)

Moreover, when φ = Id we have

sup
n∈N

E[ψ ◦ V (XΓn)] <∞. (68)

Proof. First ,we focus on the case p > 1. From the Taylor's formula and the de�nition of λψ (see (60)),
we have

ψ ◦ V (XΓn+1) =ψ ◦ V (XΓn) + 〈XΓn+1 −XΓn ,∇V (XΓn)〉ψ′ ◦ V (XΓn)

+
1

2
(D2V (ξn+1)ψ′ ◦ V (ξn+1) +∇V (ξn+1)2ψ′′ ◦ V (ξn+1))(XΓn+1 −XΓn)⊗2.

6ψ ◦ V (XΓn) + 〈XΓn+1 −XΓn ,∇V (XΓn)〉ψ′ ◦ V (XΓn)

+λψ(ξn+1)|ψ′ ◦ V (ξn+1)(XΓn+1 −XΓn)|2.

with ξn+1 ∈ (XΓn , XΓn+1
). First, from (59), we have supx∈Rd λp(x) <∞.

SinceW is made of centered random variables, we deduce fromMN ,2(U) (see (56)),M2(U) (see (58))
and M2(W) (see (57)), that

E[XΓn+1
−XΓn |XΓn ] = γn+1b(XΓn)

E[|XΓn+1 −XΓn |2|XΓn ] 6 γn+1Tr[σσ
∗(XΓn)] + γ2

n+1|b(XΓn)|2 + cdγ
2
n+1

d∑
i,j,l=1

|∂xlσi(XΓn)σl,j(XΓn)|2

+ cdγ
3/2
n+1

d∑
i,j,l=1

|∂xlσi(XΓn)σl,j(XΓn)||σ(XΓn)|
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with cd a positive constant. Assume �rst that p = 1. Using B(φ) (see (61)), for every α̃ ∈ (0, α),
there exists n0(α̃) such that for every n > n0(α̃),

‖λ1‖∞γ2
n+1(|b(XΓn)|2+cd|

d∑
i,j,l=1

∂xlσi(XΓn)σl,j(XΓn)|2) (69)

+‖λ1cdγ
3/2
n+1

d∑
i,j,l=1

|∂xlσi(XΓn)σl,j(XΓn)||σ(XΓn)| 6 γn+1(α− α̃)φ ◦ V (XΓn).

From assumption Rp (see (62) and (63)), we conclude that

Ãγnψ ◦ V (x) 6 β − α̃φ ◦ V (x)

Assume now that p > 1.Since |∇V | 6 CV V (see (59)), then
√
V is Lipschitz. Using (30), it follows that

V p−1(ξn+1) 6
(√
V (XΓn) + [

√
V ]1|XΓn+1 −XΓn |

)2p−2

62(2p−3)+(V p−1(XΓn) + [
√
V ]2p−2

1 |XΓn+1 −XΓn |2p−2)

We focus on the study of the second term of the remainder. First, using B(φ) (see (61)), for any p > 1,

|XΓn+1
−XΓn |2p 6 cpγ

p
n+1φ ◦ V (XΓn)p(1 + |Un+1|2p + |Wn+1|2p).

Let α̂ ∈ (0, α). Then, we deduce from M2p(U) (see (58)), M2p(W) (see (57)), that there exists
n0(α̂) ∈ N such that for any n > n0(α̂), we have

E[|XΓn+1
−XΓn |2p|XΓn ] 6 γn+1φ ◦ V (XΓn)p

α− α̂
‖φ/Id‖p−1

∞ ‖λp‖∞2(2p−3)+ [
√
V ]2p−2

1

To treat the other term we proceed as in (69) with ‖λ1‖∞ replaced by ‖λp‖∞22p−3[
√
V ]2p−2

1 , α replace
by α̂ and α̃ ∈ (0, α̂). We gather all the terms together and using (63), for every n > n0(α̃) ∨ n0(α̂), we
obtain

E[V p(XΓn+1
)− V p(XΓn)|XΓn ] 6γn+1pV

p−1(XΓn)(β − αφ ◦ V (XΓn))

+γn+1pV
p−1(XΓn)

(
φ ◦ V (XΓn)(α̂− α̃) + (α− α̂)

V 1−p(XΓn)φ ◦ V (XΓn)p

‖φ/Id‖p−1
∞

)
6γn+1V

p−1(XΓn)(βp− α̃pφ ◦ V (XΓn)).

which is exactly the recursive control for p > 1. Now,we treat the case p < 1. Since x 7→ xp is concave,
we have

V p(XΓn+1)− V p(XΓn) 6 pV p−1(XΓn)(V (XΓn+1)− V (XΓn))

We have just proved that we have the recursive control IQ,V (ψ, φ) holds for ψ = Id (with some constants
β ∈ R+ and α > 0), and since V takes positive values, we obtain

E[V p(XΓn+1)− V p(XΓn)|XΓn ] 6pV p−1(XΓn)E[V (XΓn+1)− V (XΓn)|XΓn ]

6V p−1(XΓn)(pβ − pαφ ◦ V (XΓn)),

which completes the proof of (67). The proof of 68) is immediate application of Lemma 3.2 as soon as
we notice that the increments of the Milstein scheme have �nite polynomial moments which imples (24).
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Exponential case
In this section we will not relax the assumption on the Gaussian structure of the increment as we do in

the polynomial case with hypothesis (see (56), (57) and (58)). In order to obtain our result, we introduce
a supplementary assumption in order to express the iterated stochastic integrals in terms of products of
the increments of the Brownian motion. The so called commutative noise assumption is the following

∀x ∈ Rd,∀i, j ∈ {1, . . . , d},
d∑
l=1

∂xlσi(x)σl,j(x) =

d∑
l=1

∂xlσj(x)σl,i(x). (70)

In this case, with the notation from (55), we have

∆X
2

n+1 =
1

2

d∑
i,j=1

d∑
l=1

∂xlσi(XΓn)σl,j(XΓn)(W j
Γn+1

−W j
Γn

)(W i
Γn+1

−W i
Γn) (71)

−1

2
γn+1

d∑
i=1

d∑
l=1

∂xlσi(XΓn)σl,i(XΓn).

In the sequel we will adopt the following notation

∆̃X
1

n+1 =γn+1b(XΓn)− 1

2
γn+1

d∑
i=1

d∑
l=1

∂xlσi(XΓn)σl,i(XΓn).,

∆̃X
2

n+1 =
1

2

d∑
i,j=1

d∑
l=1

∂xlσi(XΓn)σl,j(XΓn)(W j
Γn+1

−W j
Γn

)(W i
Γn+1

−W i
Γn) (72)

Lemma 4.2. Let Λi,j ∈ R, i, j ∈ {1, . . . , d} and U a Rd-valued random variable made with d independent
and indentically distributed standard normal random variables U = (Ui)i∈{1,..,d}, Ui ∼ N (0, 1). We de�ne

Σ ∈ Rd×d such that Σi,i = 1−2Λi,i, i ∈ {1, . . . , d} and Σi,j = −2Λi,j, i, j ∈ {1, . . . , d}, i 6= j. We assume
that Σ is a positive de�nite matrix. Then

E[exp(

d∑
i,j=1

Λi,j |UiUj |)] 6 2d det(Σ)−1/2. (73)

Proof. A direct computation yields

E[exp(

d∑
i,j=1

Λi,j |UiUj |)] =

∫
Rd

(2π)−d/2 exp(

d∑
i,j=1

Λi,j |uiuj | − 1/2

d∑
i=1

|ui|2)du

6
∑

ζ∈{−1,1}d

∫
Rd

(2π)−d/2 exp(

d∑
i,j=1

Λi,jζiuiζjuj − 1/2

d∑
i=1

|ζiui|2)du

=2d
∫
Rd

(2π)−d/2 exp(

d∑
i,j=1

Λi,juiuj − 1/2

d∑
i=1

|ζiui|2)du = 2d det(Σ)−1/2.

Lemma 4.3. Let U a Rd-valued random variable made with d independent and indentically distributed
standard normal random variables U = (Ui)i∈{1,..,d}, Ui ∼ N (0, 1). for every h ∈ (0, 1), we have

∀v ∈ Rd, E[exp(
√
h〈v, U〉+ h

∑
i,j

Λi,j |UiUj |)] 6 exp(
h

2(1− h)
|v|2)2hd det(Σ)−h/2 (74)

Proof. Using the Hölder inequality we have

E[exp(
√
h〈v, U〉+ h

d∑
i,j=1

Λi,j |UiUj |)] 6 E[exp(

√
h

1− h
〈v, U〉)]1−hE[exp(h

d∑
i,j=1

Λi,j |UiUj |)]

The results follows from Lemma 4.2.
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Using those results, we deduce the recursive control for exponential test functions.

Proposition 4.5. Let v∗ > 0, and φ : [v∗,∞) → R+ a continuous function such that φ(y) 6 Cy with
C > 0 and limy→∞ φ(y) = ∞. Now let p ∈ [0, 1/2], λ > 0 and de�ne ψ : [v∗,∞) → R+ such that
ψ(y) = exp(λyp). We suppose that (59), B(φ) (see (61)), Rp,λ (see (64)), are satis�ed.We also assume
that

∀x ∈ Rd, Tr[σσ∗(x)]|b(x)|(
√
V (x) + |b(x)|) 6 CV 1−p(x)φ ◦ V (x) (75)

Then, there exists α > 0, β ∈ R+ and n0 ∈ N∗, such that

∀n > n0, x ∈ Rd, Ãγnψ ◦ V (x) 6 V −1(x)ψ ◦ V (x)(β − αφ ◦ V (x)). (76)

Moreover, when φ = Id we have

sup
n∈N

E[ψ ◦ V (XΓn)] <∞. (77)

Proof. First, with notations (72), we rewrite

V p(XΓn+1
)− V p(XΓn) =V p(XΓn + ∆̃X

1

n+1 + ∆X
3

n+1)− V p(XΓn)

+V p(XΓn + ∆̃X
1

n+1 + ∆X
3

n+1)− V p(XΓn)

an we study each term separately. Since p 6 1, the function de�ned on [v∗,∞) by y 7→ yp is concave.
Using then the Tayor expansion of order 2 of the function V , for every x, y ∈ Rd, there exists θ ∈ [0, 1]
such that

V p(y)− V p(x) 6pV p−1(x)(V (y)− V (x))

=pV p−1(x)(〈∇V (x), y − x〉+
1

2
Tr[D2V (θx+ (1− θ)y)(y − x)⊗2])

and then,

V p(y)− V p(x) 6 pV p−1(x)(〈∇V (x), y − x〉+
1

2
‖D2V ‖∞|y − x|2. (78)

Using this inequality with x = XΓn and y = XΓn + ∆̃X
1

n+1 + ∆X
3

n+1, it follows that

V p(XΓn + ∆̃X
1

n+1 + ∆X
3

n+1)− V p(XΓn) 6pV p−1(XΓn)(〈∇V (XΓn), ∆̃X
1

n+1 + ∆X
3

n+1〉

+
1

2
pV p−1(XΓn)‖D2V ‖∞|∆̃X

1

n+1 + ∆X
3

n+1|2).

Now, we study the other term. Since p 6 1/2, then the function de�ned on [v∗,∞) by y 7→ y2p is
concave and we obtain

V p(XΓn+1
)−V p(XΓn + ∆̃X

1

n+1 + ∆X
3

n+1)

6pV p−1/2(∆̃X
1

n+1 + ∆X
3

n+1)(
√
V (XΓn+1

)−
√
V (XΓn + ∆̃X

1

n+1 + ∆X
3

n+1))

6p[
√
V ]1v

p−1/2
∗ |∆̃X2

n+1|

In the sequel, we will use the notation

∀x ∈ Rd, b̃(x) = b(x) +
1

2

d∑
i=1

d∑
l=1

∂xlσi(x)σl,i(x).

It follows that

E[exp(λV p(XΓn+1
))− exp(λV p(XΓn))|XΓn ] 6 Hγn+1

(XΓn)Lγn+1
(XΓn)
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with, for every x ∈ Rd, t ∈ R∗+,

Ht(x) = exp(λV p(x) + tλpV p−1(x)〈∇V (x), b̃(x)〉+ t2
1

2
λp‖D2V ‖∞V p−1(x)|b̃(x)|2)

and

Lt(x) =E[exp(
√
tλpV p−1(x)〈∇V (x), σ(x)U〉+ tλp‖D2V ‖∞V p−1(x) Tr[σσ∗(x)]|U |2

+tλp[
√
V ]1v

p−1/2
∗

1

2

d∑
i,j=1

d∑
l=1

|∂xlσi(x)σl,j(x)||UiUj |+ t3/2λpV p−1(x)‖D2V ‖∞2〈b̃(x), σ(x)U〉)]

where U = (U1, . . . Ud), with Ui, i ∈ {1, . . . , d}, some independent and identically distributed
standard normal random variables. In order to compute Lt(x), we use Lemma 4.3 (see (74)) with
h = Cσ(x)−1tλp, v =

√
Cσ(x)λpV p−1(x)σ∗(x)(∇V (x) + t‖D2V ‖∞2b(x)) and Σ(x) the matrix such that

for every i, j ∈ {1, . . . , d},


Σ(x)i,j = −2Cσ(x)[

√
V ]1v

p−1/2
∗

1

2

d∑
l=1

|∂xlσi(x)σl,j(x)| ∀i, j ∈ {1, . . . , d}, i 6= j,

Σ(x)i,i = 1− 2Cσ(x)(‖D2V ‖∞V p−1(x) Tr[σσ∗(x)] + [
√
V ]1v

p−1/2
∗

1

2

d∑
l=1

|∂xlσi(x)σl,i(x)|) ∀i ∈ {1, . . . , d}

where Cσ : Rd → R∗+ is such that infx∈Rd Cσ(x) > 0 and for every x ∈ Rd then Σ(x) is a positive de�nite
matrix. We apply Lemma 4.3 and it follows that for t 6 infx∈Rd Cσ(x)/(2λp)

Lt(x) 6 exp(
tλpCσ(x)−1

2(1− λpCσ(x)−1t)
|v|2 + tλpCσ(x)−1(ln(2d/

√
det(Σ(x))))

6 exp(tλpCσ(x)−1|v|2 + tλpCσ(x)−1(ln(2d/
√

det(Σ(x))))

At this point, we focus on the �rst term of the exponential. We have

|v|2 6 Cσ(x)λpTr[σσ∗(x)]V 2p−2(x)(|∇V (x)|2 + t‖D2V ‖∞4〈∇V (x), b(x)〉+ t24‖D2V ‖2∞|b̃(x)|2)

Using B(φ), (75) and Rp,λ (see (64)), it follows there exists C > 0 such that

Ht(x)Lt(x) 6 exp(λV p(x) + tλpV p−1(x)(β − αφ ◦ V (x)) + Ct2V p−1(x)φ ◦ V (x))

Then, we have

Ht(x)Lt(x) 6 exp((1− tpαV −1(x)φ ◦ V (x))λV p(x)

+tpαV −1(x)φ ◦ V (x)V p(x)(
β

αφ ◦ V (x)
+ tC/(αp))).

Using the convexity of the exponential function, we have for tpαV −1(x)φ ◦ V (x)) < 1,

Ht(x)Lt(x) 6 exp(λV p(x))− tpαV −1(x)φ ◦ V (x))) exp(λV p(x))

+tpαV −1(x)φ ◦ V (x) exp(V p(x)(
β

αφ ◦ V (x)
+ tC/(αp))).

At this point we notice that (24) holds with this ψ which will be useful in order to obtain (77). Moreover
and independently from that, the function de�ned on Rd by x 7→ exp(V p(x)( β

αφ◦V (x) + tC/(αp))) is

continuous and bounded on any compact set. Moreover φ tends to in�nity at the in�nity and then we
have

φ ◦ V (x) exp(V p(x)(
β

αφ ◦ V (x)
+ tC/(αp))) = O

x→∞
exp(λV p(x))

for every t < λαp/C, and the proof of the recursive control (76) is completed. Combining it with (24)
(which is obtained above) and applying Lemma 3.2 gives (77).
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4.2.2 Proof of the in�nitesimal estimation

Proposition 4.6. We suppose that the sequence (Un)n∈N∗ satis�es MN ,2(U) (see (36)) and M2(U) (see
(57)) and that the sequence (Wn)n∈N∗ is centered and satis�es M2(W) (see (58)).
We also assume that b and σ are locally bounded functions, that φ has sublinear growth, that B(φ) (see

(61)) holds and that we have supn∈N∗ ν
η
n(|σ|2) <∞ and supn∈N∗ ν

η
n(
∑d
i,j,l=1 |∂xlσiσl,j |) <∞.

Then, we have E(Ãγ , A) (see (9)).

Proof. First, we recall that D(A) ⊂ C2
K(E). Using the Taylor expansion, we have

f(X
1

Γn)− f(XΓn−1) =〈∇f(x),∆X
1

n〉+R1(XΓn−1 , X
1

Γn−1
)

with R1(x, y) = f(y)−f(x)−〈∇f(x), y−x〉. First we notice that E[∆X
1

n] = γnb(XΓn−1). Now, we focus

on the expectation of R1(XΓn−1
, X

1

Γn−1
). First, we de�ne the function from Rd × Rd to R+ as follows

r1(x, y) = sup
θ∈[0,1]

|∇f(x+ θ(y − x))−∇f(x)|. (79)

Then r1 is a bounded continuous function such that r1(x, x) = 0. Moreover, it folows immediately that

R1(x, y) 6 r1(x, y)|y − x|.

Therefore, we deduce that

E[R1(XΓn−1
, X

1

Γn−1
)|XΓn−1

] 6E[|∆X1

n|r1(XΓn−1
, X

1

Γn−1
)|XΓn−1

]

6Cγn|b(XΓn−1
)|r1(XΓn−1

, X
1

Γn−1
)

Now, we notice that hypothesis (61) and the fact that φ(x) 6 C|x|, imply that b has a sublinear growth:
there exists Cb > 0 such that b(x) 6 Cb(1 + |x|). Now since f has a compact support, there exists
R > 0 such that f(x) = 0 for every x ∈ Rd such that |x| > R. As a consequence if |x| > 2R and
γ 6 t0 = R/(Cb(1 + 2R)) then for y = x+ γb(x),

|y| > |x| − γCb(1 + |x|) > R,

and then r1(x, y) = 0. It follows that the function Λ̃f,1 : (x, γ) 7→ γr1(x, x+ γx) is uniformly continuous

on Rd × [0, t0] and then we obtain Eloc(Λ̃f,1, |b|) (see (10) and (11)) with t0 = R/(Cb(1 + 2R)). In the
same way we have

f(X
2

Γn)− f(X
1

Γn) =〈∇f(X
1

Γn),∆X
2

n〉+R1(X
1

Γn−1
, X

2

Γn−1
).

The �rst term of the right hand side of the above equation is a centered random variable and we
obtain

E[R1(X
1

Γn−1
,X

2

Γn−1
)|XΓn−1

]

6
d∑

i,j,l=1

|∂xlσi(XΓn−1)σl,j(XΓn−1)|E[|
γn∫

γn−1

s∫
γn−1

dW j
udW

i
s |r1(X

1

Γn , X
2

Γn−1
)|XΓn−1 ].

Now we de�ne G2 = Rd×d, Θ2 = v, π2 the measure de�ned on (G2,B(G2)) (with B(G2) the sigma
�elds endowed by the Borelians of G2) by π2(dΘ2) = W(dv) where W denotes the law of the Rd×d-valued

random variable with components
1∫
0

s∫
0

dW j
udW

i
s for i, j ∈ {1, . . . , d}. Then for every x ∈ Rd = E, we

have

E[|
γn∫

γn−1

s∫
γn−1

dW j
udW

i
s |r1(X

1

Γn , X
2

Γn−1
)|XΓn−1

= x] =

∫
Rd×d

Λ̃i,jf,2(x, γn, v)W(dv)

=

∫
G2

Λ̃i,jf,2(x, γn,Θ2)π2(dΘ2)
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with

Λ̃i,jf,2 : Rd × R+ × Rd×d → R+

(x, γ, v) 7→ γ|vi,j |r1(x+ γb(x), x+ γb(x) + γ
∑d
i,j,l=1 ∂xlσi(x)σl,j(x)vi,j).

We are going to prove that Eergo(
∑d
i,j=1 Λ̃i,jf,2,

∑d
i,j,l=1 |∂xlσiσl,j |) (see (12)) holds.First, we notice that

B(φ) (61) and the fact that φ has sublinear growth, the functions b and ∂xlσiσl,j , i, j, l ∈ {1, . . . , d},
have sublinear growth: there exists Cb,σ > 0 such that |b(x)|+

∑d
i,j,l=1 |∂xlσi(x)σl,j(x)| 6 Cb,σ(1 + |x|)

for every x ∈ Rd. Therefore, in the same way as above, we obtain Eergo(
∑d
i,j=1 Λ̃i,jf,2,

∑d
i,j,l=1 |∂xlσiσl,j |)

from supn∈N∗ ν
η
n(
∑d
i,j,l=1 |∂xlσiσl,j |) <∞. In order to treat the last term, we write

f(X
3

Γn)− f(X
2

Γn) =〈∇f(X
2

Γn),∆X
3

n〉+
1

2
Tr[D2f(X

2

Γn)(∆X
3

n)⊗2] +R2(X
2

Γn−1
, X

3

Γn)

with R2(x, y) = f(y)− f(x)− 〈∇f(x), y − x〉 − 1
2 Tr[D2f(x)(y − x)⊗2]. First we study

E[Tr[(D2f(X
2

Γn)−D2f(XΓn−1
))(∆X

3

n)⊗2]|XΓn−1
].

We de�ne

Λ̃1
f,3 : Rd × R+ × Rd×d → R+

(x, γ, v) 7→ γ(2 Tr[v] + d)|D2f(x+ γb(x) + γ
∑d
i,j,l=1 ∂xlσi(x)σl,j(x)vi,j)−D2f(x)|,

we have

E[Tr[(D2f(X
2

Γn)−D2f(XΓn−1
))(∆X

3

n)⊗2]|XΓn−1
= x] 6 C|σ|2(x)

∫
Λ̃1
f,3(x, γn, v)W(dv)

Using once again the fact that f has a compact support and the functions b and ∂xlσiσl,j , i, j, l ∈ {1, . . . , d},
have sublinear growth, in the same way as before from, it follows from supn∈N∗ ν

η
n(|σ|2) < ∞ that

Eergo(Λ̃1
f,3, |σ|2) (with π1

3 = W) holds.

Now, we consider the other term. Similarly as before, we de�ne the function from Rd ×Rd to R+ as
follows

r2(x, y) = sup
θ∈[0,1]

|D2f(x+ θ(y − x))−D2f(x)|. (80)

Then r2 is a bounded continuous function such that r2(x, x) = 0. Moreover, we have

R2(x, y) 6 r2(x, y)|y − x|2.

We de�ne now

Λ̃2
f,3 : Rd × R+ × Rd×d → R+

(x, γ, v) 7→ γ(2 Tr[v] + d)
∑
ζ∈{−1,1}d r2(x+ γb(x) + γ

∑d
l=1 ∂xlσi(x)σl,j(x)vi,j ,

x+ γb(x) + γ
∑d
i,j,l=1 ∂xlσi(x)σl,j(x)vi,j +

√
γ
∑d
i=1 σi(x)ζi

√
2vi,i + 1)

It follows that

E[|∆X3

n|2r2(X
2

Γn , X
3

Γn−1
)|XΓn−1

= x] 6 C|σ|2(x)

∫
Λ̃2
f,3(x, γn, v)dW(dv)

Once again, since b, σ and ∂xlσiσl,j , i, j, l ∈ {1, . . . , d}, have sublinear growth, it follows from supn∈N∗ ν
η
n(|σ|2) <∞

that Eergo(Λ̃2
f,3, |σ|2) (with π2

3 = W) holds. We gather all the terms together and the proof is completed.
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4.2.3 Proof of (14) and (16)

Polynomial case

Proposition 4.7. Let p > 0, a ∈ (0, 1], ρ, s ∈ (1, 2] and, ψ(y) = yp, φ(y) = ya and εI(t) = tρ/2.
We suppose that (Un)n∈N∗ is a sequence of independent random variables such that U satis�es MN ,2(U)
(see (56)) and M2p∨2pρ/s∨2(U) (see (57)). Moreover, we assume that (Wn)n∈N∗ is a sequence of inde-
pendent and centered random variables such that M2p∨2pρ/s∨2(W) (see (58)) holds.
We also assume that (59), B(φ) (see (61)) and Rp (see (62)), with this p, hold. We also suppose that
SWI,γ,η(ρ, εI) (see (26)) hold.
Then SWI,γ,η(V p∨1+a−1, ρ, εI) (see (19)) holds and we have the following properties

A. If SWII,γ,η(V p/s) (see (20)) and SWpol(p, a, s, ρ) (see (85)) hold, then

P-a.s. sup
n∈N∗

− 1

Hn

n∑
k=1

ηkÃ
γ
k(ψ ◦ V )s(XΓk−1

) <∞, (81)

and we also have,

P-a.s. sup
n∈N∗

νηn(V p/s+a−1) <∞. (82)

Moreover, when p/s 6 p ∨ 1 + a− 1, the assumption SWII,γ,η(V p/s) (see (20)) can be replaced by
SWII,γ,η (see (27)). Besides, if we also suppose that LV (see (7)) holds and that p/s+ a− 1 > 0,
then (νηn)n∈N∗ is tight

B. If f ∈ D(A) and (22) is satis�ed, then

P-a.s. lim
n→∞

1

Hn

n∑
k=1

ηkÃ
γ
kf(XΓk−1

) = 0 (83)

Proof. The result is an immediate consequence of Lemma 3.1. It remains to check the assumption of
this Lemma.
First, we show SWI,γ,η(V p∨1+a−1, ρ, εI) (see (19)). First we notice that for any p 6 1 then Rp (see
(62)) implies R1. Since (59), B(φ) (see (61)) and Rp (see (62)) hold, it follows from Proposition 4.5

that IQ,V (ψ̃, φ) (see (8)) is satis�ed with the function ψ̃ : [v∗,∞)→ R+ de�ned by ψ̃(y) = yp∨1. Then,
using SWI,γ,η(ρ, εI) (see (26)) with Lemma 3.3, gives SWI,γ,η(V p∨1+a−1, ρ, εI) (see (19)). In the same
way, for p/s 6 a+ p− 1, we deduce from SWII,γ,η (see (27)) and Lemma 3.3 that SWII,γ,η(V p/s) (see
(20)) holds.
Now,we are going to prove ĨX(f, V a+p∨1−1,X, ρ, εI) (see (18)) for f ∈ D(A) and f = V p/s and the proof
of (81) and (83) will be completed. Notice that (82) will follow from IQ,V (ψ, φ) (see (8)) and Theorem
3.1. The proof is a consequence of Lemma 4.4 which is given below. We notice indeed that B(φ) (see

(61)) gives |σσ∗|ρ/2 +
∑d
i=1

∑d
l=1 |∂xlσi(x)σl,i|ρ 6 CV ρa/2. This observation combined with (86) implies

that for every f ∈ D(A) and f = V p/s, there exists a sequence X, such that ĨX(f, V a+p∨1−1,X, ρ, εI)
(see (18)) holds and the proof is completed.

Lemma 4.4. Let p > 0, a ∈ (0, 1], ρ ∈ (1, 2] and, ψ(y) = yp and φ(y) = ya. We suppose that the sequence
(Un)n∈N∗ satis�es Mρ∨2pρ/s(U) (see (57)) and that the sequence (Wn)n∈N∗ satis�es Mρ∨2pρ/s(W) (see
(58)). Then, for every n ∈ N, we have: for every f ∈ D(A),

E[|f(XΓn+1)− f(X
1

Γn)|ρ|XΓn ] 6 Cγ
ρ/2
n+1|σσ∗(XΓn)|ρ/2 + Cγρn+1

d∑
i=1

d∑
l=1

|∂xlσi(x)σl,i(x)|ρ. (84)

with D(A) = C2
K(Rd). In other words, for every f ∈ D(A), we have ĨX(f, gσ,X, ρ, εI) (see (18)) with

gσ = |σσ∗|ρ/2 +
∑d
i=1

∑d
l=1 |∂xlσi(x)σl,i|ρ, Xn = f(X

1

Γn) for every n ∈ N and εI(t) = tρ/2 for every
t ∈ R+.

Moreover, if (59) and B(φ) (see (61)) hold and

SWpol(p, a, s, ρ)


s(2/ρ− 1)(a+ p− 1) + s− 2 > 0, if 2p/s < 1,

(2− s)/(2− ρ) 6 a 6 s/ρ, if 2p/s > 1 and p < 1,

ρ 6 s(1− (1− a)/p), if p > 1.

(85)
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Then, for every n ∈ N, we have

E[|V p/s(XΓn+1)− V p/s(XΓn)|ρ|XΓn ] 6 Cγ
ρ/2
n+1V

p+a−1(XΓn). (86)

In other words, we have ĨX(V p/s, V p+a−1,X, ρ, εI) (see (18)) with Xn = V p/s(XΓn) for every n ∈ N
and εI(t) = tρ/2 for every t ∈ R+.

Proof. We begin by noticing that

|XΓn+1
−X1

Γn | 6 Cγ
1/2
n+1|σσ∗(XΓn)|1/2|Un+1|+ Cγn+1|

d∑
i=1

d∑
l=1

|∂xlσi(XΓn)σl,i(XΓn)|2|1/2|Wn+1|

Let f ∈ D(A). Then f is Lipschitz and the previous inequality gives (84).

We focus now on the case f = V p/s. We notice that B(φ) (see (61))implies that for any n ∈ N,

|XΓn+1
−XΓn | 6 Cγ

1/2
n+1

√
φ ◦ V (XΓn)(1 + |Un+1|+ |Wn+1||)

First, we assume that 2p/s 6 1. Let x, y ∈ Rd. Then, the function from R+ to R+ such that
y 7→ y2p/s is concave and since

√
V is Lipschitz (from (59)), we deduce that

V p/s(y)− V p/s(x) 62p/s
√
V

2p/s−1
(x)(
√
V (y)−

√
V (x))

62p/s[
√
V ]1V

p/s−1/2(x)|y − x|.

Now, since 2(s/ρ − 1)(a + p − 1) + s − 2 > 0 and V takes values in [v∗,∞), we deduce that there
exists C > 0 such that for every x ∈ Rd, we have V ρp/s−ρ/2(x) 6 CV a(1−ρ)+p−1(x).

Now, we assume that 2p/s > 1. Using (29) with α = 2p/s and since
√
V is Lipschitz, we have

V p/s(XΓn+1
)− V p/s(XΓn) 622p/sp/s(V p/s−1/2(XΓn)|

√
V (XΓn+1

, z)−
√
V (XΓn)|

+|
√
V (XΓn+1

)−
√
V (XΓn , z)|2p/s)

622p/sp/s([
√
V ]1V

p/s−1/2(XΓn)|XΓn+1
−XΓn |

+[
√
V ]

2p/s
1 |XΓn+1

−XΓn |2p/s).

In order to obtain (86), it remains to use the assumptions B(φ) (see (61)) and then ρ 6 s(1− (1− a)/p)
if p > 1 and (2− s)/(2− ρ) 6 a 6 s/ρ together with 2p/s > 1 if p < 1.

Exponential case

Proposition 4.8. Let p ∈ [0, 1/2], λ > 0, ρ ∈ (1, 2] and,ψ, φ : [v∗,∞) → R+ with ψ(y) = exp(λyp) and
φ a continuous function such that φ(y) 6 Cy with C > 0 and εI(t) = tρ/2. We assume that (59), B(φ)
(see (61)) and Rp,λ (see (64)) hold and that ρ < s. We also suppose that SWI,γ,η(ρ, εI) (see (26)) and
(75) hold. Then SWI,γ,η(V −1φ ◦V exp(λV p), ρ, εI) (see (19)) hold and we have the following properties

A. If SWII,γ,η (see (27)) holds, then we have SWII,γ,η(exp(λ/sV p)) (see (20)) and

P-a.s. sup
n∈N∗

− 1

Hn

n∑
k=1

ηkÃ
γ
k(ψ ◦ V )s(XΓk−1

) <∞, (87)

and we also have,

P-a.s. sup
n∈N∗

νηn(V −1φ ◦ V exp(λ/sV p)) <∞. (88)

Besides, when LV (see (7)) holds, then (νηn)n∈N∗ is tight.
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B. If f ∈ D(A) and (22) is satis�ed, then

P-a.s. lim
n→∞

1

Hn

n∑
k=1

ηkÃ
γ
kf(XΓk−1

) = 0 (89)

Proof. The result is an immediate consequence of Lemma 3.1. It remains to check the assumption of
this Lemma.

First, we show SWI,γ,η(V −1φ ◦ V exp(λ/sV p), ρ, εI) (see (19)). We begin by noticing that Rp,λ (see

(64)) implies Rp,λ̃ for every λ̃ 6 λ. Since (59), B(φ) (see (61)), Rp,λ (see (64)) and (75) hold, it follows

from Proposition 4.5 that IQ,V (ψ̃, φ) (see (8)) is satis�ed for every function ψ̃ : [v∗,∞)→ R+ such that

ψ̃(y) = exp(λ̃V p) with λ̃ 6 λ. At this point, we notice that this property and the fact that φ has sub-
linear growth imply (90). Then, using SWI,γ,η(ρ, εI) (see (26)) with Lemma 3.3, gives SWI,γ,η(V −1φ ◦
V exp(λV p), ρ, εI) (see (19)). In the same way, we deduce from SWII,γ,η (see (27)) and Lemma 3.3 that
SWII,γ,η(V −1φ ◦ V exp(λ/sV p)) (see (20)) holds.

Now,we are going to prove ĨX(f, V −1φ ◦ V exp(λV p),X, ρ, εI) (see (18)) for f ∈ D(A) and f = V p/s

and the proof of (87) and (89) will be completed. Notice that (82) will follow from IQ,V (ψ, φ) (see
(8)) and Theorem 3.1. The proof is a consequence of Lemma 4.4 (see (83)) and Lemma 4.5 which is

given below. We notice indeed that B(φ) (see (61)) gives |σσ∗|ρ/2 +
∑d
i=1

∑d
l=1 |∂xlσi(x)σl,i|ρ 6 (φ ◦

V )ρ. Moreover, we have already shown that (90) is satis�ed. These observations combined with (91)
imply that for every f ∈ D(A) and f = exp(λ/sV p), there exists a sequence X, such that ĨX(f, V −1φ ◦
V exp(λV p),X, ρ, εI) (see (18)) holds and the proof is completed.

Lemma 4.5. Let p ∈ [0, 1/2], λ > 0, ρ, s ∈ (1, 2] and,ψ, φ : [v∗,∞) → R+ with ψ(x) = exp(λxp) and φ
a continuous function such that φ(x) 6 Cx with C > 0. We assume that (59) and B(φ) (see (61)) hold,
that ρ < s, and there exists n0 ∈ N∗, such that

∀λ̃ 6 λ,∃C > 0,∀n > n0, E[exp(λ̃V p(XΓn+1))|XΓn ] 6C exp(λ̃V p(XΓn)). (90)

Then, for every n > n0, we have

E[| exp(λ/sV p(XΓn+1))− exp(λ/sV p(XΓn))|ρ|XΓn ] 6 Cγ
ρ/2
n+1

φ ◦ V (XΓn)

V (XΓn)
exp(λV p(XΓn)), (91)

In other words, we have ĨX(exp(λ/sV p), V −1φ◦V exp(λV p),X, ρ, εI) (see (18)) with Xn = exp(λ/sV p(XΓn))
for every n ∈ N and εI(t) = tρ/2 for every t ∈ R+.

Proof. Before we prove the result, we notice that B(φ) (see (61)) implies that for any n ∈ N�

|XΓn+1
−XΓn | 6 Cγ1/2

n

√
φ ◦ V (XΓn)(1 + |Un+1|2 + |Wn+1|2).

First, we assume that p 6 1/2. Let x, y ∈ Rd. First, since the function x 7→ x2p is concave, we have

V p(y)− V p(x) 62p
√
V

2p−1
(x)(
√
V (y)−

√
V (x))

62p[
√
V ]1V

p−1/2(x)|y − x|.

Moreover,

exp(λ/sV p(y))− exp(λ/sV p(x)) 6
λ

s
(exp(λ/sV p(y)) + exp(λ/sV p(x)))|V p(y)− V p(x)|.

We combine those two inequalities and use Hölder inequality in order to obtain

E[| exp(λ/sV p(XΓn+1))− exp(λ/sV p(XΓn))|ρ|XΓn ]

6C exp(λρ/sV p(XΓn))V pρ−ρ/2(XΓn)E[|XΓn+1
−XΓn |ρ|XΓn ]

+CV pρ−ρ/2(XΓn)E[exp(λρ/sV p(XΓn+1
))|XΓn+1

−XΓn |ρ|XΓn ]

6C exp(λρ/sV p(XΓn))V pρ−ρ/2(XΓn)E[|XΓn+1
−XΓn |ρ|XΓn ]

+CV pρ−ρ/2(XΓn)E[exp(λρθ/sV p(XΓn+1
))|XΓn ]1/θE[|XΓn+1

−XΓn |ρθ/(θ−1)|XΓn ](θ−1)/θ,
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for every θ > 1. Now, we use (90) and since ρ < s, for every θ ∈ (1, s/ρ], we obtain

E[exp(λρθ/sV p(XΓn+1
))|XΓn ] 6C exp(λρθ/sV p(XΓn)).

Rearranging the terms and since ρ < s, we conclude from B(φ) (see (61)) that

E[| exp(λ/sV p(XΓn+1
))− exp(λ/sV p(XΓn+1

))|ρ|XΓn+1
] 6Cγρ/2n V pρ−ρ/2(XΓn)|φ ◦ V (XΓn)|ρ/2 exp(λρ/sV p(XΓn))

6Cγρ/2n V −1(XΓn)φ ◦ V (XΓn) exp(λV p(XΓn)).

4.3 Application to processes with jump

The purpose of this section is to build an invariant measure using a decreasing step Euler scheme for
a Feller di�usion process with jump which is not necessarily a Levy process. This study extends the
one in [13] where the author treat the convergence of (νηn)n∈N∗ for miscellaneous decreasing step Euler
scheme for Levy processes. The interest of our approach is that we consider process with some general
jump components which involve Levy processes but also di�usion process with censored jump or piece-
wise deterministic Markov processes. We consider weak mean reverting assumption that is φ(y) = ya,
a ∈ (0, 1] for every y ∈ [v∗,∞). Similarly as in its study we consider polynomial test functions ψ such
that ψ(y) = yp, p > 0 for every y ∈ [v∗,∞).

We consider a Poisson point process p with state space (F ;B(F )) where F = F × R+. We refer
to [6] for more details. We denote by N the counting measure associated to p. We have N([0, t) ×
A) = #{0 6 s < t; ps ∈ A} for t > 0 and A ∈ B(F ). We assume that the associated intensity measure is
given by N̂(dt, dz, dv) = dt× λ(dz)× 1[0,∞)(v)dv where (z, v) ∈ F = F × R+. We will use the notation

Ñ = N − N̂ . We also consider a d-dimension Brownian motion (Wt)t>0 independent from N . We are
interested in the solution of the d dimensional stochastic equation

Xt = x+

t∫
0

b(Xs−)ds+

t∫
0

σ(Xs−)dWs +

t∫
0

∫
F

c(z,Xs−)1v6ζ(z,Xs− )1[0,h](|z|)Ñ(ds, dz, dv)

+

t∫
0

∫
F

c(z,Xs−)1v6ζ(z,Xs− )1(h,∞)(|z|)N(ds, dz, dv). (92)

where h > 0, b : Rd → Rd, σ : Rd → Rd×d and c(z, .) : Rd → Rd, z ∈ Rl are locally bounded and
continuous functions. In this paper, we do not discuss existence of such processes. This processes can be
seen as extension of Levy process (put c(z, x) = c(x)z and ζ = 1). Especially, if we want decomposition
(92) to make sense, we must at least assume that for every x ∈ Rd, we have∫

F

|c(z, x)|2ζ(z, x)1[0,h](|z|)λ(dz) <∞, (93)

and ∫
F

|c(z, x)|ζ(z, x)1(h,∞)(|z|)λ(dz) <∞. (94)

The main di�erence with Levy processes is that the intensity of jump ξ(x, z)λ(dz) may depend on the
position of the process. Actually, this type of process can also be seen as an extension of SDE with
censored jump component. Indeed, if for every x ∈ Rd, we have∫

F

|c(z, x)|ζ(z, x)λ(dz)dt <∞, (95)

it comes down to study the solution of following SDE with censored jump part:
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Xt = x+

t∫
0

b̃(Xs−)ds+

t∫
0

σ(Xs−)dWs +

t∫
0

∫
F

c(z,Xs−)1v6ζ(z,Xs− )1[0,∞)(|z|)N(ds, dz, dv). (96)

with, for every x ∈ Rd, b̃(x) = b(x)+
∫
F

c(z, x)ζ(z, x)1[0,h](|z|)λ(dz). The study of this family of processes

in the literature is expensing. In [3], the author focus on the case σ = 0 and prove the existence of an
absolutely continuous (with respect to the Lebesgue measure) density. In the PhD thesis [14] , the author
extends existence and uniqueness results for SDE with non null Brownian part and censored jump part
and also show that they can be considered as limit processes of some general piecewise deterministic
Markov processes. Besides, he studies ergodicity of those processes using a regenerated procedure.
This procedure provides a Doeblin (locally lower Lebesgue bounded) condition which enables to prove
recurrence in Harris sense and then ergodicity. Finally, one may notice that the study for SDE with
censored jump part with form (96), is equivalent to the study of (92) with h = 0. Consequently, we
study the approximation of invariant measures for solutions of (92) and the results we provide in this
part apply to SDE with censored jump as soon as we put h = 0.

The in�nitesimal generator of this process is given by

Af(x) = 〈b(x),∇f(x)〉+

d∑
i,j=1

(σσ∗)i,j(x)
∂2f

∂xi∂xj
(x) (97)

+

∫
F

(f(x+ c(z, x))− f(x)− 〈c(z, x),∇f(x)〉1[0,h](|z|))ζ(z, x)λ(dz).

The �rst step is to consider an `truncated' approximation for the process (Xt)t>0 with �nite big jump
intensity. In this case we can introduce an Euler scheme for this `truncated' process and then prove
convergence of the measure de�ned in (5) toward an invariant measure of the' process (Xt)t>0. In order
to show that the limit of the measure de�ned in (5) and built with the Euler scheme of the truncated
process is an invariant measure for the process (Xt)t>0, it is necessary to introduce a supplementary
hypothesis. This hypothesis enables to control of the distance between the generator of (Xt)t>0 and the
generator of the `truncated' process with jump size at most M . When λ({z, h < |z|}) = ∞, we assume
that

lim
M→∞

lim
n→∞

νηn(λM ) = 0 with

∀M > h,∀x ∈ Rd, λM (x) :=

∫
F

|c(z, x)||ζ(z, x)|1(M,∞)(|z|)λ(dz) = 0. (98)

4.3.1 Approach and preliminary results

LetM ∈ R+∪{+∞} such that λ({z, h < |z| < M}) <∞. We de�neNM (ds, dz, dv) := 1|z|<M1v6‖ζ‖∞N(ds, dz, dv).
Now, we introduce the process (XM

t )t>0 which satis�es the following equation

XM
t = x+

t∫
0

b(XM
s−)ds+

t∫
0

σ(XM
s−)dWs +

t∫
0

∫
F

c(z,XM
s−)1v6ζ(z,XM

s−
)1[0,h](|z|)ÑM (ds, dz, dv)

+

t∫
0

∫
F

c(z,XM
s−)1v6ζ(z,XM

s−
)1(h,∞)(|z|)NM (ds, dz, dv) (99)

Since N̂M is �nite, we represent the random measure NM using a compound Poisson process. We in-
troduce the Poisson processes (JMt )t>0, independent from ÑM , with intensity ‖ζ‖∞λ({z, h < |z| < M})
and jump times (TMk )k∈N∗ . We introduce the sequences of independent random variables (and indepen-

dent from JM and ÑM )

ZMk ∼ λ({z, h < |z| < M})−11h<|z|<Mdz, and Vk ∼ ‖ζ‖−1
∞ (v)1v6‖ζ‖∞dv.
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Therefore, (99) can be rewritten

XM
t = x+

t∫
0

b(XM
s−)ds+

t∫
0

∫
F

c(z,XM
s−)1v6ζ(z,XM

s−
)1[0,h](|z|)ÑM (ds, dz, dv)

+

t∫
0

σ(XM
s−)dWs +

JMt∑
k=1

c(ZMk , XM
T−k

)1Vk6ζ(ZMk ,XM
T
−
k

) (100)

The in�nitesimal generator of this process is given by

AMf(x) = 〈b(x),∇f(x)〉+

d∑
i,j=1

(σσ∗)i,j(x)
∂2f

∂xi∂xj
(x) (101)

+

∫
F

(f(x+ c(z, x))− f(x)− 〈c(z, x),∇f(x)〉1[0,h](|z|))1(h,M)(|z|)ζ(z, x)λ(dz).

Now, we introduce an approximation for XM . We will use a Euler type scheme such that for every
n ∈ N and t ∈ [Γn,Γn+1], we have

X
M

t = X
M

Γn + (t− Γn)b(X
M

Γ−n
) +

t∫
Γn

c(z,XM
Γ−n

)1v6ζ(z,XM
Γ
−
n

)1[0,h](|z|)ÑM (ds, dz, dv) (102)

+ σ(X
M

Γ−n
)(Wt −WΓn) +

JMt∑
k=1+JMΓn

c(ZMk , X
M

Γ−n
)1
Vk6ζ(ZMk ,X

M

Γ
−
n

)
.

which is well de�ned since λ({z, h < |z| < M}) <∞. Now, for h̃ > 0, x ∈ Rd and t > 0, we de�ne

M h̃
1,t(x) :=

t∫
0

∫
F

c(z, x)1v6ζ(z,x)1[0,h̃](|z|)NM (ds, dz, dv), (103)

M̃ h̃
1,t(x) :=

t∫
0

∫
F

c(z, x)1v6ζ(z,x)1[0,h̃](|z|)ÑM (ds, dz, dv),

M h̃
2,t(x) :=

t∫
0

∫
F

c(z, x)1v6ζ(z,x)1(h̃,M)(|z|)NM (ds, dz, dv),

M̃ h̃
2,t(x) :=

t∫
0

∫
F

c(z, x)1v6ζ(z,x)1(h̃,M)(|z|)ÑM (ds, dz, dv).

In order to simplify the writing, we will use the notations:

∆X
M,1

n+1 =γn+1b(X
M

Γn), ∆X
M,2

n+1 = σ(X
M

Γn)(WΓn+1
−WΓn), (104)

∆X
M,3

n+1 =M̃h
1,γn+1

(X
M

Γn), ∆X
M,4

n+1 = Mh
2,γn+1

(X
M

Γn),

and X
M,i

Γn+1
= X

M

Γn +
∑i
k=1 ∆X

M,k

n+1. At this point, we precise that we implicitely suppose that ∆X
M,3

n+1

can be simulated at time Γn. This assumption prevails in this paper. When it is not possible a solution is

given in [13]. It consists in localizing the small jumps of X
M

Γn −X
M

Γn−1
on a strict subset [hn, h] (hn > 0)

of [0, h] with limn→∞ hn = 0 and in assuming that the small jumps with size contained in [hn, h] can be
simulated. This speci�c study in our case is very similar to the one for the Levy process made in [13],

and also to the one we do when we suppose that ∆X
M,3

n+1 can be simulated. Consequently, we propose a

study in which we assume ∆X
M,3

n+1 we invite the reader to refer [13] in order to generalize it to the case
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where it can not be simulated.

For every n ∈ N∗ and t ∈ [Γn,Γn+1], the in�nitesimal generator of (X
M

t )T>0 is given by

AMx0
f(x) = 〈b(x0),∇f(x)〉+ Tr[σσ∗(x0)D2f(x)] (105)

+

∫
F

(f(x+ c(z, x0))− f(x)− 〈c(z, x0),∇f(x)〉1[0,h](|z|)ζ(z, x0)1[0,M)(|z|)λ(dz),

on the set {XM

Γn = x0}, with the notationD2f(x) = ∂2f
∂xi∂xj

(x). At this point we notice thatAf(x) = Axf(x)

which will be a key property in order to prove the in�nitesimal estimation E(Ãγ , A) (see (9)) in the sequel
(in particular for the jump part).

In the sequel we will use the notation Un+1 = γ
−1/2
n+1 (WΓn+1 −WΓn). Actually, we introduce a weaker

assumption than Gaussian distribution for the sequence (Un)n∈N∗ . Let q ∈ N∗, p > 0. We suppose that
(Un)n∈N∗ is a sequence of independent random variables such that

MN ,q(U) ∀n ∈ N∗,∀q̃ ∈ {1, . . . , q}, E[(Un)⊗q̃] = E[(N (0, Id))
⊗q̃] (106)

Mp(U) sup
n∈N∗

E[|Un|p] <∞ (107)

Now we introduce some hypothesis concerning the parameters. First, we introduce the hypothesis
concerning the jump components. In the sequel, we will denote

τ q,h(x) =

∫
F

c(z, x)2qζ(z, x)1[0,h](|z|)λ(dz), τp,h(x) =

∫
F

c(z, x)2pζ(z, x)1(h,M)(|z|)λ(dz), (108)

and τp(x) =

∫
F

c(z, x)2pζ(z, x)1[0,M)(|z|)λ(dz),

for p, q > 0. We assume the following �nitness hypothesis: Let p, q > 0. for every x ∈ Rd, we have

Hqh τ q,h(x) <∞, Hph τp,h(x) <∞, Hp τp(x) <∞. (109)

It is immediate to notice that Hp implies both Hph and Hph for any h > 0. Moreover, we introduce

the following classical hypothesis: Hqh implies Hq
′

h for q 6 q′ and Hph implies Hp
′

h for p > p′. Now, we
assume that the Lyapunov function V : Rd → [v∗,∞), v∗ > 0, satis�es LV (see (7)) and

|∇V |2 6 CV V, sup
x∈Rd

|D2V (x)| <∞ (110)

We also de�ne

∀x ∈ Rd, λψ(x) :=
1

2
λD2V (x)+∇V (x)⊗2ψ′′◦V (x)ψ′◦V (x)−1 . (111)

When ψ(x) = |x|p, we will also use the notation λp instead of λψ. We will suppose that, for every x ∈ Rd,

Bp,q(φ) |b(x) + κp,q(x)|2 + |σσ∗(x)| 6 Cφ ◦ V (x) (112)

where

κp,q(x) =
∫
Rlc(z, x)ζ(z, x)(1p>1/21(h,M)(|z|)− 1p,q61/21[0,h](|z|))λ(dz). (113)

The reader may notice that κp,q is well de�ned when Hqh and Hph hold. When p > 1/2 we will also
use the notation κp instead of κp,q. For p, q > 0 and φ a positive function, we introduce the following
hypothesis

Hqh(φ, V ) τ q,h(x) 6 Cφ ◦ V (x)q, (114)

Hph(φ, V ) τp,h(x) 6 Cφ ◦ V (x)p,

Hp(φ, V ) τp(x) 6 Cφ ◦ V (x)p,

for every x ∈ Rd.
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Remark 4.1. We notice that Hp(φ, V ) implies both Hph(φ, V ) and Hph(φ, V ) for any h > 0. Moreover,

Hqh(φ, V ) implies Hq
h̃
(φ, V ) for any h̃ ∈ (0, h].

We now introduce the key hypothesis in order to obtain recursive control that we will use for poly-
nomial functions ψ. We assume that there exists β ∈ R+, α > 0, such that for every x ∈ Rd, we
have

Rp,q 〈∇V (x), b(x) + κp,q(x)〉+ χp,q(x) 6 β − αφ ◦ V (x), (115)

with

χp,q(x) =

{
‖λ1‖∞(Tr[σσ∗(x)] + τ1(x)) + p−1V 1−p(x)χ̃p,q,h(x) if p 6 1

‖λp‖∞2(2p−3)+(Tr[σσ∗] + τ1(x) + [
√
V ]2p−2

1 V 1−p(x)τp(x)) if p > 1.
(116)

with

χ̃p,q,h(x) =(1p,q61/2[
√
V ]

2(p∨q)
1 vp−p∨q∗ + 1p61/21q>1/2Cq[V

p−1∇V ]2q−1

+1p>1/2Cp∨q[V
p∨q−1∇V ]2(p∨q)−1)τp∨q,h(x)

+(1p61/2[
√
V ]2p1 + 1p>1/2Cp[V

p−1∇V ]2p−1)τp,h(x)

and Cq and Cp∨q the constant from the BDG inequality de�ned in (31).

4.3.2 Proof of the recursive control

In order to obtain the recursive mean reverting control, we require a �rst result concerning the evolution
of the jump components.

Lemma 4.6. We have the following properties

A. Let p > 0. Assume that Hph (see (109)) hold. There exists a locally bounded function ε : R+ → R
which satis�es ε(t)/t 6 C, and such that ∀n ∈ N,

E[|Mh
2,t(x)

∣∣2p] 6 t(1 + ε(t))τp,h(x). (117)

B. Let q ∈ [0, 1/2] and assume that Hqh (see (109)) hold. Then, ∀n ∈ N,

E[|Mh
1,t(x)|2q] 6 tτ q,h(x). (118)

C. Let q ∈ [1/2, 1] and assume that Hqh (see (109)) hold. Then, ∀n ∈ N,

E[|M̃h
1,t(x)|2q] 6 Cqtτ q,h(x). (119)

with Cq the constant which appears in the BDG inequality (see (31)).

D. Let p > 1. We assume that Hp (see (109)) hold. Then, there exists ξ > 1, which does not depend
on h, such that for we have

E[|M̃h
1,t(x) + M̃h

2,t(x)|2p] 6 t(τp(x) + cpτp,h(x)) + Cp,ht
ξφ ◦ V (x)p. (120)

where cp > 0, and Cp,h > 0 is �nite if H1
h(φ, V ), Hph(φ, V ), H1/2

h (φ, V ) and Hph(φ, V ) (see (114))
hold.

Now, let p ∈ [1/2, 1). Assume that Hp (see (109)) holds. Then

E[|M̃h
1,t(x) + M̃h

2,t(x)|2p] 6 Cptτp(x) (121)

with Cq the constant which appears in the BDG inequality (see (31)).

If we assmue instead that H1 and Hp (see (109)) hold, there exists C > 0 such that

E[|M̃h
1,t(x) + M̃h

2,t(x)|2p] 6 C(tpτp1(x) + tτp(x)) (122)

Finally, if p = 1, and only H1 (see (109)) holdq then

E[|M̃h
1,t(x) + M̃h

2,t(x)|2] = tτ1(x) (123)
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Proof. We prove point A.. Let (JMt )t>0, a Poisson process with intensity ‖ζ‖∞µ({z, h < |z| < M}) and
jump times (TMk )k∈N∗ . We introduce the sequences of independent random variables (and independent
from JM )

ZMk ∼ λ({z, h < |z| < M})−11h<|z|<Mdz, and Vk ∼ ‖ζ‖−1
∞ (v)1v6‖ζ‖∞dv.

We rewrite,

M̃h
2,t(x) =

JMt∑
k=1

c(ZMk , x)1Vk6ζ(ZMk ,x).

Now we denote λ̃ = ‖ζ‖∞λ({z, h < |z| < M}). Therefore,

E
[∣∣ JMt∑
k=1

c(ZMk , x)1Vk6ζ(ZMk ,x)

∣∣2p] =E
[∑
k>1

1k=JMt

∣∣ k∑
l=1

c(ZMl , x)1Vl6ζ(ZMl ,x)

∣∣2p]
=
∑
k>1

E
[∣∣ k∑
l=1

c(ZMl , x)1Vl6ζ(ZMl ,x)

∣∣2p]e−λ̃t(λ̃t)k
k!

.

Now, using the inequality (30), it follows that

E
[∣∣ k∑
l=1

c(ZMl , x)1Ul6ζ(ZMl ,x)

∣∣2p] 6k(2p−1)+

k∑
l=1

E
[
|c(ZMl , x)1Vl6ζ(ZMl ,x)|2p

]
=k1+(2p−1)+ λ̃−1

∫
Rl

c(z,X
M

Γn)2pζ(z,X
M

Γn)1(h,M)(|z|)λ(dz).

Moreover,

e−λ̃t
∑
k>1

k1+(2p−1)+
(λ̃t)k

k!
= e−λ̃tλ̃t

∑
k>0

(k + 1)(2p−1)+
(λ̃t)k

k!

Now, we are going to use the inequalities (28) and (29). If p < 1 then

e−λ̃tλ̃t
∑
k>0

(k + 1)(2p−1)+
(λ̃t)k

k!
6λ̃t+ λ̃t

∑
k>0

k(2p−1)+
(λ̃t)k

k!

=λ̃t+ λ̃te−λ̃t
∑
k>1

k(2p−1)+
(λ̃t)k

k!
.

Using this reasoning recursively, we obtain

e−λ̃tλ̃t
∑
k>0

(k + 1)(2p−1)+
(λ̃t)k

k!
6 λ̃t

d(2p−1)+e∑
i=0

(λ̃t)i,

and the proof is completed. Now, we assume that p > 1. Then

e−λ̃tλ̃t
∑
k>0

(k + 1)(2p−1)+
(λ̃t)k

k!
6λ̃t+ λ̃t(2p− 1)+2(2p−1)+−1

∑
k>0

(k + k(2p−1)+)
(λ̃t)k

k!
,

and similarly as before, a recursive approach yields (117).

We focus on the proof of point B.. We apply inequality (30) and compensation formula, and (118)
follows from

E[|Mh
1,t(x)|2q] 6

∑
s6t

|Mh
1,s(x)−Mh

1,s−(x)|2q = tτ q,h(x).
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Point C. (see (119)) is a direct consequence of the BDG inequality (see (31)).

Finally, we consider the proof of point D.. First we treat the case p = 1. In this case, the process
(Mt)t>0 such that Mt := (M̃h

1,t + M̃h
2,t)

2 − τ1(x), is a martingale and then

E[|M̃h
1,t + M̃h

2,t|2] = tτ1(x).

Now, let p > 1. Let h ∈ [0, h]. Using the BDG inequality (see (31)), ws obtain

E[|M̃h
1,t|2p] 6 CpE

[
|
∑
s6t

|M̃h
1,s − M̃h

1,s− |
2|p
]

= CpE
[
|
∑
s6t

|∆M̃h
1,s|2|p

]
.

In order to obtain our result, we are going to use a recursive approach. For any k ∈ N∗, M̃h,k
1,t :=

∑
s6t |∆M̃h

1,s|2
k−

tτ2k−1,h(x) is a martingale. Using (30) for the martingale (M̃h,k
1,t )t>0)

E
[
|
∑
s6t

|∆M̃h
1,s|2

k

|p/2
k−1]

=E
[
|M̃h,k

1,t + tτ2k−1,h(x)|p/2
k−1]

62(p/2k−1−1)+E
[
|
∑
s6t

∆M̃h,k
1,s |p/2

k−1]
+ 2(p/2k−1−1)+ |tτ2k−1,h(x)|p/2

k−1

62(p/2k−1−1)+CpE
[
|
∑
s6t

|∆M̃h
1,s|2

k+1

|p/2
k]

+ 2(p/2k−1−1)+ |tτ2k−1,h(x)|p/2
k−1

Now, let k0 = inf{k ∈ N∗; 2k > p}. Using (28), we have

E
[
|
∑
s6t

|∆M̃h
1,s|2

k0+1

|p/2
k0 ]

6 E
[∑
s6t

|∆M̃h
1,s|2p

]
= tτp,h(x)

Since 2k < p for any k < k0, it follows that

E[|M̃h
1,t|2p] 6cptτp,h(x) + cp

k0∑
k=1

|tτ2k−1,h(x)|p/2
k−1

6cptτp,h(x) + cp|tτ1,h(x)|p ∨ |tτ2k0−1,h(x)|p/2
k0−1

with cp > 0 a constant which can change from line to line. Since we have H1
h(φ, V ) and Hph(φ, V ), it

follows that there exists ξ > 1 such that

E[|M̃h
1,t|2p] 6cptτp,h(x) + cpt

ξφ ◦ V (x)p

Now, using (117) , we have

E[|Mh
2,t|2p] 6 t(1 + ε(t))τp,h(x).

From (29), it follows that

E
[
|M̃h

2,t|2p] 6t(1 + ε(t))τp,h(x) + p22p
(
|t
(
1 + ε(t))τp,h(x)|1−1/(2p)|tτ1/2,h(x)

∣∣+ t2p|τ1/2,h(x)|2p
)

Since we have H1/2

h (φ, V ) and Hph(φ, V ), it follows that there exists ξ > 1 such that

E
[
|M̃h

2,t|2p] 6 tτp,h(x) + cpt
ξφ ◦ V (x)p

Now since Mh
1 and Mh

2 are independent, using (29), we obtain

E
[
|M̃h

1,t + M̃h
2,t|2p] 6E

[
M̃h

2,t|2p] + p22p(E
[
|M̃h

1,t|]E
[
|M̃h

2,t|2p−1] + E
[
|M̃h

1,t|2p])
6t(τp,h(x) + cpτp,h(x)) + cpt

ξφ ◦ V (x)p,
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Finally, let p ∈ [1/2, 1). Using the BDG inequality (see (31)), (28) and the compensation formula,
we have

E[|M̃h
1,t + M̃h

2,t|2p] 6CpE
[
|
∑
s6t

|∆Mh
1,s + ∆Mh

2,s|2|p
]
.

6CpE
[∑
s6t

|∆Mh
1,s + ∆Mh

2,s|2p
]
.

=Cptτp(x)

Moreover, (122) follows from Jensen's inequality and the proof is completed.

Lemma 4.7. Let x ∈ Rd p, q ∈ [0, 1]. We assume that Hph and Hp∨qh (see (109)) hold. Then, there exists
ε : R+ → R a locally bounded function which satis�es ε(t)/t 6 C such that for every x0 ∈ Rd, we have

E[V p(x0 + M̃h
1,t(x) +Mh

2,t(x)− κp,q(x))− V p(x0)] 6tχ̃p,q,h(x) + 1p61/2[
√
V ]2p1 tε(t)τp,h(x)

where κp,q de�ned in (113) and χ̃p,q,h is de�ned in (116) and is given by

χ̃p,q,h(x) =(1p,q61/2[
√
V ]

2(p∨q)
1 vp−p∨q∗ + 1p61/21q>1/2Cq[V

p−1∇V ]2q−1

+1p>1/2Cp∨q[V
p∨q−1∇V ]2(p∨q)−1)τp∨q,h(x)

+(1p61/2[
√
V ]2p1 + 1p>1/2Cp[V

p−1∇V ]2p−1)τp,h(x)

Let p, q 6 1/2. Assume that Hph̃ and Hp∨q
h̃

(see (109)) hold. Then, there exist ε : R+ → R a locally

bounded function, which satis�es ε(t)/t 6 C such that for every x0 ∈ Rd, we have

E[V p(x0 +M h̃
1,t(x) +M h̃

2,t(x))− V p(x0)] 6[
√
V ]

2(p∨q)
1 vp−p∨q∗ tτp∨q,h̃(x) (124)

+[
√
V ]2p1 t(1 + ε(t))τp,h̃(x)

Let p 6 1/2 and q > 1/2. Assume that Hph̃ and Hq
h̃
(see (109)) hold. Then, there exist ε : R+ → R a

locally bounded function, which satis�es ε(t)/t 6 C such that for every x0 ∈ Rd, we have

E[V p(x0 + M̃ h̃
1,t(x) +M h̃

2,t(x))− V p(x0)] 6Cq[V
p−1∇V ]2q−1tτ q,h̃(x) (125)

+[
√
V ]2p1 t(1 + ε(t))τp,h̃(x)

Let p > 1/2 and assume that Hph̃ and Hp∨q
h̃

(see (109)) hold. Then, for every x0 ∈ Rd, we have

E[V p(x0 + M̃ h̃
1,t(x) + M̃ h̃

2,t(x))− V p(x0)] 6Cp∨q[V
p∨q−1∇V ]2(p∨q)−1tτp∨q,h̃(x) (126)

+Cp[V
p−1∇V ]2p−1tτp,h̃(x)

Proof. Assume �rst that p 6 1/2. Using (28) with α = p/2, and since
√
V is Lipschitz, it follows from

the same approach as in the proof of Lemma 4.6, point A., that

E[V p(x0 +Mh
2,t(x))− V p(x0)] 6E[|

√
V (x0 +Mh

2,t(x))−
√
V (x0)|2p]

6[
√
V ]2p1 E[|Mh

2,t(x)|2p]

6[
√
V ]2p1 t(1 + ε(t))

∫
F

c(z, x)2pζ(z, x)1(h,M ](|z|)λ(dz).

with ε : R+ → R a locally bounded function, which satis�es ε(t)/t 6 C. Let x0 ∈ Rd. We study

E[V p(x0 +Mh
1,t(x))− V p(x0)], if q 6 1/2 and E[V p(x0 + M̃h

1,t(x))− V p(x0)] if q > 1/2.

First, we consider the case q 6 p. In this case Hqh implies Hph. Using once again (28) with α = p/2, and

since
√
V is Lipschitz,it follows from the same approach as in the proof of Lemma 4.6, point B., that
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E[V p(x0 +Mh
1,t(x))− V p(x0)] 6E[|

√
V (x0 +Mh

1,t(x))−
√
V (x0)|2p]

6[
√
V ]2p1 E[|Mh

1,t(x)|2p]

6[
√
V ]2p1 t

∫
F

c(z, x)2pζ(z, x)1[0,h](|z|)λ(dz).

Now let p < q. First, let q 6 1/2. Using (28) with α = 2q, the concavity of the function y 7→ yp/q,
and since

√
V is Lipschitz, we deduce that

E[V p(x0 +Mh
1,t(x))− V p(x0)] 6E[|

√
V
p/q

(x0 +Mh
1,t(x))−

√
V
p/q

(x0)|2q]

6V p−q(x0)E[|
√
V (x0 +Mh

1,t(x))−
√
V (x0)|2q]

6[
√
V ]2q1 v

p−q
∗ E[|Mh

1,t(x)|2q]

6[
√
V ]2q1 v

p−q
∗ t

∫
F

c(z, x)2qζ(z, x)1[0,h](|z|)λ(dz).

We assume that q > 1/2. Using Taylor expansion of order one, we obtain

E[V p(x0 + M̃h
1,t(x))− V p(x0)] = E[V p−1(ξ)〈∇V (ξ), M̃h

1,t(x)〉],

with ξ ∈ [x0, x0 + M̃h
1,t(x)]. Now since

√
V is Lipschitz, we can proove that x 7→ V p−1(x)∇V (x) is 2q−1

holder in this case (see [13], Lemma 3) and since M̃h
1,t(x) is centered, it follows from the same approach

as in the proof of Lemma 4.6, point C. that

E[V p(x0 + M̃h
1,t(x))− V p(x0)] 6E[V p−1(x0)∇V (x0)M̃h

1,t(x) + [V p−1∇V ]2q−1|M̃h
1,t(x)|2q]

=[V p−1∇V ]2q−1E[|M̃h
1,t(x)|2q]

6Cq[V
p−1∇V ]2q−1t

∫
F

c(z, x)2qζ(z, x)1[0,h](|z|)λ(dz)

Now, we assume that p > 1/2. Let p > q. Using once again the fact x 7→ V p−1(x)∇V (x) is 2p − 1
Hölder, similarly as in Lemma 4.6, point D., we deduce that

E[V p(x0 + M̃h
1,t(x) + M̃h

2,t(x))− V p(x0)] 6E[V p−1(x0)∇V (x0)(M̃h
1,t(x) + M̃h

2,t(x))

+[V p−1∇V ]2p−1|M̃h
1,t(x) + M̃h

2,t(x)|2p]

6Cp[V
p−1∇V ]2p−1t

∫
F

c(z, x)2pζ(z, x)1[0,M)(|z|)λ(dz)

Now, let p < q. In the same way

E[V p(x0 + M̃h
2,t(x))− V p(x0)] 6Cp[V

p−1∇V ]2p−1t

∫
F

c(z, x)2pζ(z, x)1[h,M ](|z|)λ(dz)

Finally, as in the proof for q > 1/2 > p, we obtain

E[V p(x0 + M̃h
1,t(x))− V p(x0)] 6Cq[V

p−1∇V ]2q−1t

∫
F

c(z, x)2qζ(z, x)1[0,h](|z|)λ(dz)

Now, we are able to present the recursive control under weak mean reverting assumption for test
functions with polynomial growth.
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Proposition 4.9. Let v∗ > 0, p > 0, q ∈ [0, 1], and φ : [v∗,∞) → R∗+ a continuous function such that
φ(y) 6 Cy with C > 0 and de�ne also ψ : [v∗,∞)→ R+ such that ψ(y) = yp.
We assume that the sequence (Un)n∈N∗ satis�es MN ,2(U) (see (106)) and M2p∨2(U) (see (107)) and that
(110), Bp,q(φ) (see (112)) and Rp,q (115) hold.
We have the following properties:

A. Assume that p > 1. We also assume that Hp, Hph(φ, V ) and H1

h(φ, V ) (see (114)) are satis�ed and

that, if p > 1, H1
h̃
(φ, V ),Hp

h̃
(φ, V ), H1/2

h̃
(φ, V ) and Hph̃(φ, V ) hold for any h̃ ∈ (0, h]. Then, there

exists α > 0, β ∈ R+ and n0 ∈ N∗, such that

∀n > n0, x ∈ Rd, Ãγnψ ◦ V (x) 6 V −1(x)ψ ◦ V (x)(β − αφ ◦ V (x)). (127)

Moreover, when φ = Id we have

sup
n∈N

E[ψ ◦ V (X
M

Γn)] <∞. (128)

B. Assume that p ∈ [0, 1) and let q ∈ [0, 1]. Moreover, we assume that Hph and Hp∨qh (see (109)) hold

and that we have Hph(φ, V ) (see (114)) if p 6 1/2. Then, there exists α > 0, β ∈ R+ and n0 ∈ N∗,
such that

∀n > n0, x ∈ Rd, Ãγnψ ◦ V (x) 6 V −1(x)ψ ◦ V (x)(β − αφ ◦ V (x)). (129)

Moreover, when φ = Id we have

sup
n∈N

E[ψ ◦ V (X
M

Γn)] <∞. (130)

Proof. We focus on the proof of A.. From the Taylor's formula and the de�nition of λψ (see (111)), we
have

ψ ◦ V (X
M

Γn+1
) =ψ ◦ V (X

M

Γn) + 〈XM

Γn+1
−XM

Γn ,∇V (X
M

Γn)〉ψ′ ◦ V (X
M

Γn)

+
1

2
(D2V (ξn+1)ψ′ ◦ V (ξn+1) +∇V (ξn+1)⊗2ψ′′ ◦ V (ξn+1))(X

M

Γn+1
−XM

Γn)⊗2.

6ψ ◦ V (X
M

Γn) + 〈XM

Γn+1
−XM

Γn ,∇V (X
M

Γn)〉ψ′ ◦ V (X
M

Γn)

+λψ(ξn+1)|ψ′ ◦ V (ξn+1)(X
M

Γn+1
−XM

Γn)|2.

with ξn+1 ∈ (X
M

Γn , X
M

Γn+1
). First, from (110), we have supx∈Rd λp(x) <∞.

Now, since W , NM (dt,BM \Bh, dv) and ÑM (dt,Bh, dv)2 are independent,we have

E[X
M

Γn+1
−XM

Γn |X
M

Γn ] = γn+1b(X
M

Γn) + E[∆X
M,4

n+1|X
M

Γn ],

E[|XM

Γn+1
−XM

Γn |
2|XM

Γn ] = γn+1Tr[σσ
∗(X

M

Γn)] + E[|∆XM,3

n |2|XM

Γn ] + E[|∆XM,4

n |2|XM

Γn ]

+ γ2
n+1|b(X

M

Γn)|2 + 2γn+1〈b(X
M

Γn),E[∆X
M,4

n+1|X
M

Γn ]〉

with,

E[∆X
M,4

n |XM

Γn+1
] = γn+1

∫
F

c(z,X
M

Γn)ζ(z,X
M

Γn)1(h,M)(|z|)λ(dz) = γn+1κ1(X
M

Γn),

and

E[|∆XM,3

n+1|2|X
M

Γn ] = γn+1

∫
F

c(z,X
M

Γn)2ζ(z,X
M

Γn)1[0,h](|z|)λ(dz) = γn+1τ1,h(X
M

Γn).

2with the notation Br = {z ∈ F, 0 6 |z| < r} and Br = {z ∈ F, 0 6 |z| 6 r} for r > 0.
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using the notations (114) and (108). Moreover, using H1

h(φ, V ), Lemma 4.6 (see (117) with p = 1)
implies that there exists a locally bounded function ε : R+ → R which satis�es |ε(t)|/t 6 C, such that
for every n ∈ N,

E[|∆XM,4

n+1|2|X
M

Γn ] 6 γn+1(1 + ε(γn+1))τ1,h(X
M

Γn)

Using the Cauchy Schwarz inequality it follows that

|E[∆X
M,4

n |XM

Γn ]| 6 √γn+1(1 +
√
|ε(γn+1)|)τ1,h(X

M

Γn)1/2

Assume �rst that p = 1. Using Bp,q(φ) (see (112)) and H1

h(φ, V ) (see (114)), for every α̃ ∈ (0, α), there
exists n0(α̃) such that for every n > n0(α̃),

‖λ1‖∞
∣∣γ2
n+1|b(X

M

Γn)|2+2γ2
n+1〈b(X

M

Γn), κ1(X
M

Γn)〉 (131)

+ γn+1ε(γn+1)τ1,h(X
M

Γn)
∣∣ 6 γn+1(α− α̃)φ ◦ V (X

M

Γn).

From assumption (116) and since τ1,h + τ1,h = τ1, we conclude that

Ãγnψ ◦ V (x) 6 β − α̃φ ◦ V (x)

Assume now that p > 1. Since |∇V | 6 CV V , then
√
V is Lipschitz. Using (30), it follows that

V p−1(ξn+1) 6
(√
V (X

M

Γn) + [
√
V ]1|X

M

Γn+1
−XM

Γn |
)2p−2

62(2p−3)+(V p−1(X
M

Γn) + [
√
V ]2p−2

1 |XM

Γn+1
−XM

Γn |
2p−2)

We focus on the study of the second term of the remainder. First, using Bp,q (see (112)) and H
p

h(φ, V )
(see (114)), for any p > 1,

|∆XM,1

n+1 + ∆X
M,2

n+1 + E[∆X
M,4

n+1|X
M

Γn ]|2p 6 cpγ
p
n+1φ ◦ V (X

M

Γn)p(1 + |Un+1|2p).

Moreover, using Lemma 4.6 (see (120)), there exists ξ > 1, such that for every h̃ ∈ [0, h], then ∀n ∈ N,

E
[∣∣∆XM,3

n+1 + ∆X
M,4

n+1 − E[∆X
M,4

n+1|X
M

Γn ]
∣∣2p|XM

Γn

]
6 γn+1(τp(X

M

Γn) + cpτp,h̃(X
M

Γn)) + Cp,h̃γ
ξ
n+1φ ◦ V (X

M

Γn)p.

Applying (29), it follows that

E[|XM

Γn+1
−XM

Γn |
2p|XM

Γn ] 6 γn+1(τp(X
M

Γn) + cpτp,h̃(X
M

Γn)) + Cp,h̃γ
ξ
n+1φ ◦ V (X

M

Γn)p

+2p22p−1
(
Cpγ

p
n+1φ ◦ V (X

M

Γn)p(1 + E[|Un+1|2p])

+C1γ
1/2
n+1φ ◦ V (X

M

Γn)1/2(1 + E[|Un+1|])E
[∣∣∆XM,3

n+1 + ∆X
M,4

n+1 − E[∆X
M,4

n+1|X
M

Γn ]
∣∣2p−1|XM

Γn

])
Let p′ := 1− 1/(2p). Using the Jensen inequality and (28), we have

E
[∣∣∆XM,3

n+1+∆X
M,4

n+1 − E[∆X
M,4

n+1|X
M

Γn ]
∣∣2p−1|XM

Γn

]
6E
[∣∣∆XM,3

n+1 + ∆X
M,4

n+1 − E[∆X
M,4

n+1|X
M

Γn ]
∣∣2p|XM

Γn

]
]p
′

6γp
′

n+1τp(X
M

Γn)p
′
+ cpγ

p′

n+1τp,h̃(X
M

Γn)p
′
+ Cp

′

p,h̃
γξp

′

n+1φ ◦ V (X
M

Γn)pp
′

6γp
′

n+1φ ◦ V (X
M

Γn)pp
′
+ γp

′

n+1τp,h̃(X
M

Γn)p
′
+ Cp

′

p,h̃
γξp

′

n+1φ ◦ V (X
M

Γn)pp
′

=γp
′

n+1φ ◦ V (X
M

Γn)p−1/2 + γp
′

n+1τp,h̃(X
M

Γn)p
′
+ Cp

′

p,h̃
γξp

′

n+1φ ◦ V (X
M

Γn)pp
′

Now, since Hph(φ, V ) holds, then limh̃→0 τp,h̃/(φ ◦ V )p = 0 and then for any ε > 0 there exists h0 > 0

such that τp,h0
< ε(φ ◦ V )p. Moreover Cp,h0

is �nite since H1
h̃
(φ, V ),Hp

h̃
(φ, V ), H1/2

h̃
(φ, V ) and Hph̃(φ, V )
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hold for every h̃ ∈ (0, h]. Let α̂ ∈ (0, α). Since p′ > 1/2, there exists n0(α̂) ∈ N such that for any
n > n0(α̂), we have

E[|XM

Γn+1
−XM

Γn |
2p|XM

Γn ] 6γn+1(τp(X
M

Γn) + φ ◦ V (X
M

Γn)p
α− α̂

‖φ/Id‖p−1
∞ ‖λp‖∞2(2p−3)+ [

√
V ]2p−2

1

)

To treat the other term we proceed as in (131) with ‖λ1‖∞ replaced by ‖λp‖∞22p−3[
√
V ]2p−2

1 , α
replace by α̂ and α̃ ∈ (0, α̂). We gather all the terms together and using Rp,q (see (115) and (116)), for
every n > n0(α̃) ∨ n0(α̂), we obtain

E[V p(X
M

Γn+1
)− V p(XM

Γn)|XM

Γn ] 6γn+1pV
p−1(X

M

Γn)(β − αφ ◦ V (X
M

Γn))

+γn+1pV
p−1(X

M

Γn)
(
φ ◦ V (X

M

Γn)(α̂− α̃) + (α− α̂)
V 1−p(X

M

Γn)φ ◦ V (X
M

Γn)p

‖φ/Id‖p−1
∞

)
6γn+1V

p−1(X
M

Γn)(βp− α̃pφ ◦ V (X
M

Γn)).

which is exactly the recursive control for p > 1, that is (127). The proof of (128) is an immediate
application of Lemma 3.2 as soon as we notice that the increments of the Euler scheme (102) have �nite
polynomial moments (under the hypothesis from A.) which imples (24).

Now, we prove point B.. Since p 6 1, the function de�ned on (v∗,∞) by y 7→ yp is concave. Using
then the Tayor dexpansion of order 2 of the function V , for every x, y ∈ Rd, there exists λ ∈ [0, 1] such
that

V p(y)− V p(x) 6pV p−1(x)(V (y)− V (x))

=pV p−1(x)(〈∇V (x), y − x〉+
1

2
Tr[D2V (λx+ (1− λ)y)(y − x)⊗2])

and then,

V p(y)− V p(x) 6 pV p−1(x)(〈∇V (x), y − x〉+
1

2
‖D2V ‖∞|y − x|2.

We apply this inequality, and with the notation (113), it follows that

E[V p(X
M,2

Γn+1
+ γn+1κp,q(X

M

Γn))− V p(XM

Γn)|XM

Γn ] 6pV p−1(X
M

Γn)(γn+1〈∇V (X
M

Γn), b(X
M

Γn) + κp,q(X
M

Γn)〉

+
1

2
‖D2V ‖∞E[|XM,2

Γn+1
+ γn+1κp,q(X

M

Γn)−XM

Γn |
2|XM

Γn ]).

As in the proof of the case p > 1, it follows from Bp,q(φ) (see (112)) that there exists α̂ ∈ (0, α) and
n0(α̂) ∈ N∗ such that for every n > n0(α), we have

E[|XM,2

Γn+1
+ κp,q(X

M

Γn)−XM

Γn |
2|XM

Γn ] 6 γn+1|σσ∗(X
M

Γn)|+ γn+1τ1(xX
M

Γn) + γn+1(α− α)φ ◦ V (X
M

Γn)

Now, it remains to study

E[V p(X
M

Γn+1
))− V p(XM,2

Γn+1
+ γn+1κp,q(X

M

Γn))|XM

Γn ].

Since X
M

Γn+1
= X

M,2

Γn+1
+ ∆X

M,3

n+1 + ∆X
M,4

n+1, we use Lemma 4.7 together with Hph and Hp∨qh (see (109))
and we obtain

E[V p(X
M

Γn+1
)− V p(XM,2

Γn+1
+ γn+1κp,q(X

M

Γn))|XM

Γn ] 6γn+1χ̃p,q,h(X
M

Γn)

+1p61/2[
√
V ]2p1 γn+1ε(γn+1)τp,h(X

M

Γn),
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with ε : R+ → R a locally bounded function which satis�es ε(t)/t 6 C. It follows from Hph(φ, V ) (see
(114)) when p 6 1/2, that there exists α̃ ∈ (0, α̂) and n0(α̃) ∈ N∗ such that for every n > n0(α̃), we have

E[V p(X
M

Γn+1
))− V p(XM,2

Γn+1
+ γn+1κp,q(X

M

Γn))|XM

Γn ] 6γn+1χ̃p,q,h(X
M

Γn)

+γn+1(α̂− α̃)pV p−1(X
M

Γn)φ ◦ V (X
M

Γn).

Gathering all the terms together and using Rp,q (see (115)) yields the recursive contol (129). The proof
of (128) is an immediate application of Lemma 3.2 as soon as we notice that the increments of the Euler
scheme (102) have �nite polynomial moments (under the hypothesis from A.) which imples (24).

4.3.3 Proof of the in�nitesimal estimation

In order to btain the result, it is necessary to introduce some structural assumption concerning the jump
process. For x ∈ Rd, let us de�ne the process (Mt(x))t>0 such thatMt(x) = M̃h

1,t(x)+Mh
2,t(x) (see (103)

for notations) for every t > 0. We assume that

∀z ∈ F, lim
|x|→∞

|c(z, x)|/|x| = 0, and ∃t0 ∈ R+,∀t 6 t0, lim
|x|→∞

|Mt(x)|/|x| = 0 a.s. (132)

Now, we give the result that provides the in�nitesimal estimation.

Lemma 4.8. Let p > 0 and let q ∈ [0, 1]. We consider the sequence (Un)n∈N∗ which satis�es MN ,2(U)
(see (106)) and M2(U) (see (107)).
Moreover, we assume that Hph and Hqh (see (109)) hold. We also suppose that b and σ are locally
bounded functions with sublinear growth, that (132) holds and that we have supn∈N∗ ν

η
n(|σ|2) < ∞, and

also supn∈N∗ ν
η
n(τ q,h) < ∞ when q ∈ (1/2, 1]. Then, we have E(Ãγ , AM ) (see (9)), with AM de�ned in

(101).

Proof. In this proof we will use the function ωb,σ,t : Rd × Rd → Rd such that ωb,σ,t(x, v) = x + tb(x) +√
tσ(x)v. We also introduce the random process (Mh

t )t>0 independent from (Un)n∈N ,such that for every

t > 0, we have Mh
t (x) = M̃h

1,t(x) +Mh
2,t(x) (see (103) for notations). First we write

t−1(E[f(ωb,σ,t(x, v)+Mh
t (x)]− f(ωb,σ,t(x, v)) = AM3 f(x) +RA3

(x, t, v)

with

AM3 f(x) =

∫
F

(f(x+ c(z, x))− f(x)− 〈c(z, x),∇f(x)〉)1[0,h](|z|))ζ(z, x)λ(dz)

+

∫
F

(f(x+ c(z, x))− f(x))1(h,M)(|z|)ζ(z, x)λ(dz)

It follows that we can decompose RA3(x, t, v) in the following way: RA3(x, t, v) = RA3
(x, t, v) +

RA3(x, t, v) with

RA3
(x, t, v) =E[

1∫
0

∫
F

RA3
(x, t, v,Mtθ(x), z, θ)1[0,h](|z|)λ(dz)dθ]

with

RA3
: Rd × R+ × Rd × Rd × F × [0, 1] → R+

(x, t, u, v, z, θ) 7→ f(ωb,σ,t(x, v) + u+ c(z, x))− f(ωb,σ,t(x, v) + u)
−〈c(z, x),∇f(ωb,σ,t(x, v) + u)〉
−(f(x+ c(z, x))− f(x)− 〈c(z, x),∇f(x)〉)ζ(z, x),

and
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RA3
(x, t, v) =E[

1∫
0

∫
F

RA3
(x, t, v,Mtθ(x), z, θ)1(h,M)(|z|)λ(dz)dθ]

with

RA3 : Rd × R+ × Rd × Rd × F × [0, 1] → R+

(x, t, u, v, z, θ) 7→ (f(ωb,σ,t(x, v) + u+ c(z, x))− f(ωb,σ,t(x, v) + u))ζ(z, x)
−(f(x+ c(z, x))− f(x))ζ(z, x),

RA3
(x, t, v) =E[

1∫
0

∫
F

(f(ωb,σ,t(x, v) +Mh
tθ(x) + c(z, x))− f(ωb,σ,t(x, v) +Mh

tθ(x))ζ(z, x)1(h,M)(|z|)λ(dz)dθ]

−E[

1∫
0

∫
F

(f(x+ c(z, x))− f(x))ζ(z, x)1(h,M)(|z|)λ(dz)dθ].

Case q ∈ [1/2,1]. We focus on RA3
. At this point, we assume that τ q,h takes strictly positive values

(otherwise RA3
= 0). We denote π(dΘ) = pU (dv)1[0,h](|z|)λ(dz)dθd for Θ = (v, z, θ) ∈ G = Rd × F ×

[0, 1]. It follows that (for U ∼ U1),

E[RA3
(x, t, U)] = τ q,h(x)E[

∫
G

τ−1
q,h(x)RA3

(x, t,Mh
tθ(x), v, z, θ)π(dΘ)]

First we show (12). We recall that b and σ have sublinear growth. Therefore, as a direct consequence
of (132) and since f has a compact support, there exists t0 > 0 such that

∀Θ = (v, z, θ) ∈ G, lim
|x|→∞

sup
t∈[0,t0]

τ−1
q,h(x)RA3

(x, t,Mh
tθ(x),Θ) = 0 a.s.

Finally, since f is continuous with compact support, then it is uniformly continuous and since (Mtθ(x))t>0)
is a left limited right continuous process, we deduce that for any compact subset K of Rd, we have

∀Θ = (v, z, θ) ∈ G, lim
t→0

sup
x∈K

τ−1
q,h(x)RA3

(x, t,Mh
tθ(x),Θ) = 0 a.s.

Consequently (12) holds. Now, we show that Eergo(τ−1
q,hRA3

, τ q,h) holds.
Using Taylor expansion of order one, we obtain

RA3
(x, t, u, v, z, θ) 6

1∫
0

|c(z, x)||∇f(ωb,σ,γ(x, v) + u+ ϑc(z, x))−∇f(ωb,σ,γ(x, v) + u)

+∇f(x+ ϑc(z, x))−∇f(x))ζ(z, x)|dϑ.

From Taylor expansion of order two, it also follows that

RA3
(x, t, u, v, z, θ) 6

1

2

1∫
0

|c(z, x)|2|D2f(ωb,σ,γ(x, v) + u+ ϑc(z, x))−D2f(x+ ϑc(z, x))|ζ(z, x)dϑ

Therefore, for any r ∈ [1, 2],

RA3
(x, t, u, v, z, θ) 6C‖D2f‖∞ ∨ ‖∇f‖∞|c(z, x)|rζ(z, x)

Taking r = q, the hypothesis Hqh (see (109) brings

sup
x∈Rd

sup
t∈R+

τ−1
q,h(x)

∫
G

E[|RA3
(x, t,Mh

tθ(x),Θ)|]π(dΘ) <∞,
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and Eergo(τ−1
q,hRA3

, τ q,h) follows from supn∈N∗ ν
η
n(τ q,h) <∞.

Now, we focus on RA3
. We denote π(dΘ) = pU (dv)1[0,h](|z|)λ(dz)dθd for Θ = (v, z, θ) ∈ G = Rd ×

F × [0, 1]. It follows that (for U ∼ U1),

E[RA3(x, t, U)] = E[

∫
G

RA3(x, t,Mh
tθ(x), v, z, θ)π(dΘ)]

First we show (12). We recall that b and σ have sublinear growth. Therefore, as a direct consequence
of (132) and since f has a compact support, there exists t0 > 0 such that

∀Θ = (v, z, θ) ∈ G, lim
|x|→∞

sup
t∈[0,t0]

RA3
(x, t,Mh

tθ(x),Θ) = 0 a.s.

Finally, since f is continuous with compact support, then it is uniformly continuous and since (Mtθ(x))t>0)
is a left limited right continuous process, we deduce that for any compact subset K of Rd, we have

∀Θ = (v, z, θ) ∈ G, lim
t→0

sup
x∈K

RA3(x, t,Mh
tθ(x),Θ) = 0 a.s.

Consequently (12) holds. Now, we show that Eergo(RA3
, 1) holds. As a direct consequence of λ({z, h < |z| < M}) <∞,

we obtain

sup
x∈Rd

sup
t∈R+

∫
G

E[|RA3
(x, t,Mh

tθ(x),Θ)|]π(dΘ) 6 C‖f‖∞‖ζ‖∞λ({z, h < |z| < M}) <∞,

and Eergo(RA3 , 1) follows. To complete the proof, it remains to study (for U ∼ U1)

t−1E[f(ωb,σ,t(x, U)− f(x)].

This is already done in the proof of Proposition 4.6, so we invite the reader to refer to this part of the
paper for more details.

Case q ∈ [0,1/2]. In this case the study is the same as for q ∈ [1/2, 1]. We notice that κp,q (see
(113) for notations) is well de�ned and that (132) implies that it has sublinear growth. Consequenty,
since λ({0 < |z| < M}) <∞, if we replace b by b− κp,q and then take h = 0, we obtain the result with
a similar proof.

The following result show how to obtain limn→∞ νηn(Af) = 0 from Lemma 4.8. This is a key result
which allow us to work with truncated jumps and nevertheless obtain convergence towards the invariant
measure of the process with unbounded jumps.

Proposition 4.10. We assume that λ({z, h < |z|}) =∞. For M > h, we de�ne

λM (x) =

∫
F

|c(z, x)||ζ(z, x)|1[M,∞)(|z|)λ(dz).

We assume that (16) holds for every process that belongs to the family of processes ((X
M

t )t>0)M>M0
, for

some M0 > h, that is:

∀M >M0,∀f ∈ D(A) P-a.s. lim
n→∞

1

Hn

n∑
k=1

ηk
γk

E[f(XM
Γk

)− f(XM
Γk−1

)|XM
Γk−1

] = 0, (133)

with (X
M

t )t>0 de�ned in (102). We also suppose that (98) is satis�ed, that is limM→∞ limn→∞ νηn(λM ) = 0
. Finally we suppose that the hypothesis from Lemma 4.8 are satis�ed with M replaced by M (and

(X
M

t )t>0 replaced by (X
M

t )t>0) for every M >M0. Then, we have

∀f ∈ D(A) P-a.s. lim
M→∞

lim
n→∞

1

Hn

n∑
k=1

ηkAf(XM
Γk−1

) = 0. (134)
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Proof. We notice that Af = AMf +R
A3,AM3

f with

R
A3,AM3

f(x) =

∫
F

(f(x+ c(z, x))− f(x))1[M,∞)(|z|)ζ(z, x)λ(dz)

6‖∇f‖∞
∫
F

c(z, x)ζ(z, x)1[M,∞)(|z|)λ(dz) = ‖∇f‖∞λM (x)

Now, we write νηn(AMf) = νηn(Af) + νηn(R
A3,AM3

f) and then we obtain: |νηn(Af)| 6 |νηn(AMf)| +

‖∇f‖∞|νηn(λM )|. Since (133) holds, then Lemma 4.8 with Theorem 3.2 give,

∀f ∈ D(A) P-a.s. lim
n→∞

1

Hn

n∑
k=1

ηkA
Mf(XM

Γk−1
) = 0.

Finally, we letM tends to in�nity and since limM→∞ limn→∞ νηn(λM ) = 0, the proof is completed.

4.3.4 Proof of (14) and (16)

Proposition 4.11. Let p > 0, q ∈ [0, 1], a ∈ (0, 1], ρ, s ∈ (1, 2] and, ψ(y) = yp, φ(y) = ya and
εI(t) = tρ/2. We assume that the sequence (Un)n∈N∗ satis�es MN ,2(U) (see (106)) and M2p∨2(U) (see
(107)) and that (110) holds. Then, we have the following properties,

A. We assume that Bp,q(φ) (see (112)) and Rp,q (115) hold. We also suppose that SWI,γ,η(ρ, εI) (see
(26)) hold and that:

i) If p > 1, we assume that Hp, Hph(φ, V ) and H1

h(φ, V ) (see (114)) are satis�ed and that, if

p > 1, H1
h̃
(φ, V ),Hp

h̃
(φ, V ), H1/2

h̃
(φ, V ) and Hph̃(φ, V ) hold for any h̃ ∈ (0, h].

ii) If p ∈ (0, 1) and let q ∈ [0, 1], we assume that Hph and Hp∨qh (see (109)) hold and that we have

Hph(φ, V ) (see (114)) if p 6 1/2.

Then SWI,γ,η(V p+a−1, ρ, εI) (see (19)) holds and we have the following property:

If in addition SWII,γ,η(V p/s) (see (20)), SWpol(p, a, s, ρ) (see (139)), Hp∨qh (φ, V ) and Hph(φ, V )
are satis�ed, then

P-a.s. sup
n∈N∗

− 1

Hn

n∑
k=1

ηkÃ
γ
k(ψ ◦ V )s(X

M

Γk−1
) <∞, (135)

and we also have,

P-a.s. sup
n∈N∗

νηn(V p/s+a−1) <∞. (136)

Moreover, when p/s 6 p + a − 1, the assumption SWII,γ,η(V p/s) (see (20)) can be replaced by
SWII,γ,η (see (27)). Besides, if we also suppose that LV (see (7)) holds and that p/s+ a− 1 > 0,
then (νηn)n∈N∗ is tight

B. If f ∈ D(A), (22), Hqh and Hph (see (109) are satis�ed and SWI,γ,η(|σσ∗|ρ/2 + 1q 6=0τ
1∧ρ/(2q)
q +

1p 6=0τ
1∧ρ/(2p)
p , ρ, εI) (see (19)) holds, then

P-a.s. lim
n→∞

1

Hn

n∑
k=1

ηkÃ
γ
kf(X

M

Γk−1
) = 0 (137)

Remark 4.2. The reader may notice that (137) remains true if we replace Hqh and Hph by respec-

tively Hqh(φ, V ) and Hph(φ, V ) and if we also replace SWI,γ,η(|σσ∗|ρ/2 + τ
1∧ρ/(2q)
q + τ

1∧ρ/(2p)
p , ρ, εI) by

SWI,γ,η(V aρ/2, ρ, εI). A solution to obtain SWI,γ,η(V aρ/2, ρ, εI) when aρ/2 6 a + p − 1 is provided by
point A. that is SWI,γ,η(V p+a−1, ρ, εI). When aρ/2 > a+ p− 1 a possible solution consists if replacing
p by p0 in A. with p0 satisfying aρ/2 6 a+ p0 − 1
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Proof. The result is an immediate consequence of Lemma 3.1. It remains to check the assumption of
this Lemma.
We focus on the proof of (135) and (136). First, we show SWI,γ,η(V p+a−1, ρ, εI) (see (19)). Since (110),
Bp,q(φ) (see (112)) and Rp,q (see (115)) hold, it follows (using the hypothesis from point i) and point
ii)) from Proposition 4.9 that IQ,V (ψ, φ) (see (8)) is satis�ed. Then, using SWI,γ,η(ρ, εI) (see (26)) with
Lemma 3.3 gives SWI,γ,η(V p+a−1, ρ, εI) (see (19)). In the same way, for p/s 6 a + p − 1, we deduce
from SWII,γ,η (see (27)) and Lemma 3.3 that SWII,γ,η(V p/s) (see (20)) holds.

Now,we are going to prove ĨX(V p/s, V a+p−1,X, ρ, εI) (see (18)) and the proof of (135) will be completed.
Notice that (136) will follow from IQ,V (ψ, φ) (see (8)) and Theorem 3.1. The proof is a consequence of
Lemma 4.9 which is given below. We notice indeed that Lemma 4.9 (see (140)) implies that, there exists
a sequence X, such that ĨX(V p/s, V a+p−1,X, ρ, εI) (see (18)) holds and the proof of (135) and (136) is
completed.
We complete the proof o the Proposition by noticing that (137) follows directly from Lemma 4.9 (see
(138)).

Lemma 4.9. Let p > 0, q ∈ [0, 1], a ∈ (0, 1], ρ ∈ (1, 2] and, ψ(y) = yp and φ(y) = ya. We suppose that
the sequence (Un)n∈N∗ satis�es Mρ∨2pρ/s(U) (see (107)) and that (110) holds. We also assume that Hph
and Hqh (see (109)) are satis�ed.

Then, for every n ∈ N we have: for every f ∈ D(A),

E[|f(X
M

Γn+1
)− f(X

M,1

Γn )|ρ|XM

Γn ] 6Cγρ/2n+1|σσ∗(X
M

Γn)|ρ/2 (138)

+γ
1∧ρ/(2q)
n+1 1q 6=0τ

1∧ρ/(2q))
q (X

M

Γn) + Cγn+11p 6=0τ
1∧ρ/(2p)
p (X

M

Γn).

with D(A) = C2
K(Rd). In other words, for every f ∈ D(A), we have ĨX(f, |σσ∗|ρ/2 + 1q 6=0τ

1∧ρ/(2q)
q +

1p 6=0τ
1∧ρ/(2p)
p ,X, ρ, εI) (see (18)) with Xn = f(X

M,1

Γn ) for every n ∈ N and εI(t) = tρ/2 for every t ∈ R+.

Now, we assume that (110), Bp,q(φ) (see (112)), Hp∨qh (φ, V ) and Hph(φ, V ) hold. Finally, we suppose
that the following holds:

SWpol(p, a, s, ρ)


s(2/ρ− 1)(a+ p− 1) + s− 2 > 0, if 2p/s < 1,

(2− s)/(2− ρ) 6 a 6 s/ρ, if 2p/s > 1 and p < 1,

ρ 6 s(1− (1− a)/p), if p > 1.

(139)

Then, for every n ∈ N, we have

E[|V p/s(XM

Γn+1
)− V p/s(XM

Γn)|ρ|XΓn ] 6 Cγ
ρ/2
n+1V

p+a−1(X
M

Γn), (140)

In other words, we have ĨX(V p/s, V p+a−1,X, ρ, εI) (see (18)) with Xn = V p/s(XΓn) for every n ∈ N
and εI(t) = tρ/2 for every t ∈ R+.

Proof. Before we start the proof, we assume that q 6= 0 and p 6= 0. Otherwise, the proof is simpler so
we leave it out.

Let f ∈ D(A). We introduce decomposition (with notations (104))

f(X
M

Γn+1
)− f(X

M,1

Γn+1
) =f(X

M,2

Γn+1
)− f(X

M,1

Γn+1
) + f(X

M,3

Γn+1
)− f(X

M,2

Γn+1
) + f(X

M

Γn+1
)− f(X

M,3

Γn+1
)

First, we notive that since f is Lipschitz, we have

E[|f(X
M,2

Γn+1
)− f(X

M,1

Γn )|ρ|XM

Γn ] 6Cγρ/2n+1|σσ∗(X
M

Γn)|ρ/2E[|Un+1|ρ].

Now we study ∆X
M,3

n+1. We distinguish two cases: ρ/2 6 q and q < ρ/2. First, let ρ/2 6 q. Then
from Cauchy Schwartz inequality,we obtain

E[|∆XM,3

n+1|ρ|X
M

Γn ] 6E[|∆XM,3

n+1|2q|X
M

Γn ]ρ/(2q)
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Now if q < ρ/2, then since f is Lipschitz and de�ned on a compact set, it is also 2q/ρ-Hölder, and then
for every x0 ∈ Rd, we have

E
[
|f(x0 + ∆X

M,3

n+1)− f(x0)|ρ|XM

Γn ] 6 [f ]2p/ρE[|∆XM,3

n+1|2q|X
M

Γn ]

Moreover, from Lemma 4.6 point B. and C., it follows that

E
[
|∆XM,3

n+1|2q] 6 Cγn+1τ q,h(X
M

Γn)

and we conclude that

E[|f(X
M,3

Γn+1
)− f(X

M,2

Γn )|ρ|XM

Γn ] 6Cγ1∧ρ/(2q)
n+1 τ

1∧ρ/(2q)
q,h (X

M

Γn).

Now we study ∆X
M,4

n+1. Once again we distinguish two cases: ρ/2 6 p and p < ρ/2. First, let ρ/2 6 p.

Using Lemma 4.6 point A. since we have Hp and the Cauchy Schwartz inequality, it follows that

E
[
|∆XM,4

n+1|ρ] 6 E
[
|∆XM,4

n+1|2p]ρ/2p 6 Cγn+1τ
ρ/(2p)
p,h (X

M

Γn),

Now if p < ρ/2, then since f is Lipschitz and de�ned on a compact set, it is also 2p/ρ-Hölder, and
then for every x0 ∈ Rd, we have

E[|f(x0 + ∆X
M,4

n+1)− f(x0)|ρ|XM

Γn ] 6 [f ]2p/ρE[|∆XM,4

n+1|2p|X
M

Γn ]

Now, using Lemma 4.6 point A. since we have Hp, it follows that

E
[
|∆XM,4

n+1|2p] 6 Cγn+1τp,h(X
M

Γn),

and we conclude that

E[|f(X
M

Γn+1
)− f(X

M,3

Γn )|ρ|XM

Γn ] 6Cγn+1τ
1∧ρ/(2p)
p (X

M

Γn).

and gathering all the terms as in the the initial decomposition gives (138).

We focus now on the case f = V p/s. First, we assume that 2p/s 6 1. Let x, y ∈ Rd. Then, the
function from R+ to R+ such that y 7→ y2p/s is concave and since

√
V is Lipschitz, we deduce that

V p/s(y)− V p/s(x) 62p/sV p/s−1/2(x)(
√
V (y)−

√
V (x))

62p/s[
√
V ]1V

p/s−1/2(x)|y − x|.

Now, since s(2/ρ− 1)(a+ p− 1) + s− 2 > 0 from SWpol(p, a, s, ρ) (see (139), and V takes values in
[v∗,∞), we deduce that there exists C > 0 such that for every x ∈ Rd, we have V ρp/s−ρ/2(x) 6 CV a(1−ρ/2)+p−1(x).
Using Bp,q(φ) (see (112)), we obtain

E[|XM,2

Γn+1
−XM

Γn |
ρ|XM

Γn = x] 6 Cγ
ρ/2
n+1V

aρ/2(x)

Now, we study ∆X
M,3

n+1. First we consider the case 2q > s. Since ρ 6 s (from SWpol(p, a, s, ρ) (see
(139))), we have 2q > ρ and it follows from Cauchy Schwartz inequality and Lemma 4.6 point C., that

E[|∆XM,3

n+1|ρ|X
M

Γn ] 6E[|∆XM,3

n+1|2q|X
M

Γn ]ρ/(2q) 6 Cγ
ρ/(2q)
n+1 τ

ρ/(2q)
q,h (x)

Now, we notice that since p/s 6 1/2 then V p/s is α-Hölder for any α ∈ [2p/s, 1] (see Lemma 3. in
[13]). It follows that for 2q 6 s, V p/s is 2(p ∨ q)/s-Hölder. Then, using Cauchy-Schwartz inequality and
since ρ 6 s from SWpol(p, a, s, ρ), we have

E[|V p/s(XM,3

Γn+1
)− V p/s(XM,2

Γn+1
)|ρ|XM

Γn ] 6[V p/s]ρ2(p∨q)/sE[|∆XM,3

n+1|2(p∨q)ρ/s|XM

Γn ]

6[V p/s]ρ2(p∨q)/sE[|∆XM,3

n+1|2(p∨q)|XM

Γn ]ρ/s

6γρ/sn+1Cτ
ρ/s
(p∨q),h(X

M

Γn).
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where the last inequality is a consequence of Lemma 4.6 point B. and C..
Using the fact that V p/s is 2p/s-Hölder, we deduce from (from Cauchy-Schwartz inequality and since

ρ 6 s from SWpol(p, a, s, ρ) (see (139)) 4.6 point A., that

E[|V p/s(XM

Γn+1
)− V p/s(XM,3

Γn+1
)|ρ|XM

Γn ] 6 [V p/s]ρ2p/sE[|∆XM,4

n+1|2pρ/s|X
M

Γn ] 6CE[|∆XM,4

n+1|2p|X
M

Γn ]ρ/s

6Cγρ/sn+1τ
ρ/s
p,h (X

M

Γn).

We gather all the terms together and the proof is competed for the case 2p 6 s. Now, we consider
the case 2p > s. Using (29) with α = 2p/s, it follows that

V p/s(X
M

Γn+1
)− V p/s(XM

Γn) 622p/sp/s(V p/s−1/2(X
M

Γn)|
√
V (X

M

Γn+1
)−
√
V (X

M,1

Γn )|

+|
√
V (X

M

Γn+1
)−
√
V (X

M

Γn)|2p/s)

622p/sp/s([
√
V ]1V

p/s−1/2(X
M

Γn)|XM

Γn+1
−XM

Γn |[
√
V ]

2p/s
1 |XM

Γn+1
−XM

Γn |
2p/s)

We study ∆X
M,3

n+1. We recall that ρ 6 s from SWpol(p, a, s, ρ) (see (139)) and then 2p > ρ in this
case. We distinguish the case q 6 p and q > p. Using once again the Cauchy Schwartz inequality and
point A. of Lemma 4.6, we obtain

E[|∆XM,3

n+1|2pρ/s|X
M

Γn ] 6 Cγn+1τ
ρ/s
p,h (X

M

Γn) and E[|∆XM,3

n+1|ρ|X
M

Γn ] 6 Cγn+1τ
ρ/(2p)
p,h (X

M

Γn).

Now, we study ∆X
M,4

n+1. We recall that ρ 6 s from SWpol(p, a, s, ρ) (see (139)) and then 2p > ρ in
this case. Using once again the Cauchy Schwartz inequality and point A. of Lemma 4.6, we obtain

E[|∆XM,4

n+1|2pρ/s|X
M

Γn ] 6 Cγn+1τ
pρ/(s(p∨q))
(p∨q),h (X

M

Γn) and E[|∆XM,4

n+1|ρ|X
M

Γn ] 6 Cγn+1τ
ρ/(2(p∨q))
(p∨q),h (X

M

Γn).

Using Bp,q(φ) (see (112)), Hp∨qh (φ, V ) and Hph(φ, V ), we obtain

E[|XM

Γn+1
−XM

Γn |
ρ|XM

Γn = x] 6 Cγ
ρ/2
n+1V

aρ/2(x).

and

E[|XM

Γn+1
−XM

Γn |
2pρ/s|XM

Γn = x] 6Cγpρ/s∧1
n+1 V apρ/s(x)

In order to obtain (140), it remains to use ρ 6 s(1− (1− a)/p) if p > 1 and (2− s)/(2− ρ) 6 a 6 s/ρ
together with 2p/s > 1 if p < 1.
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