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Abstract

This paper provides a general and abstract approach to approximate ergodic regimes of Markov and
Feller processes. More precisely, we show that the recursive algorithm presented in [7] and based on
simulation algorithms of stochastic schemes with decreasing step can be used to build invariant measures
for general Markov and Feller processes. We also propose applications in three different configurations:
Approximation of Markov switching Brownian diffusion ergodic regimes using Euler scheme, approxima-
tion of Markov Brownian diffusion ergodic regimes with Milstein scheme and approximation of general
diffusions with jump components ergodic regimes.

Keywords : Ergodic theory, Markov processes, Invariant measures, Limit theorem, Stochastic approx-
imation.
AMS MSC 2010: 60G10, 47A35, 60F05, 60J25, 60J35, 65C20.

1 Introduction

In this paper, we propose a method for the computation of invariant measures of Markov processes
(denoted v). In particular, we study a sequence of empirical stochastic measures (v, ),en+ which can be
recursively computed using a discrete process simulated with a sequence of vanishing step v = (7 )nen
and transition semigroups (Q)),en<. We show that lim,, oo vnf = vf a.s., for a class of test functions
f. The recursive algorithm which is employed to build (v, )nen+ considering that (Q)),en+ is given, has
been introduced in the seminal paper [7].

Invariant mesasures are crucial in the study of the long term behavior of stochastic differential sys-
tems. We invite the reader to refer to [5] and [2] for an overview of the subject. The construction of
invariant measure for stochastic systems has already been widely explored in the literature. In [16], the
author provides a computation of the invariant distribution for some solutions of Stochastic Differential
Equations but in many cases there is no explicit formula for v. A first approach consists in studying the
convergence of the semigroupoup of the Markov process (denoted (P;):>o) with infinitesimal generator
A towards the invariant measure v as it is done in [4] for the variation topology. If (P;);»¢ can be
computed, one can approximate v controlling only the error between (P;);»¢ and v. If the process with
semigroup (P;)¢>o can be simulated, we can use a Monte Carlo method to estimate (P;);>o producing a
second term in the error analysis. When the process with semigroup (P;):>o can not be simulated with
reasonnable time, a solution consists in simulating an approximation for the semigroup (P;):>0, using
(97)nen+ (given a step sequence (vp)nen). The semigroup (Q)),en+ is supposed to weakly converge
towards (P;);>0. A natural construction rely on numerical homogeneous schemes ((7vy,)nen is constant
and equal to the time step 7). This approach induced two more terms to control in the approximation
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of v in addition to the error between (P,;);»¢ and v: The first one is due to the approximation of (P;);>0
by (Q))nen+ and the second one is due to the Monte Carlo error involved in the computation of the law
of the process simulated with (QY),en«.

Nevertheless, for Brownian diffusions, many efforts have been done in order simplify this problem. In

[17], the author suggests an elegant procedure to simplify this last approach. He considers the case where
the process simulated with (Q7),en+ (where (v, )nen is still constant) has an invariant measure v. In a
first step, he shows that lim, . v, f = 7 f, and then he proves that lim.,_,o 7 = v. Consequently, he
gets rid of the Monte Carlo approximation (since there is no estimation procedure for the computation
of (Py)¢>0 or (Q7)nen+), and there are only two terms to treat in the error. He manages to control this
error under a uniform ellipticity condition that is not necessary in our work. He also extended these
results in [18].
Another approach has been proposed in [1] and avoid asymptotic analysis with respect to the size of the
time step. In this paper, the authors prove directly that the random discrete process simulated with
(9))nen+, with (v, )nen vanishing to 0, converges weakly toward v. Therefore, there are two terms to
treat in the error: The first one is due to this convergence and the second one to the Monte Carlo error
involved in the computation of the law of the process simulated with (Q)),cn«. The reader may notice
that in all those cases, strong ergodicity assumptions are required for the process with infinitesimal gen-
erator A.

Inspired among others by the ideas from [17] and [1], in [7], the authors designed a recursive algorithm
with decreasing step and showed that the sequence (v, )nen+ built with a discrete process that can be
simulated using a sequence of vanishing step v = (v, )nen and transition semigroups (97 )nen+ directly
converges towards v. This initial paper treated the case where (Q7),en+ is the transition semigroup of
an inhomogeneous Euler scheme with decreasing step associated to a strongly mean reverting ergodic
Brownian diffusion process. In this paper, they introduce the recursive algorithm to build the sequence of
random measures (Vy, )nen+ given (Q7),en+ (which is the procedure that is used in every work we mention
from now and is also the one we use in this paper). Moreover, they prove that lim, o vnf = vf a.s.
for a class of test functions which is larger than the domain (denoted D(A)) of A and countains test
functions with polynomial growth. They also obtained rates and limit gaussian laws for the convergence
of (Vn(f))nen+ for test functions f which can be written f = Ag. Finally they do not require that
the invariant measure v is unique controversially to the results obtained in [17] and [1] for instance. In
the case where v is an invariant distribution of a stochastic diffusion, many complementary works to [7]
have been led. The authors extended their first results in [8], where they achieve convergence towards
invariant measures for Euler scheme of Brownian diffusions using weak mean reverting assumptions for
the dynamical stochastic system. Thereafter, in its thesis [9], the author extended the class of function
for which we have lim,,_, v, f = vf a.s. from test functions f with polynomial growth to test functions
with exponential growth. Finally, in [13], the author generalized those results to the construction of in-
variant measures for Levy diffusion processes still using the algorithm from [7]. He thus opened the door
to treat not only approximation of Brownian diffusions’ ergodic regime but also a larger class of processes.

The aim of this paper is to show that the algorithm presented in [7] enables to approximate invariant
measures (when there exists without being necessarily unique) for general Markov and Feller processes.
We present a general framework adapted to the construction of invariant measures for Markov processes
under general mean reverting assumption (which includes weak mean reverting assumptions). Then,
we provide some applications for three different configurations always under weak mean reverting as-
sumptions. The first one treats the case of the Euler scheme for Markov Switching diffusions for test
functions with polynomial growth. This particular case has already been studied in [10] under strong
ergodicity assumptions (which includes among others strong mean reverting assumption). Then, we
prove convergence for the Milstein scheme for test functions with polynomial or exponential growth.
Finally, we consider the Euler scheme for general diffusion processes with jump and test functions with
polynomial growth. In particular, this last results involves Levy processes (as in [13]) but also piecewise
deterministic Markov processes or diffusions processes with censored jump.

In a first step we present some general useful results in this study. Then we present the general and
abstract framework in order to obtain convergence toward an invariant measure of a general Markov and
Feller processes. The end of this paper is devoted to the miscellaneous examples mentioned above.
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2 Preliminary results

In this paper, we propose a general approach to compute invariant measures for Markov and Feller
processes. In this section, we give some well known general results that we employ to show that con-
vergence. We begin with some notations. For F a locally compact separable metric space, we denote
Co(E) the set of continuous functions that vanish a infinity. We equip this space with the sup norm
|| fllooc = sup,eg |f(x)] and then (Co(E), ||.||~) is a Banach space. We will denote B(E) the o-algebra of
Borel subsets of E and P(F) the family of Borel probability measures on E.

To be a bit more specific, we consider the generator of a Markov and Feller process denoted by A.
In this paper, our main purpose is to build a measure 7 and show that there exists a stationary solution
to the Martingale problem (A, 7). In this case we also say that © is an invariant measure for the Feller
process with generator A. We recall the definition of the martingale problem.

Definition 2.1. Let v € P(E) with E a locally compact and separable metric space and let A be a linear

operator defined on a subset D(A) of Co(E). We say that a process (X)i>o is a solution of the martingale

problem (A, D) if X is progressive and we have P(Xo)~! = U and for every f € D(A), the process (Yi)i>o
¢

such that Yy, = f(X;) — [Af(X)ds, for every t >0, is a martingale.
0

However, we will not stick to that definition to prove the existence of a stationary solution for the
martingale problem (A4, 7). Instead, we use the Echeverria Weiss theorem which provides a way to obtain
the existence of a solution for the martingale problem (A, ) under a practical property for our approach.
Now, we give this theorem which can be find in [2] (Theorem 9.17).

Theorem 2.1. (Echeverria Weiss). Let E be a locally compact and separable metric space and let A
be a linear operator of Co(E) satisfying the positive mazimum principle’ and such that D(A) is dense in
Co(E). If v € P(E) satisfies

Vf € D(A), /EAfdﬁ:O, (1)

then there exists a stationary solution to the martingale problem (A, 7).

For our approach, one main advantage of this result is that the only property we will have to prove
of obtain the existence of a stationary solution to the martingale problem (A, 7) is (1). Indeed, for Feller
processes, we have the following useful result

Proposition 2.1. Let A be the generator of a Feller semigroup. The space D(A) is dense in Co(E).
Moreover, A satisfies the positive maximum principle.

The proof of this result can be found in [15] (Chapter VII, Proposition 1.3 and Proposition 1.5) or [2]
(Chapter IV, Theorem 2.2). Consequently, this paper will be devoted to the construction of a measure
U, and then to the proof of (1) with this measure. Using the results mentioned in this section, property
(1) is sufficient to prove that # is an invariant measure for the process with infinitesimal generator A. To
be more concrete, in this paper, the measure v will be built as the limit of a sequence of random measure
(Vn)nen+ that we specify in the sequel. When (1) holds for this limit, we say that the sequence (v, )pen-
converges towards an invariant measure of the Feller process with generator A. In order to obtain (1)
for this measure, we will employ the following well known results.

Lemma 2.1. (Kronecker). Let (a,)nen+ and (by)nen+ be two sequences of real numbers. If (by,)nen+
18 non-decreasing, positive, with lim, ... b, = 0o and Zn% an /by, converges in R, then

N IR
nl;ngoa;akzo.

Theorem 2.2. (Chow). Let (M,)nen< be a real valued martingale with respect to some filtration
F = (Fu)nen. Then
Vre (0,1], lim M, =My €R a.s.

n—oo

on the event

{ iEHMn — My 4 || Fq] < oo}.
n=1

Wf e D(A), f(xo) = sup{f(z),z € E} > 0,20 € E = Af(x0) <O0.
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3 Convergence to invariant distribution - A general approach

This section presents a general approach inspired from the seminal work in [7] to construct (v, )nen« and
prove that it converges towards an invariant measure of a Markov and Feller with infinitesimal generator
A as soon as it is built with a sequence of approximating semigroup of that Markov and Feller process.

3.1 Presentation of the framework

In this part, we present the recursive algorithm in order to build (v,,),en+ and also the general hypothesis
that are required to obtain convergence towards an invariant distribution of a Markov and Feller process.
In other words, we give some general assumptions on (v, )nen+ in order to obtain (1) for lim, o vp -

3.1.1 Construction of the random measures

In this paper we consider a locally compact and separable metric space E. We introduce a sequence of
finite transition measures P, (z,dy), n € N* from F to itself. This means that for each fixed = and n,
P (z,dy) is a probability measure on (E, B(F)) with the Borel o-field and, for each bounded measurable
function f, the mapping

x> Poflx /f n(z,dy)

is Borel measurable. We also suppose that P, f € Co(E) for every measurable function f € Cy(F) and
n € N*. Now we associate the sequence P to a time grid with vanishing steps. Let v := (7, )nen- such
that

YneN" 0<v, <7< oo, hm Y, =0and lim '), = 400 (2)

n—oo

with the notations I'g =0 and T',, = 22:1 ~i. From now, we will use the notation P} = P,,.

Definition 3.1. We define the family of discrete linear operator (P))nen+ from Co(E) to itslef in the
following way.

Fif@) = f(z), Pl f(x) = PYPL f(x) = P} / F@)PL4s (0, dy).

Remark 3.1. If we define more generally (P} ,,,)n,meNn<m by

Plof@)=f(z), VameN ,n<m, Pl f(z)=P, P f(2),
we have the following semiroup property: for n,m,k € N, n < m < k, P;Z,kf = P,Z,mP;’%kf.

We consider now a second sequence of finite transition probability measures Q) (z, dy),n € N*. More-
over, we introduce the corresponding semigroup Q7 defined in a similar way as PY with P replaced
by Q7. Finally, we assume that there exists a continuous Feller semigroup (P;):> such that for every
t € {T'y,n € N}, then Pr, = P. We do not make such assumption for (Q))nen. In our framework, Q7
is thus considered as the approximation discrete semigroup of (P;);> on the time grid {I';,,n € N}. In
the sequel we will denote by A the infinitesimal generator of P and v will denote an invariant measure
for A. We now propose the construction of (v, )nen+ which inspired from [7]. We define the Markov
process X := (X, )nen in the following way

Xo € FE, P(Xn-H € dy|Xn) = Qn+1(Xnady) (3)

The main difference with [7] is that we do not suppose that 7 is the semigroup associated to the Euler
scheme of a Brownian diffusion process. In this study, we simply consider approximations of Markov
processes that can be simulated. At this point, we are going to define a weighted empirical measure with
X. This construction is totally similar to the one in [7] but with the Euler scheme replaced by (X,,)nen.
First, we introduce the weights. Let 1 := (1, )nen+ such that

YneN* n, >0, ILm H, = o, (4)
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with the notation H,, = H,,, = Y _; nx. Now we present the algorithm initially introduce in [7]. First,
for x € E, let ¢, denote the Dirac mass at point x. For every n € N* we define the random weighted
empirical random measures as follows

Vi) = = > medx, , (dr). )
" k=1

The aim of this paper is to show that lim,,_,. V]!f = vf a.s., for a class of test functions f. This will

hold as soon as (v, )nen+ is tense, (1) is satisfied with & replaced by lim, . v, and f(z) = | ‘o g(z)
xTr|— 00

with sup,,en- Vn(9) < o0.

3.1.2 Assumptions on the random measures

In this section, we present the hypothesis that we require in order to prove that convergence. Those
assumptions are related to the increments of the approximation semigroup @7, also called pseudo gener-
ator of Q7. More particularly a first assumption concerns the recursive control of this pseudo generator
while the second describe its connection to the infinitesimal generator A. We begin with some definitions.

Let us define the family of linear operators A7 := (A)),en- from Co(E) to itslef, in the following way

Qf-7

VFECE) e B, mE N, AGf = =

(6)

The reader may notice that A7 is also called the pseudo generator of the semigroup Q7. In order to
obtain our results, it is necessary to introduce some hypothesis concerning the stability of the semigroup
Q7. A key point in our approach, as it is the case for most studies concerning invariant distributions, is
the existence of a Lyapunov function. We say that V' is a Lyapunov function if

Ly Vi E = [vs,+00),0. >0 and lim V(z) = . (7)
|| =00
A classical interest of Lyapunov functions is is to show the existence and sometimes uniqueness of
the invariant measure for the process with infinitesimal generator A. We invite the reader to refer to the
large literature on the subject for more details: See for instance[5], [2] or [12].

Recursive control

In our framework, we introduce a well suited stability assumption for the pseudo generator in order to
obtain existence (in weak sense) of the limit of of the sequence of random measures (v, )nen. This will
be done using a tightness property. We now give this assumption that will be mentioned from now as
the recursive control of the pseudo generator A7:

Let v, >0,V : E = [v4,00), ¥, @ € [vs,00) = Ry, such that Agw oV exists for every n € N*. Then
we assume that there exists o > 0 and 5 € R4, such that

Ing e N Vn>ng,z € B, AlpoV(z) <V ' 2)YoV(z)(8—apoV(x)).
fov(0:9) { SNE 01,0y > 0.y > 0, $(5)(5 - Aad(y)) < Cay. ®

Let us notice that the second part of the assumption Zq v (v, ¢) is satisfied as soon as lim,_,+, ¢(y) = 0.
The function ¢ controls the mean reverting property. In particular, we say that we have strong mean
reverting property if ¢ = I; and that we have weak mean reverting property when ¢(y) = y*, a € (0,1)
for every y € [vs,00). The function ¢ is referred in this paper as the test function and is related to
the set of functions f for which we have lim,,_, vJ1(f) = v(f), when v is the unique invariant measure
of the process with infinitesimal generator A. This assumption is crucial to prove the tightness of the
sequence (V1) en+ and consequently to obtain the existence of a limit point (not necessarily unique) for
this sequence.
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Infinitesimal approximation

This part presents the assumption that enable to show that any limit point of the sequence (v1),en=
is an invariant measure for the Markov and Feller process with infinitesimal generator A. We aim to
estimate the distance between an invariant measure of P and v]! (see (5)) for n large enough. In order to
do it, we introduce an additional hypothesis concerning the distance between A7, the pseudo generator
of Q7, and A, the infinitesimal generator of P.

We assume that

E(AY,A)  3ng € N*Vn =ng,Vf € D(A),Vz € E |A)f(z) — Af(x)| < Ap(z,7n), (9)

where Ay : RY x Ry — Ry can be decomposed in the following way:

Let ¢ € N. We introduce g = (¢g1,...,94) and ]\f = (/~\f71,...,/~\f7q) two families of functions with
gi :RY 5 R, and Ag; : E x Ry x RNi x G; — R,. Moreover, for every i € {1,...,q}, we introduce
a positive finite measure 7; defined on a measurable space (G;,G;), and a family of random processes
(Ui(7,0;))e,eq, taking values in RYi| N; € N*. We suppose that we have

q
Vo e RLYVEE D) Aswt) =Y [ BiRye.tUie, ©:)0, 00]m(d0)i(a)
=1,
with sungeE!tE[0’%0]’2»6{1”(1}éfIE[[\fﬂ-(:U,t7 Ui(z,0;),0;)]m:(d0;) < co. Using this decomposition, we

assume that for every couple of functions (]\f,ia gi), © € {1,...,q}, one the following assumption holds,
that is gloc(Af,hgi) or gergo(Af,iygi)-

I) Locally compact case We say that Eloc([Xf’i,gi) holds if g; is locally compact and: for every
u € RV, for every ©; € G; and every compact subset K of E we have

%gr(l) 522 Agi(z,t,u,0;) =0. (10)

Moreover, we assume that there exists to > 0 and a compact subset Ky of E such that

Vo € B\ Ko, Vt € [0,t0], Yu € RN VO, € Gy, Agi(z,t,u,0;) = 0. (11)

IT) Case sup,cy- ¥1(gi) < 00 a.s. We say that E,.g0(A 4, g;) holds if g; is locally compact, sup,,cy- #7(gi) < 00
and one of the following properties holds:

For every compact subset K of E and all ©; € G;, we have

lim sup Ay (z,t, Ui(x,0;)s,0;) = 0 a.s., and (12)
t—0 zeK
lim  sup Af,i(x,t Ui(z,0;):,0;) =0 a.s.

|2[=00 £€[0,7n,]

or the following holds instead: For every ©; € G,

lim sup Ay, (z,t,Us(z,0;)¢,0:)gi(z) = 0 a.s, (13)
t—0 z€E
The reader may notice that the measures m;, ¢ € {1,...,q} are not supposed to be probability

measures. However, in many cases, those measures are built using some probability measures. This
representation assumption is related to the fact that the transition functions Q) (z,dy), ¢ € E can be
represented using random variables (which does not depend from ) through the variable ©; and using
random processes through (U;(z, ©;):):>0- This approach is well adapted to stochastic approximations
that can be associated to a time grid such as numerical schemes for stochastic differential equation with
a Brownian part or/and a Jump part.

This concludes the part concerning the assumption and we can focus on the main results concerning
this abstract approach.
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3.2 Convergence
3.2.1 Almost sure tightness

From the recursive control assumption, we obtain the tightness of (v1),en=. This is one of the purpose
of the following Theorem. We recall that tightness implies that the sequence has at least one limit point.
Another interest of this result is that the functions ¢ and ¢ are not specified explicitly and then this

framework apply to many diverse configurations.

Theorem 3.1. Let s € (1,2], v. >0, V: E = [vs,00), ¥, ¢ : [vs,00) — Ry, We assume that 1) is lower
bounded, that Zg v (¢, ®) (see (8)) hold and that

n

1 .
P-a.s. sup g anAZ(w o MY3(Xp 1) < 0. (14)
neN* L
Then
P-a.s. sup (V" 1poV.(poV)*) < . (15)
neN*

Finally, if Ly (see (7)) holds, and the function x — x~'p(x)1p(x)Y/* tends to infinity as x goes to infinity,
then the sequence (V) en+ is tight. Consequently, if the sequence (V]!)nen+ has a unique weak limit v then
for every continuous function f satisfying f = o(V~"'.¢o V.(¢p o V)/*), we have lim,, o V1 (f) = v(f).

Proof. Using (8), there exists ng € N such that for every n > ng, we have

[z/)oV(Xn_H) ﬂ—aqSOV(X”).

b o V(Xn) m} STEmn %5

Since the function defined on R by y y'/5 is concave, we use the Jensen’s inequality and obtain

Yo V(X)) B—agoV(Xn)\l/s
]E{ Yo V(X,)/s |}-”} <(1 Ty )
’7n+1(ﬁ - Oé¢ o V(Xn))
<1+ T .

Now, we use (8) and it follows that there exists A € [0,1), C\ > 0, such that

Qa0 V) (X0) <o V)V () + P (0 V) (Xa)V T (X)(8 — a0 V(X))
C)\ Oz(l - )\)

<00 V) H(X0) At o VL)Y (T = TRV ()00 VX)),

or equivalently,

. c
VT )6 o V(X o VI S~ gy A (o V) S (it W)

Consequently, the result follows from (14), E[¢) o V(X,,,)] < o0, and the fact that 1) is lower bounded on
[V, 00).

O]
3.2.2 Identification of the limit

In Theorem 3.1, we obtained tightness of (v1),en+. It remains to show that any limit point of this
sequence is an invariant measure for the process with infinitesimal generator A. This is the interest of
the following Theorem which uses the infinitesimal approximation.

Theorem 3.2. Let ng € N*. We assume that for every f € D(A), we have
P-a.s. ILm Z/,Z(Azf) =0. (16)
We also assume that E(A7, A) (see (9)), holds. Then
P-a.s. lim v)/(Af)=0 (17)
n—oo

It follows that, P—a.s., every (weak) limiting distribution v1 of the sequence (V])nen+ is an invariant
distribution for the semigroup (P,)i>0 with infinitesimal generator A.
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A direct consequence of this result is that if (v7),en- is almost surely tight and the semigroup
(P})¢>0 with infinitesimal generator A admits a unique invariant measure v, then almost surely (1), en-
converges to v.

Proof. First we write

VAL~ VIAT) = 2 S mALF(Xi 1) — mAF(Xe ).
" k=1

Now we use the short time approximation £(A7, A) (see (9)) and it follows that there exists ny € N*
such that

1 & - C <
T > AL f(Xio1) —mAf(Xpo1) = T > A p(Xeo1, ).

n n
kZ:’I’Lo k}:no

Moreover, we have the following decomposition

q
Vo € R4Vt € [0, vn, ], Ag(z,t) = Z/E[[\f,i(%% Ui(x,0;)¢, 0;)]mi(dO;)gi(x)
=1,

with for every ©; € Gy, U;(x,0;) = (Ui(x,0;):)i>0 a RV-valued random process and

sup /E[Afyl($7t, Uz(xagz)h@z)]ﬂ-z(d@z) < 0.
z€Et€[0,vn],i€{1,.,q}
G;
Now we assume that Eego(A s, gi) (see (12) and (13)) holds for Ay ;. If Eoe(Ay 4, 9:) (see (10) and (11))
holds instead of E;40(Af,i,9:), the proof is similar by simpler so we leave it out. In order to obtain the
desired convergence, we first fix ©; € G; and study

I & <
A > e i (X1, 70, Ui(Xi-1,©4),, 0)gi (X 1)

n k=ng
We assume that (12) holds. If instead (13) is satisfied, the proof is similar but simper so we leave it
to the reader. For R > 0, we denote Br = {z € F,|z| < R}. Using Eurgo(Ass,9:) (see (12)), we have
immediately lim,, ., JNXN(X”_I, Yr, Ui(Xn—1,0i),,0)1x,_,1<r = 0 a.s. Then, since g; is a continuous
function, as an immediate consequence of the Cesaro’s lemma, we obtain

S
nlggonn D A (X1, Ui( X1, 04) 4, ©) 96 (Xx- 1)L x, <y = 0 as.

k‘:TLO

Moreover, using (12), for every n > ng, we have lim),|_o ]\fﬂv(a:,’yn,Ui(a:,G),-),Yn,@i) = 0 a.s.. Then,
almsot surely, we obtain

I -
i Z Mg i (X1, Ui(Xk—1, ©4),,, ©i)9(Xe—1) L1 x,_ >R}
n k:no

< sup |Agi(z,t,Us(x, ©;)¢,0:)] sup v(g:).
|z|>R,t€[0,7n] nEN*

We let R tends to infinity and since sup,cy- ¥71(gi) < oo, the left hand side of the above equation
converges almost surely to 0. It remains to obtain the hypothesis of the Dominated Convergence Theorem.
We have, for every n € N* n > ny,

1|~ -
E[/F| Z Nl i (Xi—1,7k: Us (%, 05) ., 03) 93 (Xie—1)| i (dO;)]
G;

k:’ﬂo

< sup E[/ |/~\f,¢(x,t, Ui(x,0,)t,0;)|m:(dO)] sup v, (g;).
z€E,t€[0,vn,] neN*

k3
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with sup,c g re(0,.40] El S |Asi(x,t, Us(x,0;)s,0;)|mi(dO;)] < oo. Consequently, it follows from the Domi-
G

nated Convergence Theorem that

. 1 = 1Y
lim Fn ;nkAkf(Xk—l) - l/gAf =0.

n—oo

It follows that almost surely lim,, o, ¥7Af = 0 for every f € D(A). Since Af beglongs to Co(FE), we
obtain that v7 (Af) = 0 a.s. for any limit point v of the sequence v]! and the conclusion follows from
the Echeverria Weiss theorem (see Theorem 2.1). O

3.2.3 General approach to prove (14) and (16)

Through Theorem 3.1 and Theorem 3.2, we showed how to obtain existence of limit points for (v)7),en=
and how to identify these limit points to invariant measures for A. This simply requires a recursive
control assumption, an infinitesimal approximation hypothesis and also (14) and (16). This section is
dedicated to the study of (14) and (16). This assumptions are not trivial to verify in most cases but a
general approach can be used. We present it from here.

Let p € (1,2] and an increasing function ez : Ry — R,. For f,¢g: F — R and (X, )nen a sequence of
random variables with X, € o(X;,i € {0,...,n}) for every n € N, we assume that there exists ng € N,
and C' > 0 such that, for every n > ny,

Ie(fgXper) B () = Xl X0] < Cerlnin)lg(X0)l, (15)
and
SWraalgper) D || rlmBllg(X,)l] < oo (19
n—1 nIn

and we will also use the notation SWrz - (g, p,ez) We will also use the hypothesis

Wrzoa(f) Y et =g ) < o (20)
n=0 n+tl

with the convention 79/79 = 1. One notices that this last assumption holds as soon as the sequence
(Nn/¥n)nen is non increasing We propose a first result which enlightens the interest of these hypothesis
and will be of particular interest when f = (¢ o V)'/* in the study of the tightness and when f € D(A)
for the identification part.

Lemma 3.1. Let p € (1,2], g : E — Ry, f : E — R, such that A)f exists for every n € N*,

er : Ry — Ry an increasing function and (X,),en a sequence of random variables with X,, € o(X;,4 € {0, ...

for every n € N
We assume Zx(f,q,%,p,ez) (see (18)) and SWz (g, p,€z) (see (19)) hold. We have the following
properties

A. If f: E— Ry and SWzz 4 n(f) (see (20)) holds, then

P-a.s. :;5) —;n ’;nkAZf(Xk,l) < 00. (21)
B. If f is bounded and .
i 32 e /o = e/l =0 (22)
Then .
Poas.  lim I;I;nkfx; F(Xi1) =0 (23)
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Proof. We write

—zn:mz‘IZf(qu) :_an(f(Xk) f(Xk-1) +Zn:@ — Q3 f(Xy-1))

k=1 =1 Tk o1 'k

We study the first term of the right hand side.First we write

L) F(Xm).

_727716 J(Xh1)) = Hzl,hf(Xo)— o ! g( -

Hn’)/n nk 2 Yk Yk—1

First, we assume that f : £ — R, and SWzz ,,,(f) (see (20)) holds. From SWzz -, (f) (see (20))
together with Kronecker’s lemma, we obtain

. L (M6 M1
im — (77 )EfX,_ -0,
n—too Hn,; Ve Ye—1/+ X))
and since f is positive, we deduce that

n

:gg_i];Zi(f(Xk) f(Xg—1)) < oo a.s.

Now, when f is bounded, we deduce from (22), that lim,_, e 7 /(HpYs) = 0 and

lim —— S B (F(X) ~ f(Xe1) =0 as.

n—oo H,, Pt Vi

This concludes the study of the first term and now we focus on the second one. From Kronecker
lemma, it remains to prove the almost sure convergence towards zero of the martingale (M,,),en+ such
that My := 0 and for every n € N*¥,

n

Mo=3 (X0 = 907 (X)),

From the Chow’s theorem, this convergence will be a consequence of the finiteness of the series

S (S ) EIF(X5) — 9 F(Xi)l?)
k=1

Vi Hy
Moreover
E[|f (X&) = Qf (Xe—1) 17| Xk1]"? <E[| f(X5) — Bior || Xp—1]"/*
+E[|Xp—1 — QU (Xp—1)|°| Xp—1]"/?
with
E[|Xi—1 — Q) f(Xp—1) || Xp-1] <E[|E[Xr—1 — f(Xi)|Fr1]|?| Xi—1]
<E[[f(Xk) — Xp—1]"[ Xp—1]
We conclude using Zx (f, g, X, s,ez) (see (18)) with SWz (g, s, ez) (see (19)). O

The following Lemma presents a Li-finiteness property that we can obtain under recursive con-
trol hypothesis and strong mean reverting assumption (¢ = I;). This result is thus useful to prove
SWrz ~.5(9, psez) (see (19)) or SWzz ., (f) (see (20)) for well chosen functions f and g in this particular
situation.



3 CONVERGENCE TO INVARIANT DISTRIBUTION - A GENERAL APPROACH 11

Lemma 3.2. Let v, >0,V : E — [v,,00), ¥ : [vs,00) = Ry, such that flﬁlwo V' exists for every n € N.
We assume that Zg v (¢, 14) (see (19)) hold and that E[p o V(X,,,)] < oo for every ng € N*. Then

SlelgE[l/J oV(X,)] < > (24)

Proof. First, we deduce from (8) that there exists ng € N such that for n > ng, Zg,v (¥, 1) can be
rewritten

E[y) o V(Xpn11)|Xn] <o VI(X,)(1 - 'Yn+104V_1(Xn)V(Xn)) + Y4189 0 V(Xn)v_l(Xn)
<¢ o V(Xn)(l - '7n+1(1 - )\)O‘) + '-Yn—i-lc)v

Applying a simple induction we deduce that E[p o V(X,,)] < E[p o V(X)) V (fi;)a O

The same results holds if with assume only that E[y oV (X,,,)] < oo for the same ng as in Zg v (¢, 1)
(see (19)). Now, we provide a general way to obtain SWz , »(g, p, ez) and SWrz ~ ., (f) for some specific
g and f as soon as a recursive control hypothesis hold but without making strong mean reversion
assumptions.

Lemma 3.3. Let v, > 0, V : E — [04,00), 1,0 : [vs,00) — Ry, such that A;’Lﬂ; oV exists for every
n € N. We also introduce the non increasing sequence (0,,),en+ such that Zn>1 OnYn < 0. We assume
that Zg v (¢, ¢) (see (8)) hold. Then

> OBV (X 1)¢ o V(Xp 1)t o V(Xp1)] < 00 (25)

In particular, let p € (1,2] and an increasing function ez : Ry — Ry. If, we also assume

M,
Hyvn

p . : : Y
03 () ex(m) < o0, (26
) )neN* is mon increasing an ex(Yn) < 00, (26)

SWI,%T](Pa €1) (7;151(%1)( Hy~

n=1

then we have SWz (V" poVipoV,p,ez) (see (19)). Moreover, if

. . . > (Mnt1/ Y1 = M/ n)+
d E < 00,
)neN* 18 non 1nmcreasing an Hn (0.0

(771 (Mnt1/ Vo1 = Mn/n)+

SWIImn n J7i

n=1
(27)
then we have SWrz ,(V ¢ o Vipo V) (see (20)).

Proof. There exists ng € N such that for n > ng, Zg, v (¥, ¢) can be rewritten

TtV K)o VX (60 V(X) — fa) < LT 2B 2 Vs K]

Using (8), and since the sequence (0,,),en+ is non increasing, we obtain a telescopic decomposition
as follows

Yo VI(Xn) —E[Yo V(Xpi1)[Xn]

Ont1 Y1V H(Xn)¥ o V(Xp)p 0 V(Xy) <Opp a(l— ) + Mn410n41C0 /e
Ot o V(Xp) — Ony1E[Yp o V(Xpi1)[Xn] Cx
< .
X a(l — )\) + 7n+1@n+1 a(l — )\)

Taking expectancy and summing for every n > ng yields the result as ¢ takes positive values and E[¢) o
V(Xn,)] < co. The second part of the result is a consequence of Chow’s theorem.
O

This result concludes the general approach to prove convergence. The next part of this paper is
dedicated to show how the approach we propose is well adapted to many diverse and classical applications.
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4 Applications

In this section, we apply the general approach presented above to practical cases. Before doing it, we give
some standard notations and properties that will be used extensively in the sequel. First, for « € (0, 1]
and f a a-Holder function we denote [f]o = sup,, [f(y) — f(2)|/|ly — z[*.

Now, let d € N. For any R%*?-valued symmetric matrix S, we define \g := sup{As 1,..\g.q,0}, with
As,i the i-th eigenvalue of S.

We follow with some useful polynomial inequalities. Let u,v € Ry, then

Va € (0,1), (u+v)* <u® +v*. (28)
Vo > 1, (u+v)* <u® + a2 (u o +v®). (29)

Let [ € N*. We have also

1 l
Vo> 0w e RYi=1,...,0, > u|" <1070y juyl* (30)
i=1 i=1
We also recall the Burkhoder Davies Gundy (BDG) inequality for discrete martingales. Let p > 1
and (M, )nen a R-valued martingale and define Fh = o(My, k €{0,...,n}). Then, there exists C}, > 0
such that
E[|Mal?) < Cp Y Bl Mirr — Myf*| 5172 (31)
k=0

In the following, we propose some applications for three different configurations always under weak
mean reverting assumptions. The first one treats the case of the Euler scheme for Markov Switching
diffusions for test functions with polynomial growth. The second, we prove convergence for the Milstein
scheme for test functions with polynomial or exponential growth. Finally, we consider the Euler scheme
for general diffusion processes with jump and test functions with polynomial growth. For each of the three
applications, we give the proof of the recursive control assumption, of the infinitesimal approximation
hypothesis and also of (14) and (16). We invite the reader to refer to the previous section to see how
this assumptions interact together in order to obtain convergence and to identify the limit. The reader
may notice that each of these three applications are treated independently from one another and then
can be read in any desired order.

4.1 The Euler scheme for a Markov Switching diffusion

In this part of the paper we study ergodic regimes for Markov switching Brownian diffusions. This study
is a complement to the study made in [10]. More particularly they treat the convergence (1)), cn+ under
strong mean reverting assumption that is ¢ = I;. In this paper, we do not restrict to that case and
consider weak mean reverting assumption that is ¢(y) = y%, a € (0, 1] for every y € [v,, 00). Similarly as
in their study we consider polynomial test functions v such that ¥ (y) = y?, p > 1 for every y € [v,, 00).
Nevertheless, a slight difference with this paper is that they consider only p > 4.

Now, we present the Markov switching model, its decreasing step Euler approximation and the
hypothesis necessary to obtain the convergence of (1), en~ built with this Euler scheme. We consider a
d-dimension Brownian motion (W;);>¢ and (¢;);>0 a continuous time Markov chain taking values in the
finite state space {1,.., Mo}, Mo € N* with generator Q = (¢:,w)zwe{1,..,M,} and independent from W.
We are interested in the solution of the d dimensional stochastic equation

t t

X, = ;v—i—/b(XS,CS)ds+/a(XS,CS)dWS (32)

0 0

12
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where for every z € {1,.., My}, b(.,2) : R = R? and o(.,2) — R¥? [ € {1,...d}, are locally bounded
and continuous functions. We recall that ¢, ., > 0 for z # w and ¢, 1 +¢(z,1) for z,w € {1,.., Mp}. The
infinitesimal generator of this process is given by

d 92 f Mo
Af(l‘, Z) = <b(17, Z)v vxf(xa Z)> + Z (O'a'*)i,j(zvz) 8:@8% (:ZJ,Z) + Z QZ,wf(sz) (33)

for every (z,z) € R? x {1,.., My}. We study the Euler scheme for this process such that for every n € N
and t € [I',, T'p41], we have

Yt ZYFH + (t - l—‘n)b(yFn,Ct) + U(an,(t)(Wt — Wrn) (34)

We will also denote AX,,.; = Xr,, — Xr, and

n+1

—1 —_
AX, 11 =Yn+1b(X1,,, Cr,),

AXS, =o(Xr,, ) (Wr Wr.). (35)

n+1 - n

and Y;TLH =Xr, + 22:1 AX,, ;. In the sequel we will use the notation U, 1 = v;i{z(anH —Wr,).
Actually, we introduce a weaker assumption than Gaussian distribution for the sequence (U, )nen+. Let
q € N*, p > 0. We suppose that (U, ),en+ is a sequence of independent random variables such that

My ,(U) VneN*Vge {l,...,q}, E[(U,)®] =E[N(0,I))%] (36)
M,(U) sup E[|Un|P] < 00 (37)

Now, we assume that the Lyapunov function V : R? x {1,.., Mo} — [v.,00), v, > 0, satisfies Ly (see
(7)) with E = R% x {1, .., My}, and

V.V < CyY, sup |D2V (,2)| < o0 (38)
z€R, ze{1,..,Mp}
and
Vze{l,...,Mp},3ev, > 0,Vz € RY, V(z, 2) < ez inf  V(z,w) (39)
we{l,..,Moy}
We also define
1

Vr € Rd, S {1, . MQ}, /\1/,(.13, Z) = 5)‘D§V(z,z)+VzV(r,Z)®2w/’oV(:c,z)w/oV(ac)*1- (40)

When 9 (y) = y?, we will also use the notation A, instead of A\,. We suppose that there exists C' > 0
such that, for every z € R?, z € {1, .., My},

Bp)  |b(x,2)]* + oo™ (2,2)| < CooV(z,2) (41)

We now introduce the key hypothesis in order to obtain recursive control for the polynomial case,
that is for p > 1, we have ¥ (y) = yP for every y € [v.,00). We assume that there exists 8 € Ry, a >0
and € > 0, such that for every z € RY, z € {1, .., My}, we have

Ry (VV(2,2),b(x,2)) + xp(@,2) < B —adoV(z,2), (42)
with
Mo
Xp(@,2) = [IAp[l0c2®P =+ Troo™ (2, 2)] + VI P (2,2) D (g + VP (2, w) (43)

w=1

13
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4.1.1 Recursive control

Proposition 4.1. Let v, > 0, and ¢ : [v,,00) = R% a continuous function such that ¢(y) < Cy with
C > 0. Now let p > 1 and define ¢ : [v.,00) = Ry such that ¥ (y) = yP.

We assume that the sequence (Uy,)nen+ satisfies Mpr2(U) (see (86)) and Ma,(U) (see (37)).

We suppose that (38), B(¢) (see (41)), R, (see (42)), are satisfied. Then, there exists o > 0, B € Ry
and ng € N*, such that

Vn > ng,x € RLVz € {1,.., My}, AloVi(z,z) <V x, 2)poV(x,2) (B —apoV(x)). (44)

Moreover, when ¢ = Id we have

sggﬂﬂ[w oV(Xr,,(r,)] < co. (45)

Proof. First we write
VP (yr‘n+1 ) CFn+1) -vr (YFTN CFn) =Vr (an+1 ) CFn) - VP (YFTL ) CFn)
+Vp(yrn+1 ) CFn-H) - VP(YFTL-H ; CFTL)
We study the first term. From the Taylor’s formula and the definition of A, (see (40)), we have

YoV(Xr,,,, (r,) =¢oV(Xr,,C(r,)+ (Xr,,, — Xr,,V.V(Xr,, ()0 o V(Xr,, (r,)

+%(D2V(§n+1, e )V o VI(Eng1.Cr,) + VV (Entr, Cr, ) 20" 0 V(€nya, Cr,)) (X, — X1, )®2

n

<yYoV(Xr,,Cr,) + (X, — X1, VoV(Xr,, Cr, )Y o V(Xr,,Cr,)
FAy (Eng1) [ 0V (Engr, Cr, ) X1,y — X1,

with &,41 € (X1, X1,,,). First, from (38), we have sup,cga \p(z) < 00.

Now, since (Up)nen- is a sequence of independent random variables satisfying Mas1(U) (see (36)),
we have

EXr,,, — Xr,

ana ) CFn] = ’7n+1b(yr‘n , CF,L)
E[Xr,., — Xr, *[X1,., (] = Yat1Trloo* (X1, C0,)] + v 6(X T, ¢, )|

n+1

Assume first that p = 1. Using (41), for every & € (0, ), there exists ng(&) such that for every
n = ng(&),

||)\1Hoo%21+1|b(yrn,CFn)|2 < (@ —@)poV(Xr,,,(r,)- (46)
From assumption (43), we conclude that

2
T EV(Xr,,0 ¢r) -V (X, o)X, + Y (9, 0+ OV(XT,,2) < —ago V(Xr,,(r,)

z=1

Assume now that p > 1.Since |VV| < Cy'V (see (38)), then +/V is Lipschitz. Using (30), it follows
that

VP (i, ) S(VV(Xr,, ) + VWV X — X, )7
<2 =3)+ (VP4 X, (r,) + [\/Vﬁp_2|yl“

We focus on the study of the second term of the remainder. First, using B(¢) (see (41)), for any p > 1,

= Xr,[*7?)

n+1

X, — X1, | < el o VI(Xr,, ¢, )P (1 + [Upsa |2P).

Let & € (0, ). Therefore, we deduve from My, (U) (see (37)) that there exists ng(&) € N such that
for any n > ng(&), we have

E[‘an«#l - yFn

?|Xr,, ¢ € Ynp100 V(Xr,, ()P a—a
6/ Tall5s [ Aplloo22P=3)+ [VV]3P 2

14
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To treat the other term we proceed as in (69) with |[Ai]|s replaced by [|Apllec2?? 3 [VV]X 72, «
replace by & and & € (0,&). We gather all the terms together and using R, (see (42) and (43)), for
every n = no(&) V ng(&), we obtain

My
E[Vp(yl"n_u ) CFn)_Vp(yFna CFTL)'YF,” CFn] + V17P($7 Z) Z (QZ,w + G)Vp(il', ’lU)

w=1

<na1pV?P (X1, Cr,)(B—ago V(Xr,,(r,))
A VITP(Xr, . (r,)do V(an,Crn)p)

+’Yn+1pvp71(yl“n7CFn)(¢ o V(YFTMCI—‘”)(OA[ - d) + (Oé - ||¢/Id||go_1

<Y1 VP (X1, Cr, ) (Bp — app o V(Xr, . (r,.))-

Now, we focus on the second term. First, since ( and W are independent, it follows that

2
E[Vp (an+1 ) Crn+1) Ve (yrn-Pl ) Crn ) |YFW,7 QFH ’ AYTLJrl] = Yn+1 Z(QCFn 2 + ngoo(’YnJrl))Vp (YFH-H ’ Z)

z=1

Now, we use the same reasoning as in the study of the first term and for every z € {1,.., My}, we
obtain

E[V?(Xr,,,,2) — V?(Xr,,2)|Xr,,(r,] SC(Vif1Vp71(an,Z)¢ oV(Xr,,z) +vh, 1900V (Xr,,2)P)
<C%11flvp(yrnvz)

where C' > 0 is a constant which can change from line to line. It follows that there exists ¢ : Ry — R4
satisfying lim;_,o £(t) = 0, such that we have

Mo
E[VP(XFn,+1 ’ CFn,+1) - Vp(XFn+1 y Crn)|XFn ) CFn] =Tn+1 Z(QCFn 2T ngw(7n+1))E[Vp(XFn,+1 ) Z)|Xrn ) CFn]
z=1

My
<Vn+1 Z(qun,Z +e(Yn+1))VP(Xr,, 2)

z=1

and (44) is a direct consequence of R, (see (42) and (43)). The proof of (45) is immediate application
of Lemma 3.2 as soon as we notice that the increments of the Euler scheme (for Markov Switching
diffusions) have finite polynomial moments which imples (24).

O

4.1.2 Infinitesimal control

Proposition 4.2. We suppose that the sequences (Up)nen~ satisfiess M 2(U) (see (36)), Ma(U) (see
(37)). We also assume that b and o are locally bounded functions, that ¢ has sublinear growth, that B(¢)
(see (41)) holds and that sup,,cy- v(|o]?) < co. Then, we have E(AY, A) (see (9)).

Proof. First we recall that D(A) = C%(R?) and we write

f(YFn+17CFn+1) - f(yf,ﬂ(r'n) :f(yl“,ﬁu@rn) - f(Yan CFn)
+ (X1 Crni) — (X Crn)-

Since W and ( are independent, we have

Mo

E[f(yrwﬂ ) CFnJrl) - f(YFnJA ) CFn) an s CFna AY’rLJrl] =Yn+1 Z<QCrn,z + n_0>00('7n+1))f(yrn+1 ) Z)
z=1
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Using Taylor expansions of order one and two, for every z € {1,.., My} and the fact that U, is centered,
we obtain

Elf(Xr,,,,2)—f(Xr,,2)[Xr, =2,¢r,]
=E[f(Xr, +AXn+1a z) = f(Xr,,?2)[Xr, = z,(r,]

(
IE[f(y Thg1o ) f(—XFn + AX:H»M Z)|yrn =, CF,J

+

1
< / IV f e+ 052, o Vs s 2) b, Co, Vs |6
0

+ / D2 f(z + b(z,Cr, ) ¥ns1 + 00 (2, Cr, )/ Ant 10, 2)||o(2, ¢, ) v Anriv[2dOpy (dv).
0

where py denotes the density of the centered Gaussian random variable taking values in R? of which
covariance matrix is the identity matrix. Combining the two last inequalities,we obtain,

IY’r:ﬁl*lE[f(yFn-%—l’CFn-i—l) - f(yFn+17CFn)|yFn7§Fn] < Zqun,Zf(Yan Z) + ngm(7n+1)‘|f||00

0
+> (e, =l + L0 me))A g1 (X, Cons Yt D)DK, o)+ Ag2(Xr, s Cos Yatn) oo™ (X, Cry )

Now we define E = R? x {1,.., My}, G = [0,1], ©; = 6, 7, the measure defined on (Gy,B(G1))
(with B(G1) the sigma fields endowed by the Borelians of Gl) by w(d@l) = dO; (that is the Lebesgue
measure), and for every (z,z) € R4 x {1,.., My} = E, we have A1 (z,2,7) = [ Agpi(x,2,7,01)m(dOy),

G1

with

Apqp iR {1,., Mo} xRy x [0,1] — Ry
(2,2,7,0) = S0 Vof(a+0b(z, )7, w) ],

and gy (,2) = |b(x, 2)|- We are going to proove that E,c(As1,91) (see (10) and (11)) holds. Using
(41) and the fact that ¢(x) < C|z|, the functions b have sublinear growth: there exists Cj > 0 such that
|b(z, 2)|4+ < Cp(1 + |z|) for every = € R? and z € {1,.., Mp}. Therefore, since f has compact support,
it follows that there exists o > 0 and R > 0 such that sup|,~ g e(1,.., Mo} SUP~y<t, Asa(z,2,7,0) =0
for every 6 € [0,1]. Moreover since V, f is bounded and b is locally bounded, we conclude that /N\ﬁl,
satisfies Eoe(A1,91) (see (10) and (11)).

We focus on the other term. We define Gy = R? x [0,1], ©3 = (v,0), o the measure defined on
(G2, B(G2)) (with B(G2) the sigma fields endowed by the Borelians of G2) by m2(d©2) = dfpy (dv), and
for every (z,2) € R? x {1,..,My} = E, we have Ayo(z,2,7) = [ Afo(z,2,7,02)m2(dO>), with

G2

Apo tREx{1,., Mo} xRy xRN x[0,1] — Ry
(2.2,7,0,0) = 30 D2f(2 + bz, 2)7 + o (x,2) v, w) /702,

and go(z, 2) = |o(z, 2)|?. We are going to proove that E.rgo(Af .2, g2) (see (12)) holds. We fix v € RY
and 6 € [0,1]. Now using (41) and the fact that ¢(x) < C|z|, the functions b and o, have sublin-
ear growth: there exists Cy, > 0 such that |b(z,2)| + |o(z,2)| < Cpo(1 + |2|) for every z € R? and
z € {1,.., My}. Therefore, since f has compact support, it follows that there exists ¢y > 0 and R > 0
such that sup|gs g .eq1,.. Mo} SUPY<t, |As2(z, 2,7, v,60)] = 0. Moreover since D2f is bounded and b and

o are locally bounded, we conclude that we have E.,go(Af .2, g2) (see (12)).

Besides, it is immediate to show that Ecrgo( 0 (Ynt1)||flloc, 1) (see (13)) holds.
n— oo



4 APPLICATIONS 17

Finally, it remains to study E[f(Xr,.,,¢r,) — f(Xr,,¢r,)| X1, ¢r,]- Using once again Taylor ex-
pansions of order one and two, we have

— I - d 32
ry’f:"l]:lE[f(XFn+1’Crn)_f(XFn7CFn)|XFn =z,(r, = Z] - <v93f(‘r7 Z)’ b(x’ Z)> - Z (UU*)i7.j(x7Z) axafx ) (.’IJ,Z)
i,j=1 v

1
< / Vo (@4 0b(, D)y, 2) — Vi £ ()b, 2)]d
0

1
+ / D2 (@ + bz, 2) 111 + 00 (w, 2)Ans10, 2) — D2F () |0z, 2)0[*dbpo (dv).
0

Using the same reasonning as before, one can show that E,.(Af3,91) (see (10) and (11)) and
Eergo(Afa,g2) (see (12)) hold with

Aps RIx{1,.,My} xR, x[0,1] — Ry
(,2,7,0) = [|Vaf(z+0b(x,2)y,2) = Vo f(z,2)],

and

Apy :REx{1,., Mo} xRy xRN x[0,1] — Ry
(z,2,7,0,0) = |DIf(x+bz,2)y+00(x,2) /v, 2) — DI f()||v]?

We gather all the terms together and the result follows.
O

4.1.3 Proof of (14) and (16)

Proposition 4.3. Let p > 1,a € (0,1], p,s € (1,2] and, ¥(y) = y?, ¢(y) = y* and ez(t) = tP/>. We
suppose that the sequence (U, )nen- satisfies My 2(U) (see (36)) and Mo, (U) (see (37)).

We also assume that (38), B(p) (see (41)) and R, (see (42)) and SWr ~,(p,ez) (see (26)) hold. Then
SWz 4 (VPTeT per) (see (19)) hold and we have the following properties

A. If SWrz~., (see (27)) and (39) also hold and p < s(1 — (1 — a)/p), then we have SWrz - ,(VP/?)
(see (20)) and

1 < - o
P-a.s.  sup TH Z WkAZ(w © V)S(XFA-,_1 ’ CFk—l) < 0. (47)
neN* n
Moreover,
P-a.s.  sup v1(VP/5Te71) < oo, (48)
neN*

and that if Ly (see (7)) holds, then (V])pen~ is tight
B. If f € D(A) and (22) also holds, then

P-a.s. nhﬁnc}o HL Z nkAZf(Xkaucrka =0 (49)
" k=1

Proof. The result is an immediate consequence of Lemma 3.1. It remains to check the assumption of
this Lemma. First, we show SWz ., ,(VPT271 p ez) (see (19)). Since (38), B(¢) (see (41)) and R, (see
(42)) hold, it follows from Proposition 4.1 that Zg v (1, ¢) (see (8)) holds. Then, using SWrz -, (p, 1)
(see (26)) with Lemma 3.3 gives SWz (VP11 p ez) (see (19)). In the same way, since p < s(1 —
(1 —a)/p), we deduce from SWrz -, (see (27)) and Lemma 3.3 that SWrz -, (VP/*) (see (20)) holds.

Now,we are going to prove Zx (f, VoTP~1 %, p,ez) (see (18)) for f € D(A) and f = V?/* and the proof
of (47) and (49) will be completed. Notice that (48) will follow from Zg v (¢, ¢) (see (8)) and Theorem
3.1. This is a consequence of Lemma 4.1 which is given below. We notice indeed that Lemma 4.1 and
the fact that under B(¢) (see (41)) and p > 1, we have |oo*| < CVPT2~1 imply that for every f € D(A)
and f = VP/5_there exists a sequence X, such that fx(f, Vatr=1 X p,er) (see (18)) holds and the proof
is completed. O
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Lemma 4.1. Let p > 1,a € (0,1], p € (1,2] and, ¥(y) = y* and ¢(y) = y* . We suppose that the
sequence (U )nen- satisfies Moy, s(U) (see (87)). Then, for every n € N, we have

VieD(A), E[f K. Cron) — FXr,, )X, o] < OV oo™ (Xr,, G )IP%. (50)

with D(A) = {f : RIx{1,.., Mo},Vz € {1,.., Mo}, f(.,2) € C%(R)}. In other words, for every f € D(A),
we have Ix (f,|o0*|P/?, %, p,ez) (see (18)) with X, = f(Y;n,Cpn) for every n € N and ez(t) = t*/? for
every t € R,.

Moreover, if (38), (39) and B(¢) (see (41)) hold and p < s(1 — (1 —a)/p), then, for every n € N, we
have

E“Vp/s (YF"JA y CFV,L+1 ) - Vp/s (YFH y CF,,L) P|YF" ) CF”] < 07724?1 Vp+a_1 (YF” ) CFV,L )a (51)

In other words, we have Ix (VP/5, VPte=1 % p er) (see (18)) with %, = (v o V)/5(X1. ,(r,) for every
n € N and ez(t) = t°/? for every t € R,

Proof. We begin by noticing that

— —1 =
Xr,., — X, | < OvAloo* (X, Co) Y2 Unsal

n+1
Let f € D(A). We employ this estimation and since for f € D(A) then, for every z € {1,.., My},
f(., 2) is Lipschitz, and it follows,
J— 71 —_ % —
VfeD(A),  Elf(Xr...6.) = fXr,. o)X, ) <Cvililoo (X, )1
SOVZfl Vaer/(Xr,,Cr,)
<CALAVT (K, ()

Moreover,

E[lf(Xr,.1:Croa)—f (X, )P Xy, )
2

=Ynt1 D (Ger, = + 0 (m))E[f(Xr,p0,2) = F(Xr00, o)X, G,

z=1

SCynpllf1%,

which concludes the study for f € D(A). We focus now on the case f = V?/5. We notice that (41)
implies that for any n € N,

Xr,., — Xr,| <Ovi oo VIXr,, )L+ [Unsa])

Once again we rewrite the term that we study as follows
VP (X, Cr) = VP (X, Cr,) =VP (X, Cr,) — VP (X, )
+Vp/s (an+1 ) CFn+1) - Vp/s (yl—‘nJA ’ Cl—‘n)

We study the first term. Using (29) with o = 2p/s, it follows from (38) that for any z € {1, .., My},
v/ V (., z) is Lipschitz and we have

VP/S(Xrp, ., 2) = VP/*(Xp,, 2) <2%P/°p/s(VP* 12Xy, 2)|[VV(Xr, 0 2) = VV (X, 2)|
HVV(Xr,p0,2) = VV (X1, 2) /%)
<2%lep/s(WV VP72 (X, 2) [ Xp
+VVIPXr,.,, — X1,

_YFJ

nt1
2p/3).

n+1
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We use the assumption p < s(1 — (1 —a)/p) and it follows from B(¢) (see (41)) that
BV (Xr,.002) = VPP (Xr, ) [Xr, 2] < O3 Ve (X, 2).

In order to treat the first term, we put z = (p,, in this estimation. It remains to study the second term.
We notice that since p < s(1 — (1 — a)/p), it is immediate from the previous inequality that for every
z€{1,..,Mp}, we have

E[V?/* (X1, 2)[X1,, 2] < OVPH (X1, 2).

We focus on the term to estimate and using this inequality, we obtain

E[‘Vp/s (YFWL«FI 7CF,L+1) - Vp/s (YF1L+1 ) CFn) pIYFn ) CF,,L]
Mo
=Yn+1 Z(qCFn 2 + n_0>00(’yn+1))]E[|Vp/s (XFn+1 ’ Z) - Vp/s (XFn+1 ) CFn ) ‘p|XFn ’ Crn]
z=1
MO o o
<Cs1 ) (e, |+ 0 () (VP (X, 2) + VPH T (X, ()
z=1

<Cyp1 VP Y (Xt , (),

where the last inequality follows from (39). We rearrange the terms and the proof is completed. O

4.2 The Milstein scheme

In this part we treat the case of a Milstein scheme (introduced in [11]) with decreasing step for a Brown-
ian diffusion process. As far as we know, there is no study concerning that scheme for the algorithm we
use as for high weak or strong order numerical scheme. We propose two approaches under weak mean
reverting assumption. The first one relies on polynomial and the second one relies on exponential test
functions. More particularly we use an approach with test functions 1 such that ¥(y) = y?, p > 0 for
every y € [v,,00). The other approach is based on test functions v (y) = exp(A\y?), p € [0,1/2], A > 0,
for every y € [v., 00).

We consider a d-dimension Brownian motion (W;);>o. We are interested in the solution of the d
dimensional stochastic equation

X, = x+0/b(Xs)ds+O/a(Xs)dWS (52)

where b : R? — R? and 0,0,,0 : R? — R4 | € {1,...d}, are locally bounded and continuous functions.
The infinitesimal generator of this process is given by

d 92 f
Af(x) = (b(x), V(@) + Y (ag*)i,j(z)m(x) (53)

i,j=1

Now, we introduce the Milstein scheme for (X;);>o such that for every n € Nand t € [I',,, T, 41], we
have

X =Xr, + (t =Tp)b(Xr,) + o(Xr, ) (W: = Wr,)

d d t s
33 0,04(Fr, o (X, ) / / AW AW, (54)
F'll

i,j=11=1 r,

with 0 : R? — R 2+ oy(2) = (014(), ..., 04.(2)).
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—1 .
A‘XnJrl =Yn+16(XT,),

r
d d nt+l 8
—92 — — . .
Xy = Y0 S 0uen(Xr oy (Kr,) [ [ awjaws,
nI=ti=L Lo T
73 —
AX, 1 =o(Xp,)Wr, ., —Wr,). (55)
and Y;HH =Xr, + Z;:l AY;H. In the sequel we will use the notation U,y = 'y;j{Q(anH —Wr,)
Fnt1 s

n

and W,41 = (Wi’iﬂi,je{l,...,d} with Wflil =41 [ [ dWidW{. Actually, for the polynomial case,
r, T'n

we introduce a weaker assumption for the sequence (Up,)nen+ and Wy )nen-. Let ¢ € N*, p > 0. We
suppose that (U, )nen+ is a sequence of independent random variables such that U satisfies

My o(U)  VneN* VGe{l,...,q}, E[Un)®]=E[N(0,14))*] (56)
M,(U) sup E[|Un|P] < o0 (57)

Moreover, we assume that (W), )nen+ is a sequence of independent and centered random variables such
that

M, (W) sup E[[W,[F] < oo (58)
neN*

Now, we assume that the Lyapunov function V : R — [v,,00), v, > 0, satisfies Ly (see (7)) and

VVE <OV, sup [DPV(a)] < oo (59)
reR4
We also define
1
Vr € Rd, )\w(l‘) = 5)\DzV(r)+vv(z)®2wuov(m)w/ov(gﬁ)f1. (60)

When ¢(y) = y?, we will also use the notation A, instead of A,;. We will suppose that, for every z € R,

d
B) (b)) +loo" (@) + Y |0un0i(z)ori(@)P < ChoV(x) (61)

i,5,l=1
We now introduce the key hypothesis in order to obtain recursive control for polynomial and expo-

nential form for .

Polynomial case . First for the polynomial case, let p > 0. We assume that there exists 8 € R,
a > 0, such that for every z € R?, we have

Ry  (VV(2),b(z)) + xp(z) < B —agoV(z), (62)
with
| Mllec Tr[oo™ (2)) ifp<1
) = { Mplloc2® D Teoo*(2)]  ifp > 1. (63)

Exponential case . For the exponential case we modify this assumption in the following way. Let
p < 1/2. We assume that there exists 3 € Ry, a > 0, such that for every » € R?, we have

Rpa  (VV(2),b(z) + K(2)) + xp(2) < B —agoV(x), (64)

with

20
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d d

1 p—1 1 *
K(w) =5 ; l; O 1(2)014(2) + XpVP ™ (@) s Trloo™ (@)]VV () (65)
and
Xp() = m@(w)l In(2//det(%(x)) (66)

for Cy(z) : RY — R* a continuous function such that inf,cgs Cy(z) > 0 and that for every z € R,
the matrix %(x) € R4*? defined by

d

_1/21 .. .,

S(x)i; = =20, (x)[VV]1o? 1/25 Z |0z, 04(x)oy ;(x)| Vi,je{l,...,d},i# ],
=1

d
_1/21
S(2)is =1 — 2C,(2)(| DV VP~ (z) Tr[oo™ ()] + [VV]108 1/252 |0p,04(2)0ri(x)]) Vie{l,...,d}
=1
is a positive definite matrix.

4.2.1 Recursive control
Polynomial case

Proposition 4.4. Let v, > 0, and 1, ¢ : [v.,00) = R a continuous function such that ¢(y) < Cy with
C > 0. Now let p > 0 and define (y) = yP.

We suppose that (Uy,)nen+ is a sequence of independent random variables such that U satisfies Mpr 2(U)
(see (56)) and Moy (U) (see (57)). Moreover, we assume that Wy, )nen+ is a sequence of independent
and centered random variables such that Mapy2(W) (see (58)) holds.

We suppose that (59), B(¢) (see (61)), R, (see (62)), are satisfied. Then, there exists o > 0, § € Ry
and ng € N*, such that

Vn =ng,x € RY, Ao Vi(z) <V Ha)poV(z)(B — agoV(x)). (67)
Moreover, when ¢ = Id we have
supE[¢ o V(Xt,)] < c0. (68)
neN

Proof. First ,we focus on the case p > 1. From the Taylor’s formula and the definition of Ay (see (60)),
we have

YoV (Xr,,,) =oV(Xr,)+ (Xr,., — Xr,,VV(Xr,))¥' o V(Xr,)
+%(D2V(£n+1)w/ o V(§n+1) + VV(§n+1)21/)" ° V(gnJrl))(YFan - XFn)®2'
<¢ © V(an) + <an+1 - yrn ) VV(YF”)MPI © V(YF")
Ay (Eng )Y 0 V(Eni1) (X, — Xp,)%.

with &,41 € (X1, Xr1,,,). First, from (59), we have sup,cga A\p(z) < 0.
Since W is made of centered random variables, we deduce from My 2(U) (see (56)), M2(U) (see (58))
and My(W) (see (57)), that

E[anﬁ»l - an |yl—‘n] = 'Vn-&-lb(yr‘n)

d
E[[Xr,,, — X0, 2 Xr,] < i Trloo™(Xr,)] +vm 10X, + cavnr Y 10n,0i(Xr,)ou;(Xr, )
igil=1

d
+ean Y 10m,0i(Xr,)or; (X, )llo(Xr,)]

i,4,0=1

21
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with ¢q a positive constant. Assume first that p = 1. Using B(¢) (see (61)), for every & € (0, ),
there exists ng(&) such that for every n > ng(a),

d
M loom 1 (DX ) P +eal Y 204X, )ou;(XT,)

i,41=1

%) (69)

d
Hideary s > 100,0i(Xr,)o1;(Xe)|lo(Xr,)| < nar(e — @) o V(Xr,).
id=1

From assumption R, (see (62) and (63)), we conclude that
141;11& oV(r)<B—apoV(x)

Assume now that p > 1.Since |[VV| < Cy'V (see (59)), then v/V is Lipschitz. Using (30), it follows that

VPN (&) <(VV(Xr,) + [VVI[XT,,, — X1,
L2+ (VP (X)) + VYV Xy

)2])—2

- X, [*P7?)

n+1

We focus on the study of the second term of the remainder. First, using B(¢) (see (61)), for any p > 1,
X1, = X, [P < eprppqd 0 VX, )P (14 [Una | + Wi [P).

Let & € (0,a). Then, we deduce from Mo, (U) (see (58)), Ma,(W) (see (57)), that there exists
no(&) € N such that for any n > ng(&), we have

= - - oa—a
- Xrn|2p|XFn} < Yng100 V(Xp, )P

E[| X
X T oy 2O WV

To treat the other term we proceed as in (69) with ||A; || replaced by [|Ay[l00222 3 [VV]3* 72, a replace
by & and & € (0,4&). We gather all the terms together and using (63), for every n = ng(&) V no(&), we
obtain

E[VP(Xr,,,) = V?(Xr,)|X1,] <¥s1pV?PH(Xr, ) (B — ag o V(Xr,))
VT P(Xp,)ge V(Xy, )

+Yn1pV?P (X, ) (¢ o V(X )(6 — &) + (o =

)

<Y1 VP (X1, )(Bp — app o V(Xr,)).

which is exactly the recursive control for p > 1. Now,we treat the case p < 1. Since z — zP is concave,
we have

VP(Xr,,,) = VP(Xr,) <pV? ' (Xr,)(V(Xr,,,) = V(XT,))

We have just proved that we have the recursive control Zg v (¢, ¢) holds for ¢ = I; (with some constants
B € Ry and a > 0), and since V takes positive values, we obtain

E[V?(Xr,,,) = VP(Xr,)[Xr,] <pVP~H (Xr,)E[V(Xr,,,) = V(Xr,)[Xr,]
VP (X, ) (0B — pag o V(Xr,)),
which completes the proof of (67). The proof of 68) is immediate application of Lemma 3.2 as soon as

we notice that the increments of the Milstein scheme have finite polynomial moments which imples (24).
O
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Exponential case

In this section we will not relax the assumption on the Gaussian structure of the increment as we do in
the polynomial case with hypothesis (see (56), (57) and (58)). In order to obtain our result, we introduce
a supplementary assumption in order to express the iterated stochastic integrals in terms of products of
the increments of the Brownian motion. The so called commutative noise assumption is the following

Vo e RV, j e {1,...,d}, zd: Oy, 0i(x)oy j(x) = zd: O, 05(x)0y i (). (70)
=1 =1
In this case, with the notation from (55), we have
d d
ARG = 3 3 Beon (K, Jouy (Ko, OV, L, — WE OV, — W, ) (71)
1 ij=1 lj ) - -
—5 T+ ; l_zl 0z,0i(Xr, )o1i(Xr,)-

In the sequel we will adopt the following notation

d d
4 _ 1 _ _
AX 1 =Pm41b(Xr,) — 9 Tntl Z Zaxzai(XFn)Ul,i(XFn)-v

=1 =1

d d
A Y2 1 S'a 5'a j j i i
AX o1 =5 > > 00,0i(Xr, o, (Xp )WL, = WL )W, — W) (72)

i,j=11=1

Lemma 4.2. Let A; j; e R,i,j € {1,...,d} and U a R¢-valued random variable made with d independent
and indentically distributed standard normal random variables U = (Us)icqa,...a}, Ui ~ N(0,1). We define
Y € R4 such that % ; = 1-2A; 4,3 € {1,...,d} and Yij=—2N;;, 1,5 €{1,...,d},i# j. We assume
that X is a positive definite matrixz. Then

d
Elexp( Y Ai;|UU;])] < 27 det(S)~1/2. (73)

i,j=1
Proof. A direct computation yields

d d d
Blexp( 3 AsylU1)] = [ (2m) 2 exp( 3 Auhusu ~ 1/2 3 )
i=1

R ij=1

d d
< Z /(QW)fd/z exp( Z A; jGuiCjuy —1/2 Z |Giua|*)du
i=1

Ce{~1,1}4pq ij=1

ij=1

d d
=24 /(27r)*d/2 exp( Z A juiuy —1/2 Z |Giui|?)du = 29 det(X)~1/2,

Rd ij=1 i=1

O

Lemma 4.3. Let U a R%*-valued random variable made with d independent and indentically distributed
standard normal random variables U = (Us);cqa,...ay, Ui ~ N(0,1). for every h € (0,1), we have

Vv e RY, Elexp(Vh(v,U) + hZAi7j|Uin\)] < exp( [v|?)2" det(x)~"/2 (74)
0,J

h
2(1 — h)

Proof. Using the Holder inequality we have

d d

Elexp(vVA(v, U) +h " A4y lU0;1)] < Blexp(120 (v, U] Elexp(h Y Ao U0;))

i,5=1 i,j=1

The results follows from Lemma 4.2. O

23
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Using those results, we deduce the recursive control for exponential test functions.

Proposition 4.5. Let v, > 0, and ¢ : [vs,00) = Ry a continuous function such that ¢(y) < Cy with
C > 0 and limy_,o ¢(y) = oo. Now let p € [0,1/2], A > 0 and define 1 : [v,,00) — Ry such that
Y(y) = exp(AyP). We suppose that (59), B(¢) (see (61)), Rp.x (see (64)), are satisfied. We also assume
that

v € RY, Trfoo™ (2)]|b(x)|(VV (x) + [b(z)]) < CVI7P(x)p o V(x) (75)
Then, there exists o > 0, f € Ry and ng € N*, such that
Vn = ng,x €RY, Ao Viz) <V Hz)poV(z)(B — agoV(x)). (76)
Moreover, when ¢ = Id we have

supE[¢ o V(Xt,)] < o0. (77)
neN

Proof. First, with notations (72), we rewrite

)~ VP(Xr,) =VP(Xr, + AX, ., +AX, )~ V?(Xr,)

+VP(Xr, + AX,,, + AX, ) — VP(Xr,)

VP (Xy

n+1

an we study each term separately. Since p < 1, the function defined on [v., c0) by y — yP is concave.
Using then the Tayor expansion of order 2 of the function V, for every z,y € R?, there exists 6 € [0, 1]
such that

VP(y) ~ VP(a) <pV? @)V () - V(@)
—pV? @) (TV (), — 2) + 3 THDPV (02 + (1 0)y)(y — )2))
and then,
VP(y) = VP(a) < V@) (TV (@), = 1) + 51DV acly — o (78)

Using this inequality with z = X, and y = Xp, + AY;_H + AYi_H, it follows that

VPI(Xr, +AX 00+ AX ) = VI(Xr,) VP (X, )(VV (R, ), AXpy + AX )
1 1~ <=1 =3
5PV (X, ) DV | AX 4y + AX ).

Now, we study the other term. Since p < 1/2, then the function defined on [v,,00) by y + 3P is
concave and we obtain

VP(YFHH)_VP(YFH + Ayiﬂ + Ayiﬂ)
_ ~ =1 —3 — — <=1 —3
<p‘/p l/z(AXnJrl + AXn+1)(\/‘7(XFn+1) - \/‘7(XF7L + A‘Xvn+1 + AXnJrl))
<p[VVIetTVPAX |

In the sequel, we will use the notation

Yz € RY, b(z) = b(x) +

2D O oi(w)oni(x).

i=1 [=1

N | =

It follows that

Elexp(AV?(Xt,,,)) — exp(\V?(Xr,)) X1, ] < Hy, ., (X1, )Ly, ., (XT,)

24
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with, for every z € R?, t € R,

Hy(z) = exp(A\V? () + tApV? ™ () (VV (), b(x)) + tQ%)\p||D2V||OOVP_1(x)|l~)(a:) ?)

and
Ly(x) =Elexp(VEAPY? ™ (x ><vv< ), 0(@)U) + EAP|| D2V | VP () Tr[oo™ ()] U2
FOAP[VT |t ZZiaxlaz 2)o1,5 (2)||UU;] + 3/ XpV P~ ()| D?V [ 020 (), 0 () U))]
i,j=11=1

where U = (Uy,...Uy), with U;, @ € {1,...,d}, some independent and identically distributed
standard normal random varlables In order to compute L.(x), we use Lemma 4.3 (see (74)) with
h=C,(x) 1tAp, v =+/Co(z)\pVP~1( 2)(VV(x) +t[|D?*V |2 2b(x)) and X(z) the matrix such that
for every i,j € {1,. d}

d
()i, = _zcg<x)[ﬁ]lvf*1/2% S Ouoi(@)ons (@) Vg € {1, d}i £,

=1

d
S(@)is = 1= 20, @) (IDV oV (2) Teloo” (2)) + VPt ™22 3 no(@)ora(a)l) Vi€ (L.}

=1

where C, : RY — R is such that inf,cgs Co(z) > 0 and for every z € R? then X(x) is a positive definite
matrix. We apply Lemma 4.3 and it follows that for ¢ < inf,cra Co(x)/(2Ap)

t)\pcg(éb)_ 2 d
v|* 4+ tApCy( ln 2 det(X
20— ACo(a) >" P /v

L exp(tApCy () M2 + tApCy (2) " (In(2%//det (X

At this point, we focus on the first term of the exponential. We have

[0 < Co(2)Ap Tr[oo™ (2)]V> 72 () (IVV (2)* + t] DV ]| o4V V (2), b(2)) + 24| D>V |3, [b(2)[?)

Li(z) <exp(

Using B(¢), (75) and R, » (see (64)), it follows there exists C > 0 such that
Hy(x)Li(x) <exp(A\VP(z) + tApVP~ () (8 — ag o V(z)) + CVP ™ (z)p o V(2))
Then, we have

Hy(z)Li(7) <exp((1 —tpaV " (z)p o V(z))A\VP(z)
g
agoV(x)

Using the convexity of the exponential function, we have for tpaV=1(z)¢ o V(x)) < 1,

+tpaV = (@)é o V(2)V7(2)( + T/ (ap))).

Hy(x)Li(z) <exp(AVP(z)) — tpaV " (2)¢ o V(x))) exp(AVP(z))

B _
———+tC .
At this point we notice that (24) holds with this ¢ which will be useful in order to obtain (77). Moreover
and independently from that, the function defined on R? by z + exp(Vp(x)(w%v(m) + tC/(ap))) is
continuous and bounded on any compact set. Moreover ¢ tends to infinity at the infinity and then we
have

+tpaVH(z)p o V() exp(VP(x)(

B
agoV(x)

for every t < Aap/C, and the proof of the recursive control (76) is completed. Combining it with (24)
(which is obtained above) and applying Lemma 3.2 gives (77).

b0 V() exp(V7 () +0/(@p)) = _O_exp(AV?(x))

O
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4.2.2 Proof of the infinitesimal estimation

Proposition 4.6. We suppose that the sequence (Up)nen+ satisfies Mar2(U) (see (36)) and My(U) (see
(57)) and that the sequence (W, )nen+ is centered and satisfies Ma(W) (see (58)).
We also assume that b and o are locally bounded functions, that ¢ has sublinear growth, that B(¢) (see

(61)) holds and th?t we have sup,,cy- V1 (|o]?) < 0o and sup,,cy- Vﬁ(ZiLl:l |0, 0i00,5]) < o0.
Then, we have E(A7, A) (see (9)).

Proof. First, we recall that D(A) C C2% (E). Using the Taylor expansion, we have
—1 — —1 — —1
f(Xr,) = f(Xr,.,) =(Vf(z),AX,) + Ri(Xr,_,, X, )

with Ry(x,y) = f(y) — f(z) = (Vf(z),y—x). First we notice that E[Ayl] = v.b(Xt,_,). Now, we focus

on the expectation of Ry(Xr X llan ). First, we define the function from R? x R? to R, as follows

n—17

ri(z,y) = sup |Vf(z+0(y—x))—Vf(z) (79)
0€0,1]

Then 7 is a bounded continuous function such that r1(x,2z) = 0. Moreover, it folows immediately that
By(a,y) <rile,y)ly — .

Therefore, we deduce that

E[R, (Xr )X, ] <E[[AX,|r(Xr,_,, Xr, )| X7, ]

n—1 Xl"n,l
— — —1
<Cv|b(Xr, )|ri(Xr, _y, Xr, )

Now, we notice that hypothesis (61) and the fact that ¢(x) < C|z|, imply that b has a sublinear growth:
there exists C, > 0 such that b(z) < Cp(1 4 |z|). Now since f has a compact support, there exists
R > 0 such that f(z) = 0 for every x € R? such that |z| > R. As a consequence if || > 2R and
v <to=R/(Cy(1 4 2R)) then for y = = + vb(x),

lyl > |z = vCy(1 + |z[) > R,

and then 7 (z,y) = 0. Tt follows that the function Ay, : (x,7) — 71 (z,x 4+ vz) is uniformly continuous
on R? x [0,%0] and then we obtain &,.(Af1,[b|) (see (10) and (11)) with ¢ty = R/(Cy(1 + 2R)). In the
same way we have

FXr ) = (X)) =(VF(Xp ), AX) + Ry (X, Xp )

The first term of the right hand side of the above equation is a centered random variable and we
obtain

—1 —2 —
E[Rl (XFH71 7XF,,7,71 ) ‘Xrnfl]

d Tn s
— — . . —1 —2 —
<3 100X, Jony (e, BN [ [ dWiawiin R, XE, )i, )
bil=1 Yn—1Tn-1

Now we define Gy = R4 Oy = v, my the measure defined on (Gy, B(G>)) (with B(G3) the sigma
fields endowed by the Borelians of Gg) by 72(dO2) = W(dv) where 20 denotes the law of the R?*“-valued

random variable with components f f dWidWi for i,5 € {1,...,d}. Then for every z € R? = E, we

have

TYn s
. : —1 -2 - Tiq
B [ [ awiawin (0, X, )% =al = [ A 0)w@)
Yn—1Yn—1 Rdxd

‘/Aj"]2 .Z‘ ’yn,(")g)ﬂ'g(d@g)



4 APPLICATIONS 27
with

AY

f2 : Rd X R+ X RdXd — ]R_A'_

(@,7,0) = Aol (@ +20(@), 2+ (@) + 7 7 g O, 0i(@)or,(2)vs;).

We are going to prove that Eergo(z:?jzl /~\§Jj2, Z?j 1—1 |0z,05015]) (see (12)) holds.First, we notice that

B(¢) (61) and the fact that ¢ has sublinear growth, the functions b and 9,050y 5, 4,7,1 € {1,...,d},
have sublinear growth: there exists Cy , > 0 such that |b(z)| + ij 1=1 |0z, 05(x)oy j(x)| < Cpo(1 4 |2])
for every x € R%. Therefore, in the same way as above, we obtain EET.QO(Z?J:I /N\}é, Z?,J}l:l |0, 000 51)

from sup,, - VZ(Z?J- 1—1 10z,0401 j]) < 0o. In order to treat the last term, we write

FORE,) — F(XE,) =(VF(RE, ), AX0) + 5 THD?f(KE (AKX + Ry(XE, KT, )

n

with Ro(z,y) = f(y) — f(z) — (Vf(z),y — x) — 3 Te[D? f(z)(y — 2)®?]. First we study

E[Tr[(D*f(Xt,) — D*f(Xr, ,))(AX,)®)Xr, ).

We define

Ay ‘RIxR xR — Ry
(@,7,0) = Y2Tr[]+d)| D f(x +b(x) +7 X ; 1oy Onoi(@)or(x)vi ;) — D2 f ()],

E[Tr[(D?f (X1, )~ D*f(Xr,_, )(AX,)®%)[Xr,_, = 2] < Clof*(z) / A} 5@, 70, 0) 2 (dv)

Using once again the fact that f has a compact support and the functions b and 9,,0,01 5, ¢, 4,0 € {1,...,d},
have sublinear growth, in the same way as before from, it follows from sup,,cy- v/1(|o|?) < oo that
Eergo(A] 3,101?) (with 3 = 20) holds.

Now, we consider the other term. Similarly as before, we define the function from R? x R% to R as
follows

ra(z,y) = az‘l[tpl] |D?f(x +0(y — x)) — D* f(x)]. (80)

Then ry is a bounded continuous function such that ro(x,2) = 0. Moreover, we have

R2(1‘7y) < rz(ﬂc,y)|y - SL’|2.

We define now

[\2

1.3 : Rd X R+ X RdXd — R+

(@, 7v) = YRT[v] +d) Y eeq g qyar2(@ +b(x) + Sy On,0i(@) o, (2)vi 5,
T4 A(@) + 7Ly 00,03(2)015 ()00 + T iy 0i(2)Cin/200 + 1)

It follows that
—3 —2 =3 — -
BA, Pra(Xr, X7, )Xr, -, =l < Clof(a) [ 350,70, 0)a20(av)

Once again, since b, o and d,,0;07,5, 1, 4,1 € {1,...,d}, have sublinear growth, it follows from sup,,cy- 7(|o|?) < o0
that Eergo(AF 3, |0[?) (With 75 = 20) holds. We gather all the terms together and the proof is completed.
O
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4.2.3 Proof of (14) and (16)
Polynomial case

Proposition 4.7. Let p > 0,a € (0,1], p,s € (1,2] and, ¥(y) = 37, ¢(y) = y* and ez (t) = t*/2.

We suppose that (Uy,)nen+ is a sequence of independent random variables such that U satisfies My 2(U)
(see (56)) and Mapyapp/sv2(U) (see (57)). Moreover, we assume that Wy )nen- is a sequence of inde-
pendent and centered random variables such that Mapyop,/02(WV) (see (58)) holds.

We also assume that (59), B(¢) (see (61)) and R, (see (62)), with this p, hold. We also suppose that
SWrz ~.n(p,€z) (see (26)) hold.

Then SWr ., ,(VPVITa=1 b e1) (see (19)) holds and we have the following properties

A. If SWrz~.,(VP/) (see (20)) and SWyo1(p, a,s,p) (see (85)) hold, then

1 &< - —
P-a.s. SSRI? A anAZ(w o V) (Xr,_,) < 00, (81)
n * no_q
and we also have,
P-a.s. sup v7(VP/*+t271) < o0, (82)
neN*

Moreover, when p/s < pV 1+ a — 1, the assumption SWrz ~.,(VP/*) (see (20)) can be replaced by
SWriz~m (see (27)). Besides, if we also suppose that Ly (see (7)) holds and that p/s+a—1 >0,
then (V1) nen~ is tight

B. If f € D(A) and (22) is satisfied, then

I = ny e
P-a.s. nh_{r;o i kz_:lnkAZf(erfl) =0 (83)
Proof. The result is an immediate consequence of Lemma 3.1. It remains to check the assumption of
this Lemma.

First, we show SWrz ., ,(VPVITa=1 p e7) (see (19)). First we notice that for any p < 1 then R, (see
(62)) implies Rq. Since (59), B(¢) (see (61)) and R, (see (62)) hold, it follows from Proposition 4.5
that Zg v (¢, #) (see (8)) is satisfied with the function 4 : [v.,00) — Ry defined by 4 (y) = y?"'. Then,
using SWr ., (p, ez) (see (26)) with Lemma 3.3, gives SWy , ,(VFPVITe=1 pe7) (see (19)). In the same
way, for p/s < a+p — 1, we deduce from SWrz -, (see (27)) and Lemma 3.3 that SWrz ., (V?/*) (see
(20)) holds.

Now,we are going to prove Zx (f, VoTPV1=1 %X p, er) (see (18)) for f € D(A) and f = V?/* and the proof
of (81) and (83) will be completed. Notice that (82) will follow from Zg v (¢, ¢) (see (8)) and Theorem
3.1. The proof is a consequence of Lemma 4.4 which is given below. We notice indeed that B(¢) (see
(61)) gives |oo*|P/? + Z?Zl Zld=1 |0, 04(x)01 4|7 < CVP/2. This observation combined with (86) implies
that for every f € D(A) and f = VP/%, there exists a sequence X, such that Ix (f,VatPVi=1 X p er)
(see (18)) holds and the proof is completed. O

Lemma 4.4. Letp > 0,a € (0,1], p € (1,2] and, ¥(y) = y? and ¢(y) = y*. We suppose that the sequence
(Un)nen~ satisfies Myyop,/s(U) (see (57)) and that the sequence (Wy)nen- satisfies Myyap,/s(WV) (see
(58)). Then, for every n € N, we have: for every f € D(A),

d d
— —1 — e
E[f(Xr,,.) = F(Xr, )P Xr,] < Coiiloo” (Xe )72 + Crl 30> 10nos@)oni(@)f. (84)
i=11=1
with D(A) = C%(RY). In other words, for every f € D(A), we have Ix(f,gs,%, p,e1) (see (18)) with

Jo = |aa"‘|”/2 + 2?21 27:1 |03, 04(x)014|P, Xp = f(Y;n) for every n € N and ez(t) = tP/2 for every
teR,.

Moreover, if (59) and B(¢) (see (61)) hold and
s2/p—1)(a+p—1)+s—220, if 2p/s < 1,

SWpol(p7a7Sap) (2 - 8)/(2 - p) Sa< 5/07 Zf 2p/5 21 andp < 1a (85)
p<s(l—(1-a)/p), ifp=1.
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Then, for every n € N, we have
B[V (Xr,p0) = VP (X, )X, ] < Op Ve (Xe,). (86)
In other words, we have Ix (VP/* VPto=1 X p er) (see (18)) with X, = VP/*(Xy,) for every n € N
and ez (t) = tP/? for every t € R..
Proof. We begin by noticing that

d d
X1, 0~ X, | < On/A 00" (Ko ) Y2 Unsa] + Congal D3 100,04(X, )or,4(Xr, )PV Wi
i=1 [=1

Let f € D(A). Then f is Lipschitz and the previous inequality gives (84).

We focus now on the case f = VP/5. We notice that B(¢) (see (61))implies that for any n € N,

X, — Xr,| < CYY2A 60 VX, ) (1 + [Unsi| + [Wasal))

First, we assume that 2p/s < 1. Let 2,y € R% Then, the function from RT to R such that
y + y?P/* is concave and since v/V is Lipschitz (from (59)), we deduce that

VP/s(y) = VPl (@) <2p/sVV T @) (VT () — V()
<p/sVV VP2 ()| — .

Now, since 2(s/p —1)(a+p—1)+s—2 > 0 and V takes values in [v.,00), we deduce that there
exists C' > 0 such that for every x € R?, we have VPP/57r/2(z) < CVell=p)+r=1(g),

Now, we assume that 2p/s > 1. Using (29) with o = 2p/s and since v/V is Lipschitz, we have

VP (Xr,,,) = V5 (Xp,) <2%/°p/s(VP/* 12X )WV (Xr,,,,2) = VV (X1,
+VV(Xr,,,) - VV(Xr,, )
<2 /s(WVL VP2 (Xp )| X
+HVVI X, = X, 7).

In order to obtain (86), it remains to use the assumptions B(¢) (see (61)) and then p < s(1—(1—a)/p)
ifp>1land (2—5)/(2—p) <a<s/ptogether with 2p/s > 1if p < 1.

__ijJ

n+1

n+1

O

Exponential case

Proposition 4.8. Let p € [0,1/2],A >0, p € (1,2] and,®), ¢ : [vs,00) = Ry with ¥(y) = exp(Ay?) and
¢ a continuous function such that ¢(y) < Cy with C > 0 and ez(t) = t*/2. We assume that (59), B(¢)
(see (61)) and Ry, x (see (64)) hold and that p < s. We also suppose that SWr ~ ,(p,ez) (see (26)) and
(75) hold. Then SWz .,(V 1¢oV exp(A\VP), p,ez) (see (19)) hold and we have the following properties

A. If SWzz . (see (27)) holds, then we have SWrz ~ ,(exp(A/sVP)) (see (20)) and

P-a.s.  sup ——Zr]kAﬂ’ (Yo V) (Xr,_,) < oo, (87)
neN*
and we also have,
P-a.s. sup v1(V 'poVexp(\/sV?P)) < oo. (88)
neN*

Besides, when Ly (see (7)) holds, then (V]!)nen~ is tight.
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B. If f € D(A) and (22) is satisfied, then

. 1 n ~ o
P-a.s. lim I E mALf(Xr, ,)=0 (89)
" k=1

n—r oo

Proof. The result is an immediate consequence of Lemma 3.1. It remains to check the assumption of
this Lemma.

First, we show SWrz ., (V1o Vexp(\/sVP),p,er) (see (19)). We begin by noticing that R, » (see
(64)) implies R, 5 for every A < \. Since (59), B(¢) (see (61)), R,.x (see (64)) and (75) hold, it follows
from Proposition 4.5 that Zg v (¥, ) (see (8)) is satisfied for every function ) : [v,,00) — Ry such that
U(y) = exp(S\Vp) with A < A. At this point, we notice that this property and the fact that ¢ has sub-
linear growth imply (90). Then, using SWz ., (p,€z) (see (26)) with Lemma 3.3, gives SWz ,,(V "1¢o
Vexp(AVP), p,ez) (see (19)). In the same way, we deduce from SWrz .., (see (27)) and Lemma 3.3 that
SWiz,40(V1h o Vexp(A/sVP)) (see (20)) holds.

Now,we are going to prove fX(f, V=1lpoVexp(AVP), X, p,ez) (see (18)) for f € D(A) and f = VP/*
and the proof of (87) and (89) will be completed. Notice that (82) will follow from Zg v (v, ¢) (see
(8)) and Theorem 3.1. The proof is a consequence of Lemma 4.4 (see (83)) and Lemma 4.5 which is
given below. We notice indeed that B(¢) (see (61)) gives |oo*|?/2 + 4 S0 |0,,01(2)014]P < (6o
V)P. Moreover, we have already shown that (90) is satisfied. These observations combined with (91)
imply that for every f € D(A) and f = exp(\/sVP), there exists a sequence X, such that Zx (f,V ‘¢ o
Vexp(AV?P), X, p,ez) (see (18)) holds and the proof is completed. O

Lemma 4.5. Let p € [0,1/2],A > 0, p,s € (1,2] and,y), ¢ : [vi,00) = Ry with ¢(x) = exp(AzP) and ¢
a continuous function such that ¢(x) < Cx with C > 0. We assume that (59) and B(¢) (see (61)) hold,
that p < s, and there exists ng € N*, such that

VA< A3C 20,0 >ng,  Elexp(\VP(Xr,,,))|Xr,] <Cexp(A\V?(XT,)). (90)
Then, for every n > ng, we have

o2 9o V(Xr,)

E[l exp(A/sV"(Xr,.,)) — exp(A/sV(Xr,))|"|Xr,] < Cvly VX

exp(A\VP(Xr,)),  (91)

In other words, we have Ix (exp(\/sV?P), V" ¢oV exp(AV?), X, p, e1) (see (18)) with X, = exp(\/sV?(XT,))
for every n € N and ez(t) = tP/? for every t € R.

Proof. Before we prove the result, we notice that B(¢) (see (61)) implies that for any n € N,

X, — Xr,| < 0%11/2\/ o V(Xr,)(d + [Unsa” + Wasal?).

First, we assume that p < 1/2. Let x,y € RY. First, since the function x — 2P is concave, we have

VP(y) — VP(z) <2pVV T (@)(VV () — VV ()
<2p[VV VP2 (@) ]y — 2.
Moreover,

exp(A/sVP(y)) — exp(A/sVP(x)) < E(GXP(A/SV”(Z/)) +exp(A/sVP(2)))[VP(y) — VP (x)].

We combine those two inequalities and use Holder inequality in order to obtain

E[| exp(A/sV? (X, ,)) — exp(A/sV?(Xr,))|’[ X, ]

<Cexp(\p/sV?(Xr,))VPP~**(Xr,)E[XT,,, — Xr,|"|XT,]
+CVPPPI2(X )Elexp(Ap/sVP (X, ) Xr,., — Xr, |’ X1, ]
<Cexp(Ap/sVP(Xr, VPP (Xr, B[ X, ,, — Xr, [”| X1, ]

/)67/(‘9—1)|yF ](9—1)/97

+OVPP P2 (Xp, )Elexp(Apf/sV? (X, ,,)) | Xr, |V E[ XY, ., - X,

n+1
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for every 6 > 1. Now, we use (90) and since p < s, for every 6 € (1, s/p|, we obtain
Efexp(\0/sV? (X, ., )[Xr.] <Cexp(rph/sV?(Xr,)).
Rearranging the terms and since p < s, we conclude from B(¢) (see (61)) that

E[lexp(\/sVP(Xr,.,)) — exp(\/sV?(Xr,,,)) P [Xr, .| KCAL/2VPP=P/2(Xy )¢ o V(X )|?/? exp(Ap/sVP (X))
<OV Xy, )¢ o V(X)) exp(AVP(Xr.)).

O

4.3 Application to processes with jump

The purpose of this section is to build an invariant measure using a decreasing step Euler scheme for
a Feller diffusion process with jump which is not necessarily a Levy process. This study extends the
one in [13] where the author treat the convergence of (v),en+ for miscellaneous decreasing step Euler
scheme for Levy processes. The interest of our approach is that we consider process with some general
jump components which involve Levy processes but also diffusion process with censored jump or piece-
wise deterministic Markov processes. We consider weak mean reverting assumption that is ¢(y) = y%,
a € (0,1] for every y € [v.,00). Similarly as in its study we consider polynomial test functions ¢ such
that ¥ (y) = y?, p > 0 for every y € [v4, 00).

We consider a Poisson point process p with state space (F;B(F)) where F = F x R,. We refer
to [6] for more details. We denote by N the counting measure associated to p. We have N([0,¢) x

A)=#{0<s<t;ps€ A} fort > 0and A € B(F). We assume that the associated intensity measure is
given by N(dt dz,dv) = dt x A(dz) x 1|9 ) (v)dv where (z,v) € F' = F x R;. We will use the notation

N = N — N. We also consider a d-dimension Brownian motion (Wi)i>0 independent from N. We are
interested in the solution of the d dimensional stochastic equation

t t
:as—i—/b ds—!—/a - )dWy —|—// (2, Xs-)1og (fo)]l()h(|z|)~(ds,dz,dv)
0 0

t
+//C v<§(zX )1(h’oo)(|2|)N<dS,dZ,dU) (92)
0 F

where h > 0, b : R — R% o : R? — R4 and ¢(z,.) : RY = R%, 2z € R! are locally bounded and
continuous functions. In this paper, we do not discuss existence of such processes. This processes can be
seen as extension of Levy process (put ¢(z,z) = ¢(x)z and ¢ = 1). Especially, if we want decomposition
(92) to make sense, we must at least assume that for every x € R%, we have

/ ez, 2)PC (s @) Lo (Z)A(d2) < oo, (93)
F

and

/ ez 2)[C (2 )L ooy (12 A(d) < 0. (94)
F

The main difference with Levy processes is that the intensity of jump £(z, 2)A(dz) may depend on the
position of the process. Actually, this type of process can also be seen as an extension of SDE with
censored jump component. Indeed, if for every z € R?, we have

/ (2, 2)|¢ (2, 2)A(d2)dt < o, (95)
F

it comes down to study the solution of following SDE with censored jump part:



APPLICATIONS 32

t t

¢
X :x—}—/I;(XS_)als—|—/0(XS_)dI/VS —I—//c(z,XS—)]lvgc(zyxsf)1[0700)(|z|)N(ds,dz,dv). (96)
0 0 0 F

with, for every = € RY, b(x) = b(z)+ [ (2, z)¢(z, x)1o,n)(|2])A(d2). The study of this family of processes
F
in the literature is expensing. In [3], the author focus on the case 0 = 0 and prove the existence of an

absolutely continuous (with respect to the Lebesgue measure) density. In the PhD thesis [14] , the author
extends existence and uniqueness results for SDE with non null Brownian part and censored jump part
and also show that they can be considered as limit processes of some general piecewise deterministic
Markov processes. Besides, he studies ergodicity of those processes using a regenerated procedure.
This procedure provides a Doeblin (locally lower Lebesgue bounded) condition which enables to prove
recurrence in Harris sense and then ergodicity. Finally, one may notice that the study for SDE with
censored jump part with form (96), is equivalent to the study of (92) with A = 0. Consequently, we
study the approximation of invariant measures for solutions of (92) and the results we provide in this
part apply to SDE with censored jump as soon as we put h = 0.
The infinitesimal generator of this process is given by

d

2
AF(@) = b), V) + 3 (00" () gt (@) (97)
i,j=1 v
+ [+ elz) = @) = el), VI Lo (D) 0IA(d:).

F

The first step is to consider an ‘truncated’ approximation for the process (X;);>o with finite big jump
intensity. In this case we can introduce an Euler scheme for this ‘truncated’ process and then prove
convergence of the measure defined in (5) toward an invariant measure of the’ process (X;)¢>0. In order
to show that the limit of the measure defined in (5) and built with the Euler scheme of the truncated
process is an invariant measure for the process (X;);>o, it is necessary to introduce a supplementary
hypothesis. This hypothesis enables to control of the distance between the generator of (X;);>o and the
generator of the ‘truncated’ process with jump size at most M. When A({z,h < |2|}) = oo, we assume
that

lim lim »!(Ay) =0 with
M — 00 n—00

VM > h,Vz e RY Xy(z) := / lc(z, 2)[|C(2, ) |1 (ar1,00) (|2]) A (d2) = 0. (98)
F
4.3.1 Approach and preliminary results

Let M € RyU{+o0} such that A({z, h < |z| < M}) < co. We define NM (ds, dz, dv) := 1|,j< pLog ¢ N (ds, dz, dv).
Now, we introduce the process (X{);>o which satisfies the following equation

0 0
t

of

0

t t t
xM = x+/b(X;‘{)ds+/a(Xj‘€)dWS +//c(z,Xi\{)]lvgc(zxz\{)]l[o’h](|z\)NM(ds,dz,dv)
F

c(z, Xé\{)]lvgc(z,xsf‘{ YL (h,00) (12]) Nas (ds, dz, dv) (99)

Sl

Since Ny is finite, we represent the random measure N M using a compound Poisson process. We in-
troduce the Poisson processes (JM);>¢, independent from Ny, with intensity |||l ({2, h < |2| < M})
and jump times (T,ﬁw Jken+. We introduce the sequences of independent random variables (and indepen-

dent from JM and Ny)

Z,iVI ~ )\({Z, h < ‘Z| < M})_11h<|z|<MdZ, and Vi ~ ||§||gol(1})]lvg|‘<”xdv.
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Therefore, (99) can be rewritten

¢ ¢
Xthx—F/b(Xé\{)ds—F//c Loceqs, XM) o,h](|z|)NM(ds,dz,dv)
0 F
J]\/I
0 k=1 k

The infinitesimal generator of this process is given by

d

AV 1) = (). V) + Y (00)s(0) () (101)

i,j=1

+ /(f(ﬂ? +e(z,2)) = f2) = (e(z,2), V(@) Ljo,n (121) L n,an) ([21)C (2, 2) M(d2).

F

Now, we introduce an approximation for X*. We will use a Euler type scheme such that for every
n€Nandt e [y, Tyy1], we have

t

—M =M =M .
Xy =Xp, +({t—=Tu)b(Xp-) + /c(z,Xlﬂwz)]lvgc(z,xéw_)]l[o,h](|z|)NM(ds,dz,dv) (102)
1—1/” n
M o M
o(Xp ) We =W )+ Y e Z X))y, g X
k=142

which is well defined since A({z,h < |z| < M}) < oo. Now, for h > 0, z € R and ¢ > 0, we define

t
M) = [ [ elera) et o1 Nas(ds. dz. do), (103)
0 F
t
2l 0) = [ [ el Lo o 10) s s, d ),
0 F
t
M) = [ [ e o) Loeciom L un (2D Var(ds, dz.do),
0 F
t
M;t(x) ://C(Z7x)ﬂvSC(z,z)ﬂ(flvM)(‘ZDNM(dS,dZ,dU)
0 F

In order to simplify the writing, we will use the notations:

—M M2 —M

AXn+1 'Yn+1b(Xrn)7 AXn+1 = U(Xrn)(WFnH -Wr,), (104)
~ —M M

AX"/LJFl _M17'Yn+1 (Xrn)’ AX""FI M2h77n+1 (Xrn)’

~M,i M i <M.k . . . . .. ~M,3

and Xrn; = Xr, +> ket AX, ;. At this point, we precise that we implicitely suppose that AX,, /;

can be simulated at time I';,. This assumption prevails in this paper. When it is not possible a solution is
. . C .. . =M =M

given in [13]. Tt consists in localizing the small jumps of X — X on a strict subset [h,,, 2] (h, > 0)

of [0, h] with lim,_, h,, = 0 and in assuming that the small jumps with size contained in [h,,, h] can be
simulated. This specific study in our case is very similar to the one for the Levy process made in [13],

—M,3
and also to the one we do when we suppose that AX, ) can be simulated. Consequently, we propose a

. . ~M,3 - . ..
study in which we assume AX, [} we invite the reader to refer [13] in order to generalize it to the case
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where it can not be simulated.

For every n € N* and ¢ € [T',, T',,41], the infinitesimal generator of (Y?/[)T>o is given by

A3 f(@) = (b(zo), Vf(2)) + Tr[oo™ (20) D* f(x)] (105)
+ /(f(l‘ +c(z,m0)) = f() = (e(z,20), VI (2)) Lo,n([21)C (2, 20) Lo, a1y (2] A(d2),

on the set {Yﬁi = ¢}, with the notation D?f(z) = 0°f (). At this point we notice that Af(x) = A, f(x)

which will be a key property in order to prove the infinitesimal estimation £(A7Y, A) (see (9)) in the sequel
(in particular for the jump part).

In the sequel we will use the notation U,, 1 = 'y,:i{Q(anH — Wr,,). Actually, we introduce a weaker
assumption than Gaussian distribution for the sequence (U, )nen<. Let ¢ € N*, p > 0. We suppose that
(Un)nen~ is a sequence of independent random variables such that

My ,(U)  YneN Vge{l,...,q}, E[(U,)®] =E[N(0,1)%] (106)
My (U) sup E[|Un|"] < o0 (107)

Now we introduce some hypothesis concerning the parameters. First, we introduce the hypothesis
concerning the jump components. In the sequel, we will denote

Tan@) = [ a2 a Lo (DNE:), o) = [ e,z L (DAE:), (108)

F F
and  7y(z) = / (2, 2)PC (2 )L (|2 M),
F

for p,q > 0. We assume the following finitness hypothesis: Let p,q > 0. for every x € R?%, we have

Hi Ton(x) < 00, ﬂz Tp.n(x) < 00, HP 7p(x) < 0. (109)

It is immediate to notice that H? implies both #} and ﬁfb for any A > 0. Moreover, we introduce

the following classical hypothesis: H{ implies ﬂ;{ for ¢ < ¢ and 7L, implies H, for p > p’. Now, we
assume that the Lyapunov function V : R? — [v,, 00), v, > 0, satisfies Ly (see (7)) and

IVV|> < Oy, sup |D?V (x)| < oo (110)
zeRd
We also define
1
Va € Rd, )\w(l‘) = 5)‘DQV(w)+VV(;8)®2w“oV(x)w’oV(aﬁ)*1‘ (111)

When ¢(z) = |z|P, we will also use the notation ), instead of \,,. We will suppose that, for every z € R9,

Bpqa(d) |blx)+ np,q(a:)|2 +loo*(x)] < CopoV(x) (112)
where
Fipg(%) = [pc(z,2)C(z, ) (Lps1 /2L (n,an) (12]) = Lpg<a/2Tj0,n) (|2]) A(d2). (113)

The reader may notice that x, 4 is well defined when %] and ﬁfl hold. When p > 1/2 we will also
use the notation x, instead of x, 4. For p,q > 0 and ¢ a positive function, we introduce the following
hypothesis

Hi (6, V) T,n(2) < CooV(x), (114)
Hy (6, V) Tpn(a) < CpoV(a)P,
HP (¢, V) 7,(x) < Cho V(z)?,

for every x € R%.
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Remark 4.1. We notice that H? (¢, V') implies both HY (¢, V') and (¢, V) for any h > 0. Moreover,

HI (¢, V) implies ﬂ%(qb, V) for any h € (0, h).

We now introduce the key hypothesis in order to obtain recursive control that we will use for poly-
nomial functions ¢). We assume that there exists f € Ry, a > 0, such that for every z € R%, we

have
Rpg  (VV(2),b(@) + Fipg(@)) + Xpg(2) < B — apo V(z),
with
Xpaa() = { M [loo (Tr[oo™ ()] + 71(2)) +p~ VEP(2) g (@) it p <
IAplloc2®P =35 (Trfoo™] + i (x) + VVIP VI (2)ry(2))  ifp >
with

Xp.q.h(7) :(]lp,q<1/2[W]f(pvq%f_pvq + ]lp<1/2]lq>1/2cq[Vp_lVV]qul
+]1p>1/2Oqu[vaqilvvb(pvtl)*l)Ipvqﬁ(x)
+(]1p<1/2[\/vﬁp + ]lp>1/2cp[Vp_lvv]Qp—l)?zhh(m)
and C, and Cpy4 the constant from the BDG inequality defined in (31).

4.3.2 Proof of the recursive control

(115)

(116)

In order to obtain the recursive mean reverting control, we require a first result concerning the evolution

of the jump components.

Lemma 4.6. We have the following properties

A. Let p > 0. Assume that H), (see (109)) hold. There exists a locally bounded function e : Ry — R

which satisfies €(t)/t < C, and such that Vn € N,
2 _
E[| Mgy ()] < t(1+ e(t)Tpn().
B. Let q € (0,1/2] and assume that H} (see (109)) hold. Then, ¥n € N,
E[|M] ()] < tryp(@).

C. Let g € [1/2,1] and assume that 1] (see (109)) hold. Then, Vn € N,

E[|M](2)]*1) < Cytry p ().
with Cy the constant which appears in the BDG inequality (see (31)).

(117)

(118)

(119)

D. Let p > 1. We assume that HP (see (109)) hold. Then, there exists £ > 1, which does not depend

on h, such that for we have

E[|IM{'(2) + Mgy (2)|*] < U1p(@) + T, () + Cputsd o V().

(120)

where ¢, > 0, and Cyj, > 0 is finite if H;,(6,V), Hh (o, V), ﬁ,ll/zwﬂf) and H}, (6, V) (see (114))

hold.

Now, let p € [1/2,1). Assume that HP (see (109)) holds. Then
E[|IM'(2) + M3y (2)|*] < Cptry(x)
with Cy the constant which appears in the BDG inequality (see (31)).

If we assmue instead that H' and H® (see (109)) hold, there exists C' > 0 such that
E[| M7 () + M’y (2)|*] < C(#71] () + t7y(2))
Finally, if p=1, and only H' (see (109)) holdq then
E[| M (z) + Mgy (2) ] = t7(2)

(121)

(122)

(123)

35



4 APPLICATIONS

Proof. We prove point A.. Let (JM);>0, a Poisson process with intensity ||(|lcop({2,h < |2| < M}) and
jump times (TM)en-. We introduce the sequences of independent random variables (and independent

from JM)
ZY o A{zh < 2| < M) M pgpzjemdz, and Vi~ [IC]IH (0) Log ) do-
We rewrite,
JM
Mg () = > e(ZM 0) Ly, (20 0
k=1

Now we denote A = [|¢||coA({2, h < |2| < M}). Therefore,

t k
E[| Y ez o)y ccozpa| ] =E[D Lim s | D2 2 2) hyiczpr | 7]
k>1 =1

k —AL(\$)E
=Y E[| >z a)lyczp, r>|2p]%'
k>1 =1 ‘

Now, using the inequality (30), it follows that

k
E| Y e(ZM, o) lyccizpr | "] <@ 1)+ZE c(Z] @)y <o zpr ) ]
=1 =1

_ T —M —M
=k e / (2, X1,) (2, X, )L a) (12])M(d2).
R!

Moreover,

5 I OY) LA L (ADE
e )\tzk1+(2p 1)+ o —e At/\tZ(k-i-l)(zp 1)+

k!
k>1 k>0

Now, we are going to use the inequalities (28) and (29). If p < 1 then

_At)\tz (k + 1)@~ 1)+()\) <)\t+/\t2k(2p 1)+(5\)k
k! k!
k>0 >0

Y
4 e ST pep-n: AT
=Mt + Ate ™My RGP o
k=1
Using this reasoning recursively, we obtain
()\t) _ [(2p—1)+] o
—*%Z (k+ 1D < Y (),

k!
k>0 i=0

and the proof is completed. Now, we assume that p > 1. Then

(A
K

35 (2p-1), AD* (2p—1)4—1 (2p—1)+
A k+1 <)\t+)\t2 2 k+k
;O u (2p— 1)+ k;( )

and similarly as before, a recursive approach yields (117).

We focus on the proof of point B.. We apply inequality (30) and compensation formula, and (118)
follows from

E[|M] ()] <) 1M (2) = M- (2)* = tz, 5 ().

s<t
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Point C. (see (119)) is a direct consequence of the BDG inequality (see (31)).

Finally, we consider the proof of point D.. First we treat the case p = 1. In this case, the process
(My)¢>0 such that My := (M]', + M},)? — 71(z), is a martingale and then

E[| M}, + My, ] = try(x).
Now, let p > 1. Let h € [0, h]. Using the BDG inequality (see (31)), ws obtain
E[M], ] < GoE[| Y IMP, — M- |*IP] = GE[| Y |AM] J*7].
s<t s<t

. . . ~ ~h 2k
In order to obtain our result, we are going to use a recursive approach. For any k € N*, Mﬁ’tk =D et |AMY >~

tToe-1 () is a martingale. Using (30) for the martingale (Mﬁ;k)t>o)

B[ S0 AN /2] SB[V + trye s ()]
s<t
<207 0B T A
s<t

k—1_ ~ k+1 k k—1_
<2/2 1)+CP]E[|Z|AMlh,s|2 |p/2 ] 4 2(p/2 1)+|t12k—17h(33)|p/

s<t

p/2’“‘1] + 2(17/2""171)+|1512k_1,h(x)|p/2’“‘1

2k—1

Now, let ko = inf{k € N*; 2% > p}. Using (28), we have

E[| > (AN 27 P20 < B[S AN ) = tr, ), (x)

s<t s<t

Since 2F < p for any k < ko, it follows that

ko
~ k—1
B[ M) Septr, (@) + cp Y [tTgim ()P
k=1
p/2

Sty (@) + CpltTy p (@) [V [tToro-1 5 ()

with ¢, > 0 a constant which can change from line to line. Since we have H; (¢, V) and H} (4, V), it
follows that there exists £ > 1 such that

E[|M7 %] <cptr, 4 (x) + cptid o V(x)P

Now, using (117) , we have

E[|M3 7] < (1 + e(t))Tpn(2)-
From (29), it follows that

E[|NE /2] <UL+ e(t))Tpn(@) + 922 (111 + e(0)7pn(@)| ™ @071 ()] 4+ 1271712, (2) )

Since we have ﬁ,lL/Q((/), V) and 7, (¢, V), it follows that there exists £ > 1 such that
IE[|]\;[2h7t|2”] < tFp () + cptsp o V()P
Now since M{* and M} are independent, using (29), we obtain
E[|M, + My, |*) <E[Mz,[*] + p2* (E[| M{, JE[| M3, [P~ ] + E[| M7, [*7])
<H(Tp () + 6pTp () + et 0 V(@)
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Finally, let p € [1/2,1). Using the BDG inequality (see (31)), (28) and the compensation formula,
we have

E(|M{, + M3, [*] CE[| Y [AM] + AM. [*7].
s<t

SCE[ D |AMY + AMZ |*P].
s<t
=Cyptrp(z)

Moreover, (122) follows from Jensen’s inequality and the proof is completed. O

Lemma 4.7. Let z € R% p,q € [0,1]. We assume that Hj, and H?"? (see (109)) hold. Then, there exists
€: Ry — R a locally bounded function which satisfies e(t)/t < C such that for every zo € R, we have

E[V? (2o + M7 (2) + M3, (2) = rpg(2)) = VP (20)] <tRpqn(@) + Lpca 2 [VVITte(t)Tp 0 ()
where kp, 4 defined in (113) and Xp.q.1 s defined in (116) and is given by
Tt (@) =(Lpga 2 [V PPV L1011 2Cg[VPT UV 201

+1p>1/2Cpvq [vaq_lVV]Z(qu)*l)Iqu,h (z)
+(Lp<1 /2 [VVIP 4+ 1n12Co VP YV ]2p 1 )7y i (2)

Let p,q < 1/2. Assume that ﬁ% and ﬂ%vq (see (109)) hold. Then, there exist € : Ry — R a locally
bounded function, which satisfies e(t)/t < C such that for every xo € R, we have

D (@) (124)

VvV Tovai
VvV

It + e(t)T, 1 (2)

E[V?(x + M}, () + ME (x)) — VP (20)] <]
+]

Let p <1/2 and g > 1/2. Assume that W?L and ﬂ% (see (109)) hold. Then, there exist e : R — R a
locally bounded function, which satisfies €(t)/t < C such that for every xo € R%, we have

B[V (w0 + M}y (2) + Mgy () = VP (0)] <Col VP VV]agoatr, () (125)
HVVIPH(L + e())7, 1 ()
Let p > 1/2 and assume that ﬁ% and ﬂqu (see (109)) hold. Then, for every xo € RY, we have
B[V (o + My () + My () = V?(20)] <Cpug[ VP "™ YV ]apv) 11T, 7 () (126)
FC VP IV ]9y atT, j, (2)

Proof. Assume first that p < 1/2. Using (28) with a = p/2, and since v/V is Lipschitz, it follows from
the same approach as in the proof of Lemma 4.6, point A., that

E[V? (o + My (x)) — VP(20)] SE[VV (20 + My, (x)) — VV(20)|*]
SIVVIPE[IMS (2)]*7]

<VVIZH(1 + (1)) / (2, 1) (2, 2) a2 M),

F
with € : R, — R a locally bounded function, which satisfies ¢(t)/t < C. Let o € R%. We study
E[VP(xo + Mlht(x)) —VP(a0)], if ¢ <1/2 and E[VP(zg + ]\Zflht(x)) —VP(xo)] if g > 1/2.

First, we consider the case ¢ < p. In this case H] implies H}. Using once again (28) with a = p/2, and
since vV is Lipschitz,it follows from the same approach as in the proof of Lemma 4.6, point B., that
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E[V? (2o + M}, (x)) — VP(x0)] <E[[VV (20 + M (z)) — V'V (20)[*"]
<[VVIPE(|M], ()]
<[ﬁ]fpt/c(z,x)2pC(z,x)]l[oyh](|z|))\(dz).

F

Now let p < ¢. First, let ¢ < 1/2. Using (28) with a = 2¢, the concavity of the function y — y?/9,
and since V'V is Llpschltz we deduce that

E[VV" " (20 + MP (@) — VT (o) 7]
VP12 BV (0 + MP(x)) — vV (z0) ]
VY200~ E[| M, () ]

WV 2t / (2, 2)2¢ (2, 2) L0 py (2D A(d2).

F

E[VP (2o + M{(2)) — VP(20)]

NN N

/N

We assume that ¢ > 1/2. Using Taylor expansion of order one, we obtain
E[V? (a0 + M y(2)) = VP(20)] = E[VP~H(EN(VV(€), MY, ()],

with £ € [z, xo +M1ht(:c)} Now since v/V is Lipschitz, we can proove that x + VP~ (2)VV (z) is 2¢ — 1
holder in this case (see [13], Lemma 3) and since Mlht(x) is centered, it follows from the same approach
as in the proof of Lemma 4.6, point C. that

E[VP(zo + M}, (x)) — VP(20)] SE[VP™ ! (20)VV (o) M{', (x) + [VP~ 'V V]2q1 | M}, ()]
=[VP UV ]aq 1 E[|MP ()]

<Cq[Vp*1VV}2q—1t/0(2’7x)zqé(zaz)ﬂ[o,h](|2|)/\(d2)
F

Now, we assume that p > 1/2. Let p > ¢q. Using once again the fact z — VP~1(2)VV (x) is 2p — 1
Holder, similarly as in Lemma 4.6, point D., we deduce that

E[VP (2o + My (2) + Mz, (x)) — VP (x0)] SE[VF™ (20)VV (20) (M (x) + My, (2))

)t

HVPTIVV gy [M () + My ()]

<CHVPTIVV g, 1t/c(z,x 2p§(z,x)]l[o7M)(\z|))\(dz)
F

Now, let p < q. In the same way

E[VP(xo + M} () — VP(20)] <Cp[VP'VV]gp_it [ c(z,2)°P((2,2) L, ar(|2]) A(d2)

’Tj\

Finally, as in the proof for ¢ > 1/2 > p, we obtain
]E[Vp(xo+]\~41h7t(x)) VP(x0)] <Cq[VP™ 1VV J2q— 1t/ Z,x q( z x)]l[o h](|z\) (dz)
F

O

Now, we are able to present the recursive control under weak mean reverting assumption for test
functions with polynomial growth.
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Proposition 4.9. Let v. > 0,p > 0, ¢ € [0,1], and ¢ : [vs,00) = R% a continuous function such that
o(y) < Cy with C > 0 and define also 1) : [vi,00) = Ry such that ¥ (y) = yP.
We assume that the sequence (Uy)nen- satisfies Mar2(U) (see (106)) and Mapy2(U) (see (107)) and that
(110), B, q(¢) (see (112)) and Ry 4 (115) hold.
We have the following properties:

A. Assume that p > 1. We also assume that HP, Hj (¢, V) and ﬁi(qﬁ, V) (see (114)) are satisfied and

that, if p > 1, ﬂ}l—l(qﬁ, V),ﬂg(d),V), ﬁ%ﬂ(gb, V) and ﬂ%(qﬁ, V') hold for any he (0,h]. Then, there
exists a > 0, § € Ry and ng € N*, such that

Vn = ng,x € RY, Ao Viz) <V ) o V(z)(B — agoV(x)). (127)

Moreover, when ¢ = Id we have

sup Bty o V(Xpo )] < 0. (128)
neN

B. Assume that p € [0,1) and let g € [0,1]. Moreover, we assume that H;, and H2'? (see (109)) hold

and that we have H) (6,V) (see (114)) if p < 1/2. Then, there exists o > 0, 8 € Ry and ng € N*,
such that

Vn =ng,x € RY, Ao Vi(z) <V ) o V(z)(B — agoV(x)). (129)

Moreover, when ¢ = Id we have

supE[¢) o V(Yﬁi)] < 0. (130)
neN

Proof. We focus on the proof of A.. From the Taylor’s formula and the definition of Ay (see (111)), we
have

Yo V(Xp ) =poV(Xp )+ (Xp,, — X, VV(Xp, ) o V(Xr,)

5DV ()8 0 V(€ 1) + TV (6ns) 20" 0 V() (KT, — K1)

—M —M —M M M
<YoV(Xr,)+ (Xp,,, — X, VV(Xp, )¢ o V(Xr,)

A G| 0 V(Ens) (K, — X ).

with &,41 € (YK,Y%LH). First, from (110), we have sup, cga A\p(x) < 00.
Now, since W, Ny (dt, Bas \ Bp, dv) and Ny(dt, By, dv)? are independent,we have

EXr,, = Xo [X0] = yarib(Xr) + E[AX a1 ],
E[XT, ., — Xp PIX0,] = yan Trloo™ (X)) + E|AX, 2 X1 | + E|AX, 2 X1
+ 72 1 B )? 4+ 2701 (X, ), BIAX 11 X )
with,
EAX, *[Xr,,,] = Yot / ez X1 )¢5 Ko ary (12DA(2) = mgarr (X,
F
and

—M,3 5 ~M —M —M —M
E[lAX, 11Xy, ] :'Yn-i-l/C(ZaXrn)2<(37XF")]I[O,h](‘ZD)‘(dZ) = Yn+171,5 (X1, )
F

*with the notation B, = {# € F,0< |2| <r} and B, = {# € F,0< |2| <7} for 7 > 0.
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using the notations (114) and (108). Moreover, using ﬁi((ﬁ,V), Lemma 4.6 (see (117) with p = 1)
implies that there exists a locally bounded function € : R, — R which satisfies |e(¢)|/t < C, such that
for every n € N,

M4 g =M _ =M
E[AX, 111X, ] < Ynar (1 + (i) Tin(XT,)
Using the Cauchy Schwarz inequality it follows that
M4 M _ =M
EAX, X, < Ve (L + VIeOme) DT (X, )2

Assume first that p = 1. Using B, 4(¢) (see (112)) and ﬁ}b(qﬁ, V) (see (114)), for every & € (0, ), there
exists ng(&) such that for every n > ng(@),

=M =M =M
IAtlloc [ 7741 0(X T, )P 4+277 41 (X, ), 1(XT,)) (131)
_ =M - —M
+ 1€+ 1)TLR (X1, | < Yngi(a —@)po V(X))
From assumption (116) and since 7, j, + 71,5, = 71, we conclude that
A;Yﬂﬁ oV(z)<B—apoV(x)

Assume now that p > 1. Since |VV| < Cy'V, then +/V is Lipschitz. Using (30), it follows that

VP () <(VV(X) + WVE X, — Xp )77

<P (VP (X ) + VWV X, — Ko )

n+1

We focus on the study of the second term of the remainder. First, using B, , (see (112)) and 7},(¢, V)
(see (114)), for any p > 1,

—M,1 —M,2 —M,4 M —M
‘AXnJrl + AXn+1 + E[AXn+1|XFnH2p < Cp’YZ+1¢ © V(Xrn)p(l + |Un+1‘2p)-

Moreover, using Lemma 4.6 (see (120)), there exists £ > 1, such that for every he [0, h], then Vn € N,

M4 M | |2p <=M —M —M
[|AXn+1 + AXTH-I [AXn+1|X1"n]| p|X1"n} < Y1 (p(Xp,) + 67, 5 (X1,)) + C h7n+1¢ ° V(XF )P

Applying (29), it follows that

E[Xr,,, — X1 2K ] < Yo (5K ) + 6oz, (K1) + Cirad 0 V(X )P
+2p22r! (cpvzm o V(Xp, )P(1+E[[Uni1 |?])
O 60 VXY (14 ElUn i NE[|AX 5] + AX Y — EIAK, X e ][ X))
Let p' :=1—1/(2p). Using the Jensen inequality and (28), we have

M4 M | 2p—1 <M
UAX 1+AX +1 E[AX, {1 Xr, ” ? ‘XF,L}

<E[;Axn+1 +AXL —EAXL

2
(R
<’YﬁJrlTp(yrn)p + Cp7g+11p,ﬁ(yr o ,ﬂn+1¢ ° V(XF )P
/ 7M /7 ’
<'Vp+1¢ © V(XF )pp + 7Z+1IP,E(XF ) + Cp h'7n+1¢ © V( )

—7n+1¢ V(X )p Y2 4 7£+1Ip7ﬁ(XFn) + Cg)h%+1¢ o V(Xr )

Now, since H}, (¢, V) holds, then lim; 7 /(¢ o V)? = 0 and then for any ¢ > 0 there exists hy > 0
such that 7, ), < e(¢oV)P. Moreover Cp p, is finite since H} i (@, V), ’Hz(gb, V), H 1/2(¢, V) and Hj (¢, V)
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hold for every h € (0,h]. Let & € (0,a). Since p’ > 1/2, there exists ng(@) € N such that for any
n > no(&), we have

a—&
16/ Tall% | Ap | 0o 22P=3)+ [V P2

To treat the other term we proceed as in (131) with [|[A;]lo replaced by |[A]|ee22? 3[VV]? 72, «
replace by & and & € (0,&). We gather all the terms together and using R, , (see (115) and (116)), for

every n = no(&) V ng(&), we obtain

M

_ M o —M —M —M
E[|Xr,,, —Xp, |2p\Xrn] Ynt1(7p(Xp,) + @ o V(Xp, )P

)

E[VP(Xr,,,) — VP(Xr )X, <tmcpV? (X, )(8 — ado V(Xr,)
V(X )go V(X )P

+’Yn+1PVp_1(y§Jn> ((/) © V(Y{Yﬁ)(d —a)+(a=-a) ||¢/Id||é)51

st VLX) (Bp — Gpd o V(XL )).

which is exactly the recursive control for p > 1, that is (127). The proof of (128) is an immediate
application of Lemma 3.2 as soon as we notice that the increments of the Euler scheme (102) have finite
polynomial moments (under the hypothesis from A.) which imples (24).

Now, we prove point B.. Since p < 1, the function defined on (v.,00) by y — yP is concave. Using
then the Tayor dexpansion of order 2 of the function V, for every z,y € R?, there exists A € [0, 1] such
that

VP(y) = VP(x) <pVP~H (@) (V(y) — V(2))
=pV? (@) ((VV(2),y — z) + % Te[D?V(Az + (1 = Ny)(y — 2)®?])
and then,
VP(y) = VP(z) <pVP~ (@) ((VV (2),y — ) + %IIDZVllooly —al*.

We apply this inequality, and with the notation (113), it follows that

M2 —M M M M M. M —M
E[VP(Xr, , + Ynt16p,q(Xr, ) — VP (Xp, )| X1, | <pV? "X, (1t (VV(XTE,), 0(XT,) + Fpg (X))

M,2

1 — — M. —M oM
+§|\D2V||ooE[|Xr + Ynt1kipg(Xr,) — Xp, [P X7, 1)

n+1

As in the proof of the case p > 1, it follows from B, ,(¢) (see (112)) that there exists & € (0, @) and
no(@) € N* such that for every n > ng(@), we have

M2 M. =M oM v M —M _ —M
EHXFn+1 + Kpg(Xr,) — Xrn|2|Xrn] < Yny1|loo™ (Xt )|+ ynmi(@Xp,) + ynp1(a —a@)po V(X )

Now, it remains to study

M,2

—M — —M —M
E[Vp(XF"H ) — VP(XF,,LH + '7n+1“p7q(XF,,L )) |XF,,L]~

Since Yﬁiﬂ = Y]F\/:il + Ayani + Ayzfi, we use Lemma 4.7 together with 7j, and #%'? (see (109))
and we obtain

—M —M,2 —M =M - —M
E[Vp(XrnH) - VP(XF,L+1 + 7n+1“p,q(XFn))|Xrn} <’Yn+1Xp,q,h(XFn)

_ —M
1< 2 [VV] P 1€(vnt1)Tpn (X1, ),

)
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with € : R, — R a locally bounded function which satisfies €(t)/t < C. It follows from H (¢, V) (see
(114)) when p < 1/2, that there exists @ € (0, @) and ng(&) € N* such that for every n > ng(&), we have

—M —M,2 —M | =M . —M
E[VP(XF,L+1 ) — Vp(XFn+1 + Ynt16p,q (X, DIXT, ] <¥n+1Xp,g,n(X1,)

n

P 1 ~=M —M
+Ynt1(a@ — a)pV? 1(Xrn)¢ o V(Xrn)-

Gathering all the terms together and using R, , (see (115)) yields the recursive contol (129). The proof
of (128) is an immediate application of Lemma 3.2 as soon as we notice that the increments of the Euler
scheme (102) have finite polynomial moments (under the hypothesis from A.) which imples (24).

O

4.3.3 Proof of the infinitesimal estimation

In order to btain the result, it is necessary to introduce some structural assumption concerning the jump
process. For x € RY, let us define the process (M (x)):»0 such that My(z) = M, (z)+ M3 () (see (103)
for notations) for every ¢ > 0. We assume that

Vz € F, llim le(z,z)|/|x] =0, and 3Jtge Ry, VE < to,
T|—00

‘ llim |Mi(x)|/|x| = 0 a.s. (132)
T |—r0o0

|
Now, we give the result that provides the infinitesimal estimation.

Lemma 4.8. Let p > 0 and let g € [0,1]. We consider the sequence (Uy)nen- which satisfies Mar2(U)
(see (106)) and Ma(U) (see (107)).

Moreover, we assume that Hj and H} (see (109)) hold. We also suppose that b and o are locally
bounded functions with sublinear growth, that (132) holds and that we have sup,,cy. v2(|0]?) < oo, and

also sup,, ey« V(7 5) < 00 when q € (1/2,1]. Then, we have E(AY AMY (see (9)), with AM defined in
(101).

Proof. In this proof we will use the function wj 5; : R? x R? — R? such that wp ,+(z,v) = = + th(z) +
V'to(x)v. We also introduce the random process (M[");>o independent from (U,,),en ,such that for every
t > 0, we have MJ'(x) = M{lt(x) + M2 (x) (see (103) for notations). First we write
TN ELf (oot (@, 0)+ M ()] = f(who(@,0)) = AT f(2) + Ray(2,t,v)
with
A" f(x) =/(f(96+0(27$)) = f(@) = (c(z,2), V() To.n (12]))¢ (2, 2)A(d2)

F

+/(f($ + c(z,2)) = f(@)Ln,an) (|2)C(2, 2)A(d2)

F

It follows that we can decompose Ra,(7,t,v) in the following way: Ra,(v,t,v) = Ry, (z,t,v) +
Ra,(z,t,v) with

Ra, (z,t,0) :E[//ﬁAS(a:,t,v,Mtg(x),z,@)]l[07h](\z|))\(dz)d9]
0 F

with

Ry, RIXRExRIXREXFx[0,1] — Ry
(x,t,u,v,2,0) —  flwpoe(r,v) +u+c(z,2)) — flwper(x,v)+u)
—(c(z,2), V f(wp,ot(z,v) + u))
—(f(z+c(z,2)) — fz) = (c(z,2), Vf(2)))((2,2),

and
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Toa (2,4,0) :IE[// (2,8, 0, Mag (), 2, 0) 1y (|21 A(d2) 6]
0

with

Ra, RIXR, xRIxRIx Fx[0,1] — Ry
(x,t,u,v,2,0) — (flwpoi(z,v) +u+c(z,2)) — flwper(z,v)+u))(z,x)
—(flz+c(z,2)) — f(2))C(2,2),

R, (x,t,v) F@ra(x,0) + Miy(2) + (2, 2)) = f(wbo(x,v) + Myy(2))C (2, 2) L, a1 (|2))A(dz)d0)

O\H O\H

/ (2 + e(2,2)) — F(@)C(z @) an (2D A(d2) 8],
P

Case q € [1/2,1]. We focus on R,,. At this point, we assume that 7, ,, takes strictly positive values
(otherwise R,, = 0). We denote m(d®) = py (dv)Ljg 5 (|2])A(dz)dfd for © = (v,2,0) € G = R? x F x
[0,1]. It follows that (for U ~ Uy),

E[EA?, (*T” t7 U)] = Iq,h(x)]E[/ Iq_,llm(x)XAg (SC, ta MthG (LE), v, %, G)E(d@)]
G

First we show (12). We recall that b and o have sublinear growth. Therefore, as a direct consequence
of (132) and since f has a compact support, there exists to > 0 such that

VO = (v,z,0) € G, lim sup T_}L(w)ﬁ% (x,t,Mt}fg(z),@) =0a.s.

~q,
lz|—00 te(0,t0]

Finally, since f is continuous with compact support, then it is uniformly continuous and since (Mzg(x))t>0)

=

is a left limited right continuous process, we deduce that for any compact subset K of R%, we have

VO = (v,2,0) €G, limsupr, h( )Ry, (2,1 , Ml (2),0) =0 a.s.

t—0 reK

Consequently (12) holds. Now, we show that Eemo(z;iﬁAS,zq,h) holds.
Using Taylor expansion of order one, we obtain

1
ﬁAS(I,t,u,U,Z 0) /|c 2, )|V f(wp,o4(x,0) + 0+ 0c(z,2)) — V f(Wpon(z,v) +u)
0

+V [ (@ +de(z,2)) = VI(2))C(z,2)|dD.

From Taylor expansion of order two, it also follows that

1

Ry, (z,t,u,v,2,0) <% / (2, 2) 2| D? f (Wp,o (2, 0) + u + De(2,2)) — D f(z + Je(z, 2))|((2, 2)dd
0

Therefore, for any r € [1, 2],
Ry, (2,1,1,0,2,0) SCID* flloo V[V fllosle(z, 2)["C (2, 2)

Taking r = ¢, the hypothesis 7] (see (109) brings

sup sup 7} (2) / E|R 4, (. £, Ml (2), ©)[2(d®) < ox,
z€RI teR P
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and Eepgo(T,, R4, Ty follows from sup,,cy. (7, ) < 0.

Now, we focus on Ra,. We denote T(d©) = py(dv)Lj 4 (|z])A(dz)dfd for © = (v,2,0) € G = R? x
F x [0,1]. It follows that (for U ~ Uy),

E[Ra,(z,t,U)] /9‘{,43 x,t, Ml (), v, 2,0)7(dO)]

First we show (12). We recall that b and o have sublinear growth. Therefore, as a direct consequence
of (132) and since f has a compact support, there exists to > 0 such that

VO = (v,2,0) € G, lim sup Ra,(x,t, M(x),0) =0a.s.

lz|—00 te0,t0]

Finally, since f is continuous with compact support, then it is uniformly continuous and since (Mg(x)):>0)
is a left limited right continuous process, we deduce that for any compact subset K of R? we have

VO = (v,2,0) € G, hr% sup Ra, (z,t, Mly(2),0) = 0 a.s.
reK

Consequently (12) holds. Now, we show that g0 (Ra,, 1) holds. As a direct consequence of A\({z,h < |2| < M}) < oo

we obtain

sup sup /]E[|§A3(xatvMt}é(x%@)”ﬁ(dé) < Ol fllooll¢llocA({z, b < |2] < M}) < 00

zeRItERY J

and Eergo(Ra,, 1) follows. To complete the proof, it remains to study (for U ~ Uy)
B[ f (whot (2, U) — f(2)].

This is already done in the proof of Proposition 4.6, so we invite the reader to refer to this part of the
paper for more details.

Case q €[0,1/2]. In this case the study is the same as for ¢ € [1/2,1]. We notice that x,, (see
(113) for notations) is well defined and that (132) implies that it has sublinear growth. Consequenty,
since A({0 < |z| < M}) < o0, if we replace b by b — £, 4 and then take h = 0, we obtain the result with
a similar proof.

O

The following result show how to obtain lim, . ]/(Af) = 0 from Lemma 4.8. This is a key result
which allow us to work with truncated jumps and nevertheless obtain convergence towards the invariant
measure of the process with unbounded jumps.

Proposition 4.10. We assume that A({z,h < |z|}) = co. For M > h, we define

Agz(@) :/|C(Zax)”C(Zvx)“l[ﬁ,oo)ﬂz‘))‘(dz)'
F

We assume that (16) holds for every process that belongs to the family of processes ((Yiw)@o)M)MO, for
some My > h, that is:

VM > Mo, Vf € D(A) P-as. lim 72 Tmip(xXA) — f(XT XM J=0,  (133)

n—oo H,,

with (Yﬁw)go defined in (102). We also suppose that (98) is satisfied, that is limg;_,  lim, . v}](Ag7) =0
Finally we suppose that the hypothesis from Lemma 4.8 are satisfied with M replaced by M (and

(Yﬁw)@o replaced by (Yi\/[)@O) for every M > My. Then, we have

VfeD(A) P-a.s. lim lim — anAf er ) =0. (134)

M—00 70
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Proof. We notice that Af = AMf + R, . f with

Ry gt @) = [ (o4 e(a,)) = £ iar o ()C 0N E2)
F
<Vl [ el )60 00137 (12DAE2) = [V SR (@)
F

Now, we write v1(AMf) = v1(Af) + iRy, A§7f) and then we obtain: |[V1(Af)| < |[v1(AMf)] +

V flloo |V (A57)|. Since (133) holds, then Lemma 4.8 with Theorem 3.2 give
|| n M I g b

R T T U
VfeD(A) Pas. hmen;nkA FXE ) =o.

n— oo
Finally, we let M tends to infinity and since limz; ,__ lim, o #/1(A57) = 0, the proof is completed. [

4.3.4 Proof of (14) and (16)

Proposition 4.11. Let p > 0,q € [0,1],a € (0,1], p,s € (1,2] and, ¥(y) = y?, ¢(y) = y* and
ez(t) = tP/2. We assume that the sequence (Up)nen- satisfies My o(U) (see (106)) and Mapo(U) (see
(107)) and that (110) holds. Then, we have the following properties,

A. We assume that B, 4(¢) (see (112)) and R, 4 (115) hold. We also suppose that SWrz  ,(p,€ez) (see
(26)) hold and that:
i) If p > 1, we assume that H?, Hy (¢, V) and ﬁ,ll((b, V) (see (114)) are satisfied and that, if
p> 1, HY(SV).HE(S,V), 7y *(6,V) and Hy (6, V) hold for any T € (0, ).
ii) If p € (0,1) and let q € [0,1], we assume that H, and H:"'? (see (109)) hold and that we have
Hy(0,V) (see (114)) if p < 1/2.
Then SWrz ., (VPT=1 plez) (see (19)) holds and we have the following property:

If in addition SWII,%,,(V”/S) (see (20)), SWpoi(p,a, s, p) (see (139)), ﬂﬁvq(qﬁ, V) and gfl(gé, V)
are satisfied, then

I <& - & M
P-a.s. sup A anAZ(w oV)*(Xr, ) < oo, (135)
neN* O
and we also have,
P-a.s.  sup v1(VP/5T971) < oo, (136)
neN*

Moreover, when p/s < p+ a — 1, the assumption SWrz ,(VP/®) (see (20)) can be replaced by
SWriz .~ (see (27)). Besides, if we also suppose that Ly (see (7)) holds and that p/s+a—1 >0,
then (V) nen~ is tight

B. If f € D(A), (22), H and Hj, (see (109) are satisfied and SWr ., ,(|oo*|?/? + ]l#ozé/\p/(%) +
]lp;éoﬂlfp/@p),m er) (see (19)) holds, then

) 1 — M
P-a.s. lim T anAZf(XFk_l) =0 (137)
" k=1

n—o0

Remark 4.2. The reader may notice that (137) remains true if we replace H} and ﬁfl by respec-
tively HL (¢, V) and Hy, (¢, V) and if we also replace SWr ., ,(|oo*|?/? + zéAp/(QQ) + ﬂl,Ap/(Qp),p, er) by
SWr o n(V/2 p er). A solution to obtain SWr (V% p,er) when ap/2 < a+p — 1 is provided by
point A. that is SWz (VP! p ez). When ap/2 > a+p—1 a possible solution consists if replacing
p by po in A. with py satisfying ap/2 < a+py — 1
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Proof. The result is an immediate consequence of Lemma 3.1. It remains to check the assumption of
this Lemma.

We focus on the proof of (135) and (136). First, we show SWx - ,(VPT41 p e7) (see (19)). Since (110),
Bp.q(0) (see (112)) and R, 4 (see (115)) hold, it follows (using the hypothesis from point i) and point
i1)) from Proposition 4.9 that Zg v (1, ¢) (see (8)) is satisfied. Then, using SWz , »(p, ez) (see (26)) with
Lemma 3.3 gives SWx (VP21 p er) (see (19)). In the same way, for p/s < a + p — 1, we deduce
from SWrz ., (see (27)) and Lemma 3.3 that SWzz -, ,,(V?/*) (see (20)) holds.

Now,we are going to prove fX(V”/S7 Vatr=1 x b er) (see (18)) and the proof of (135) will be completed.
Notice that (136) will follow from Zg v (¢, ¢) (see (8)) and Theorem 3.1. The proof is a consequence of
Lemma 4.9 which is given below. We notice indeed that Lemma 4.9 (see (140)) implies that, there exists
a sequence X, such that Zy (V?/*, VotP=1 % p ez) (see (18)) holds and the proof of (135) and (136) is
completed.

We complete the proof o the Proposition by noticing that (137) follows directly from Lemma 4.9 (see
(138)). O

Lemma 4.9. Let p > 0,q € [0,1],a € (0,1], p € (1,2] and, ¥(y) = y* and $(y) = y*. We suppose that
the sequence (Up)nen- satisfies M,yap,/s(U) (see (107)) and that (110) holds. We also assume that H,
and Hj (see (109)) are satisfied.

Then, for every n € N we have: for every f € D(A),

—M —M,1 —M 2 w M
Elf(Xr,,,) — fXr, )IPIXr,] <Crvoiloo* Xy, )|P/? (138)
+’Y111{\0—pl/(2q>]1 1/\p/(2q))(X )Jrc%ﬂﬂp#m_mp/(gp) (XM

r,):

with D(A) = C%(R?). In other words, for every f € D(A), we have Ix(f,|oo*|P/? + 1420 Tll\p/@q) +
107y /) %, p,ez) (see (18)) with X, = f(yxl) for every n € N and ez(t) = t°/? for every t € R,.

Now, we assume that (110), B, 4(¢) (see (112)), H2V(¢, V) and Hy (6, V) hold. Finally, we suppose
that the following holds:

s2/p—D(a+p—1)+s—220, if 2p/s < 1,
SWpoi(p,a,8,0) 3 (2—35)/(2—p) <a<s/p, if2p/s 21 and p <1, (139)
8(1—(1—&)/})), lfp/

Then, for every n € N, we have
E[V*/*(Xr.,,) = VP (e )X, ] < Oyt vt (X)), (140)

In other words, we have Ix (VP/* VPta=1 X p er) (see (18)) with X, = VP/*(Xr,) for every n € N
and ez(t) = tP/2 for every t € R,.
Proof. Before we start the proof, we assume that ¢ # 0 and p # 0. Otherwise, the proof is simpler so
we leave it out.

Let f € D(A). We introduce decomposition (with notations (104))

M, 1 —M,3 —M,2 —M

f(XFn+1) f(XFn+1) f(XFn_H) f(Xr )+ f(XrnH) - f(XrnH) + f(XrnH) f(Xrn+1)

First, we notive that since f is Lipschitz, we have

—M,2 <M1, M oM
Elf(Xr,. ) — fXr, PIXr, ] <O loo™ (X, )P El|Unsa |°).

Now we study AXn+1 We distinguish two cases: p/2 < q and ¢ < p/2. First, let p/2 < ¢q. Then
from Cauchy Schwartz inequality,we obtain

—=M,3 —M
E[AX L [P X e ] <E[JAX %X 17/ (2
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Now if ¢ < p/2, then since f is Lipschitz and defined on a compact set, it is also 2q/p-Holder, and then
for every xo € R%, we have

X

E[If (o + AX,10) — F@o)l K] < [flap/, EIAK )

Moreover, from Lemma 4.6 point B. and C., it follows that

—M
[‘AXn+1|2 ] C%qu,h(XFn)

and we conclude that

—M,3 M2~ 1 (29) 1 2
E[lf (X" ,) — FOXm )P X, ] <Cuahy POl GO (X,

Now we study AXnH Once again we dlstlngulsh two cases: p/2 < pand p < p/2. First, let p/2 <
Using Lemma 4.6 point A. since we have " and the Cauchy Schwartz inequality, it follows that

—M,4 _ —M
E[|AX, 117 S E[JAX, 11772 < Crapa /P (X1 ),

n

Now if p < p/2, then since f is Lipschitz and defined on a compact set, it is also 2p/p-Holder, and
then for every zo € R%, we have

E(|f(z0 + AXs1) — f(@0) P [ X 1] < [flap/pEIAK mya || X1

Now, using Lemma 4.6 point A. since we have ﬁp, it follows that

_ —M
[|AXn+1|2p} C'Yn-i-lTp,h(XFn)a

and we conclude that

—M M3, M _ —M
E[lf(Xr,,,) — f(Xp, )P IXT, ] <C%+1T;Ap/(2p) (X, )-

and gathering all the terms as in the the initial decomposition gives (138).

We focus now on the case f = VP/5. First, we assume that 2p/s < 1. Let 2,y € R, Then, the
function from Rt to Rt such that y — y?*/* is concave and since vV is Lipschitz, we deduce that

VPR (y) = VP (@) <2p/sVPP V2 (@) (VV (y) = VV (2))
<2p/s[VVIIVP 2 (@)]y — a.

Now, since s(2/p—1)(a+p—1) 4+ s —2 > 0 from SW,(p,a, s, p) (see (139), and V takes values in
[V, 00), we deduce that there exists C' > 0 such that for every z € RY, we have VPP/5=r/2(z) < CVe(=r/24p=1 (),
Using B, 4(¢) (see (112)), we obtain

E[[ X2, — Xp [P|Xp = 2] < C22vee? (a)

n+1

Now, we study AYQ{S. First we consider the case 2¢ > s. Since p < s (from SWyu(p, a, s, p) (see
(139))), we have 2¢ > p and it follows from Cauchy Schwartz inequality and Lemma 4.6 point C., that

—M3 =M M3 9q <M 2 9
E[AX, 17| XT, ] <E[AX, )% X, ]/ D < C,yzi(lq)zs’/}f ) (z)

Now, we notice that since p/s < 1/2 then V?/* is a-Hélder for any o € [2p/s, 1] (see Lemma 3. in
[13]). Tt follows that for 2¢ < s, VP/* is 2(p V q)/s-Hélder. Then, using Cauchy-Schwartz inequality and
since p < s from SW,(p, a, s, p), we have

M,3

B[V (Xp,,,) = VI (R )P X, ) VP15 0 BIAT G POV 00/ X |

n+

rL+1

<Vl E[|AX, 1 [2*V 9| X, 17/°

2(pVvq)/s

<L Crlls s (X,
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where the last inequality is a consequence of Lemma 4.6 point B. and C..
Using the fact that V?/¢ is 2p/s-Holder, we deduce from (from Cauchy-Schwartz inequality and since
p < s from SWp(p,a, s, p) (see (139)) 4.6 point A., that

]p/s

E[V?/*(Xr,,,) = VI (X, )P Xe,] < VP, EIAX, S

Xp ] <CE[|AX .

2p/s
<C p/s ﬂ/b(X )
SUYnTpp AT, )

We gather all the terms together and the proof is competed for the case 2p < s. Now, we consider
the case 2p > s. Using (29) with o = 2p/s, it follows that

o M o M R s_1/2,~M M <M, 1
VPI(XT, ) = VP (X)) <2/op/s(VPT VA (X )IVV (X, ,,) - VYR,
7M s
+HVV(Xr,,,) — VV (X, )I2”/)

S Ss— ~M S M S
<%/op[s(WV VP 2 )X = Ko WV (X — X 129)

n+1 n+1

We study AYj‘ff;. We recall that p < s from SW,0(p, a, s, p) (see (139)) and then 2p > p in this
case. We distinguish the case ¢ < p and ¢ > p. Using once again the Cauchy Schwartz inequality and
point A. of Lemma 4.6, we obtain

s s ~M —M,3, , M
E[|AX, 1P X | < Oy (X)) and  E[JAX, 171X p | < Cynn /27 (X1).

Now, we study AY%ﬁ. We recall that p < s from SWyu(p, a,s,p) (see (139)) and then 2p > p in
this case. Using once again the Cauchy Schwartz inequality and point A. of Lemma 4.6, we obtain

s _ —M —M,4, M /(2
E[|AX,1[7/*[ Xy, ] < Crnnr 70V DXy ) and  B[IAX, (X, ] < Crnp Tl (Xr, ).

Using B, ,(¢) (see (112)), H2V9(¢, V) and Hj, (¢, V), we obtain
—M =M |, =M
E{[Xr,,, — Xr,I*[Xr, =2 < Cof Ve (@),
and

[|XF —X |2pp/S|X = 1] SCvﬁi/fMV“pp/s(ﬂf)

n+1

In order to obtain (140), it remains to use p < s(1—(1—a)/p)ifp>1and (2—3)/(2—p) <a < s/p
together with 2p/s > 1 if p < 1.
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