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Abstract
We review a (constructive) approach first introduced in [6] and

further developed in [7, 8, 38, 9] for hydrodynamic limits of asymmetric
attractive particle systems, in a weak or in a strong (that is, almost
sure) sense, in an homogeneous or in a quenched disordered setting.

1 Introduction

Among the most studied conservative interacting particle systems (IPS ) are
the simple exclusion and the zero-range processes. They are attractive pro-
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cesses, and possess a one-parameter family of product extremal invariant
and translation invariant probability measures, that we denote by {να}α,
where α represents the mean density of particles per site: for simple exclu-
sion α ∈ [0, 1], and for zero-range α ∈ [0,+∞) (see [36, Chapter VIII], and
[1]). Both belong to a more general class of systems with similar properties,
called misanthropes processes ([19]).

Hydrodynamic limit ([21, 45, 33]) is a law of large numbers for the time
evolution (usually described by a limiting PDE, called the hydrodynamic
equation) of empirical density fields in interacting particle systems. Most
usual IPS can be divided into two groups, diffusive and hyperbolic. In the
first group, which contains for instance the symmetric or mean-zero asym-
metric simple exclusion process, the macroscopic→microscopic space-time
scaling is (x, t) 7→ (Nx,N2t) with N →∞, and the limiting PDE is a diffu-
sive equation. In the second group, which contains for instance the nonzero
mean asymmetric simple exclusion process, the scaling is (x, t) 7→ (Nx,Nt),
and the limiting PDE is of Euler type. In both groups the PDE often ex-
hibits nonlinearity, either via the diffusion coefficient in the first group, or
via the flux function in the second one. This raises special difficulties in the
hyperbolic case, due to shocks and non-uniqueness for the solution of the
PDE, in which case the natural problem is to establish convergence to the
so-called entropy solution ([44]).

In most known results, only a weak law of large numbers is established.
In this description one need not have an explicit construction of the dynam-
ics: the limit is shown in probability with respect to the law of the process,
which is characterized in an abstract way by its Markov generator and Hille-
Yosida’s theorem ([36]). Nevertheless, when simulating particle systems, one
naturally uses a pathwise construction of the process on a Poisson space-time
random graph (the so-called graphical construction). In this description the
dynamics is deterministically driven by a random space-time measure which
tells when and where the configuration has a chance of being modified. It
is of special interest to show that the hydrodynamic limit holds for almost
every realization of the space-time measure, as this means a single simulation
is enough to approximate solutions of the limiting PDE.

We are interested here in the hydrodynamic behavior of a class of asym-
metric particle systems of Z, which arise as a natural generalization of the
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asymmetric exclusion process. For such processes, hydrodynamic limit is
given by the entropy solutions to a scalar conservation law of the form

∂tu(x, t) + ∂xG(u(x, t)) = 0 (1)

where u(., .) is the density field and G is the macroscopic flux. The latter is
given for the asymmetric exclusion process by G(u) = γu(1 − u), where γ
is the mean drift of a particle. Because there is a single conserved quantity
(i.e. mass) for the particle system, and an ergodic equilibrium measure for
each density value, (1) can be guessed through heuristic arguments if one
takes for granted that the system is in local equilibrium. The macroscopic
flux G is obtained by an equilibrium expectation of a microscopic flux which
can be written down explicitly from the dynamics. A rigorous proof of the
hydrodynamic limit turns out to be a difficult problem, mainly because of
the non-existence of strong solutions for (1) and the non-uniqueness of weak
solutions. Since the conservation law is not sufficient to pick a single solu-
tion, the so-called entropy weak solution must be characterized by additional
properties; one must then look for related properties of the particle system
to establish its convergence to the entropy solution.

The derivation of hyperbolic equations of the form (1) as hydrodynamic
limits began with the seminal paper [41], which established a strong law
of large numbers for the totally asymmetric simple exclusion process on Z,
starting with 1’s to the left of the origin and 0’s to the right. This result
was extended by [15] and [2] to nonzero mean exclusion process starting from
product Bernoulli distributions with arbitrary densities λ to the left and ρ
to the right (the so-called Riemann initial condition). The Bernoulli dis-
tribution at time 0 is related to the fact that uniform Bernoulli measures
are invariant for the process. For the one-dimensional totally asymmetric
(nearest-neighbor) K-exclusion process, a particular misanthropes process
without explicit invariant measures, a strong hydrodynamic limit was estab-
lished in [43], starting from arbitrary initial profiles, by means of the so-called
variational coupling, that is a microscopic version of the Lax-Hopf formula.
These were the only strong laws available before the series of works reviewed
here. A common feature of these works is the use of subadditive ergodic
theorem to exhibit some a.s. limit, which is then identified by additional
arguments.

On the other hand, many weak laws of large numbers were established for
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attractive particle systems. A first series of results treated systems with
product invariant measures and product initial distributions. In [3], for a
particular zero-range model, a weak law was deduced from conservation of
local equilibrium under Riemann initial condition. It was then extended in [4]
to the misanthropes process of [19] under an additional convexity assumption
on the flux function. These were substantially generalized (using Kružkov’s
entropy inequalities, see [34]) in [39] to multidimensional attractive systems
with product invariant measures for arbitrary Cauchy data, without any con-
vexity requirement on the flux. In [40], using an abstract characterization of
the evolution semigroup associated with the limiting equation, hydrodynamic
limit was established for the one-dimensional nearest-neighbor K-exclusion
process.

The above results are concerned with translation-invariant particle dynamics.
We are also interested in hydrodynamic limits of particle systems in random
environment, leading to homogenization effects, where an effective diffusion
matrix or flux function is expected to capture the effect of inhomogeneity.
Hydrodynamic limit in random environment has been widely addressed and
robust methods have been developed in the diffusive case. In the hyper-
bolic setting, the few available results in random environment (prior to [9])
depended on particular features of the investigated models. In [16], the au-
thors prove, for the asymmetric zero-range process with site disorder on Zd, a
quenched hydrodynamic limit given by a hyperbolic conservation law with an
effective homogenized flux function. To this end, they use in particular the
existence of explicit product invariant measures for the disordered zero-range
process below some critical value of the density value. In [42], extension to
the supercritical case is carried out in the totally asymmetric case with con-
stant jump rate. In [43], the author establishes a quenched hydrodynamic
limit for the totally asymmetric nearest-neighbor K-exclusion process on Z
with i.i.d site disorder, for which explicit invariant measures are not known.
The last two results rely on variational coupling. However, the simple exclu-
sion process beyond the totally asymmetric nearest-neighbor case, or more
complex models with state-dependent jump rates, remain outside the scope
of this approach.

In this paper, we review successive stages ([6, 7, 8, 38, 9]) of a construc-
tive approach to hydrodynamic limits given by equations of the type (1),
which ultimately led us in [9] to a very general hydrodynamic limit result for
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attractive particle systems in one dimension in ergodic random environment.
We shall detail our method in the setting of [9]. However, we will first ex-
plain our approach and advances along the progression of papers, and quote
results for each one, since they are interesting in their own. We hope this
could be helpful for a reader looking for hydrodynamics of a specific model:
according to the available knowledge on this model, this reader could derive
either a weak, or a strong (without disorder or with a quenched disorder)
hydrodynamic limit.

Our motivation for [6] was to prove with a constructive method hydrodynam-
ics of one-dimensional attractive dynamics with product invariant measures,
but without a concave/convex flux, in view of examples of k-step exclusion
processes and misanthropes processes. We initiated for that a “resurrection”
of the approach of [4], and we introduced a variational formula for the en-
tropy solution of the hydrodynamic equation in the Riemann case, and an
approximation scheme to go from a Riemann to a general initial profile. Our
method is based on an interplay of macroscopic properties for the conserva-
tion law and analogous microscopic properties for the particle system. The
next stage, achieved in [7], was to derive hydrodynamics (which was still a
weak law) for attractive processes without explicit invariant measures. In
the same setting, we then obtained almost sure hydrodynamics in [8], relying
on a graphical representation of the dynamics. The latter result, apart from
its own interest, proved to be an essential step to obtain quenched hydrody-
namics in the disordered case ([9]). For this last paper, we also relied on [38],
which improves an essential property we use, macroscopic stability.

Let us mention that we are now working ([12, 13]) on the hydrodynamic
behavior of the disordered asymmetric zero-range process. This model falls
outside the scope of the present paper because it exhibits a phase transi-
tion with a critical density above which no invariant measure exists. In the
supercritical regime, the hydrodynamic limit cannot be established by local
equilibrium arguments, and condensation may occur locally on a finer scale
than the hydrodynamic one. Other issues related to this model have been
studied recently in [10, 11].

This review paper is organized as follows. In Section 2, after giving general
notation and definitions, we introduce the two basic models we originally
worked with, the misanthropes process and the k-step exclusion process.
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Then we describe informally the results, and the main ideas involved in [4]
which was our starting point, and in each of the papers [6, 7, 8, 38, 9]. Sec-
tion 3 contains our main results, stated (for convenience) for the misanthropes
process. We then aim at explaining how these results are proved. In Section
4, we first give a self-contained introduction to scalar conservation laws, with
the main definitions and results important for our purposes; then we explain
the derivation of our variational formula in the Riemann case (illustrated
by an example of 2-step exclusion process), and finally our approximation
scheme to solve the general Cauchy problem. In Section 5, we outline the
most important steps of our proof of hydrodynamic limit in a quenched disor-
dered setting: again, we first deal with the Riemann problem, then with the
Cauchy problem. Finally, in Section 6, we define a general framework which
enables to describe a class of models possessing the necessary properties to
derive hydrodynamics, and study a few examples.

2 Notation and preliminaries

Throughout this paper N = {1, 2, ...} will denote the set of natural numbers,
Z+ = {0, 1, 2, ...} the set of non-negative integers, and R+∗ = R+ \ {0} the
set of positive real numbers. The integer part bxc ∈ Z of x ∈ R is uniquely
defined by bxc ≤ x < bxc+ 1.

The set of environments (or disorder) is a probability space (A,FA, Q), where
A is a compact metric space and FA its Borel σ-field. On A we have a group
of space shifts (τx : x ∈ Z), with respect to which Q is ergodic.

We consider particle configurations (denoted by greek letters η, ξ . . .) on Z
with at most K (but always finitely many) particles per site, for some given
K ∈ N∪ {+∞}. Thus the state space, which will be denoted by X, is either
NZ in the case K = +∞, or {0, · · · , K}Z for K ∈ N. For x ∈ Z and η ∈ X,
η(x) denotes the number of particles on site x. This state space is endowed
with the product topology, which makes it a metrisable space, compact when
X = {0, · · · , K}Z.

A function f defined on A × X (resp. g on A × X2, h on X) is called
local if there is a finite subset Λ of Z such that f(α, η) depends only on α
and (η(x), x ∈ Λ) (resp. g(α, η, ξ) depends only on α and (η(x), ξ(x), x ∈ Λ),
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h(η) depends only on (η(x), x ∈ Λ)). We denote again by τx either the spatial
translation operator on the real line for x ∈ R, defined by τxy = x+ y, or its
restriction to x ∈ Z. By extension, if f is a function defined on Z (resp. R),
we set τxf = f ◦ τx for x ∈ Z (resp. R). In the sequel this will be applied
to different types of functions: particle configurations η ∈ X, disorder con-
figurations α ∈ A, or joint disorder-particle configurations (α, η) ∈ A ×X.
In the latter case, unless mentioned explicitely, τx applies simultaneously to
both components.

If τx acts on some set and µ is a measure on this set, τxµ = µ ◦ τ−1
x . We

let M+(R) denote the set of nonnegative measures on R equipped with the
metrizable topology of vague convergence, defined by convergence on con-
tinuous test functions with compact support. The set of probability mea-
sures on X is denoted by P(X). If η is an X-valued random variable and
ν ∈ P(X), we write η ∼ ν to specify that η has distribution ν. Similarly, for
α ∈ A, Q ∈ P(A), α ∼ Q means that α has distribution Q.

2.1 Preliminary definitions

Let us introduce briefly the various notions we shall use in this review, in
view of the next section, where we informally tell the content of each of our
papers. We shall be more precise in the following sections. Reference books
are [36, 33].

The process. We work with a conservative (i.e. involving only particle
jumps but no creation/annihilation), attractive (see (2) for its definition be-
low) Feller process (ηt)t≥0 with state space X. When this process evolves in a
random environment α ∈ A, we denote its generator by Lα and its semigroup
by (Sα(t), t ≥ 0). Otherwise we denote them by L and S(t). In the absence
of disorder, we denote by S the set of translation invariant probability mea-
sures on X, by I the set of invariant probability measures for the process
(ηt)t≥0, and by (I∩S)e the set of extremal invariant and translation invariant
probability measures for (ηt)t≥0. In the disordered case, S will denote the set
of translation invariant probability measures on A×X, see Proposition 3.1.

A sequence (νn, n ∈ N) of probability measures on X converges weakly to
some ν ∈ P(X), if and only if limn→∞

∫
f dνn =

∫
f dν for every continuous

function f on X. The topology of weak convergence is metrizable and makes
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P(X) compact when X = {0, · · · , K}Z.

We equip X with the coordinatewise order, defined for η, ξ ∈ X by η ≤ ξ if
and only if η(x) ≤ ξ(x) for all x ∈ Z. A partial stochastic order is defined on
P(X); namely, for µ1, µ2 ∈ P(X), we write µ1 ≤ µ2 if the following equiva-
lent conditions hold (see e.g. [36, 46]):
(i) For every non-decreasing nonnegative function f on X,

∫
f dµ1 ≤

∫
f dµ2.

(ii) There exists a coupling measure µ on X×X with marginals µ1 and µ2,
such that µ{(η, ξ) : η ≤ ξ} = 1.

The process (ηt)t≥0 is attractive if its semigroup acts monotonically on prob-
ability measures, that is: for any µ1, µ2 ∈ P(X),

µ1 ≤ µ2 ⇒ ∀t ∈ R+, µ1Sα(t) ≤ µ2Sα(t) (2)

Hydrodynamic limits. Let N ∈ N be the scaling parameter for the hy-
drodynamic limit, that is, the inverse of the macroscopic distance between
two consecutive sites. The empirical measure of a configuration η viewed on
scale N is given by

πN(η)(dx) = N−1
∑
y∈Z

η(y)δy/N(dx) ∈M+(R)

where, for x ∈ R, δx denotes the Dirac measure at x, and M+(R) denotes
the space of Radon measures on R. This space will be endowed with the
metrizable topology of vague convergence, defined by convergence against
the set C0

K(R) of continuous test functions on R with compact support. Let
dv be a distance associated with this topology, and π., π

′
. be two mappings

from [0,+∞) to M+(R). We set

DT (π., π
′
.) := ess sup

t∈[0,T ]

dv(πt, π
′
t)

D(π., π
′
.) :=

+∞∑
n=0

2−n min[1, Dn(π., π
′
.)]

A sequence (πn. )n∈N of random M+(R)-valued paths is said to converge lo-
cally uniformly in probability to a randomM+(R)-valued path π. if, for every
ε > 0,

lim
n→+∞

µn (D(πn. , π.) > ε) = 0
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where µn denotes the law of πn. .

Let us now recall, in the context of scalar conservation laws, standard defi-
nitions in hydrodynamic limit theory. Recall that K ∈ Z+ ∪ {+∞} bounds
the number of particles per site. Macroscopically, the set of possible particle
densities will be [0, K]∩R. Let G : [0, K]∩R→ R be a Lipschitz-continuous
function, called the flux. It is a.e. differentiable, and its derivative G′ is an
(essentially) uniformly bounded function. We consider the scalar conserva-
tion law

∂tu+ ∂x[G(u)] = 0 (3)

where u = u(x, t) is some [0, K]∩R-valued density field defined on R×R+. We
denote by L∞,K(R) the set of bounded Borel functions from R to [0, K]∩R.

Definition 2.1 Let (ηN)N≥0 be a sequence of X-valued random variables,
and u0 ∈ L∞,K(R). We say that the sequence (ηN)N≥0 has:

(i) weak density profile u0(.), if πN(ηN) → u0(.) in probability with respect
to the topology of vague convergence, that is equivalent to: for all ε > 0 and
test function ψ ∈ C0

K(R),

lim
N→∞

µN
(∣∣∣∣∫

R
ψ(x)πN(ηN)(dx)−

∫
R
ψ(x)u0(x)dx

∣∣∣∣ > ε

)
= 0

where µN denotes the law of ηN .

(ii) strong density profile u0(.), if the random variables are defined on a
common probability space (Ω0,F0, IP0), and πN(ηN)→ u0(.) IP0-almost surely
with respect to the topology of vague convergence, that is equivalent to: for
all test function ψ ∈ C0

K(R),

IP0

(
lim
N→∞

∫
R
ψ(x)πN(ηN)(dx) =

∫
R
ψ(x)u0(x)dx

)
= 1,

We consider hydrodynamic limits under hyperbolic time scaling, that is Nt,
since we work with asymmetric dynamics.

Definition 2.2 The sequence (ηNt , t ≥ 0)N≥0 has hydrodynamic limit (resp.
a.s. hydrodynamic limit) u(., .) if: for all t ≥ 0, (ηNNt)N has weak (resp.
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strong) density profile u(., t) where u(., t) is the weak entropy solution of
(3) with initial condition u0(.), for an appropriately defined macroscopic flux
function G, where u0 is the density profile of the sequence (ηN0 )N in the sense
of Definition 2.1.

2.2 Our motivations and approach

Most results on hydrodynamics deal with dynamics with product invariant
measures; in the most familiar cases, the flux function appearing in the hy-
drodynamic equation is convex/concave ([33]). But for many usual examples,
the first or the second statement is not true.

Reference examples. We present the attractive misanthropes process on
one hand, and the k-step exclusion process on the other hand: these two
classical examples will illustrate our purposes along this review. In these
basic examples, we take α ∈ A = [c, 1/c]Z (for a constant 0 < c < 1) as the
space of environments; this corresponds to site disorder. We also consider
those models without disorder, which corresponds to α(x) ≡ 1. However,
our approach applies to a much broader class of models and environments,
as will be explained in Section 6.

The misanthropes process was introduced in [19] (without disorder). It has
state space either X = NZ or X = {0, · · · , K}Z (K ∈ N), and b : Z+×Z+ →
R+ is the jump rate function. A particle present on x ∈ Z chooses y ∈ Z
with probability p(y−x), where p(.) (the particles’ jump kernel) is an asym-
metric probability measure on Z, and jumps to y at rate α(x)b(η(x), η(y)).
We assume the following:

(M1) b(0, .) = 0, with a K-exclusion rule when X = {0, · · · , K}Z: b(., K) = 0;
(M2) Attractiveness: b is nondecreasing (nonincreasing) in its first (second)
argument.
(M3) b is a bounded function.
(M4) p has a finite first moment, that is,

∑
z∈Z |z| p(z) < +∞.

The quenched disordered process has generator

Lαf(η) =
∑
x,y∈Z

α(x)p(y − x)b(η(x), η(y)) [f (ηx,y)− f(η)] (4)
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where ηx,y denotes the new state after a particle has jumped from x to y
(that is ηx,y(x) = η(x)− 1, ηx,y(y) = η(y) + 1, ηx,y(z) = η(z) otherwise).
There are two well-known particular cases of attractive misanthropes pro-
cesses: the simple exclusion process ([36]) corresponds to

X = {0, 1}Z with b(η(x), η(y)) = η(x)(1− η(y));

the zero-range process ([1]) corresponds to

X = NZ with b(η(x), η(y)) = g(η(x)),

for a non-decreasing function g : Z+ → R+ ( in [1] it is not necessarily
bounded).

Let us now restrict ourselves to the model without disorder. For the sim-
ple exclusion and zero-range processes, (I ∩S)e is a one-parameter family of
product probability measures. The flux function is convex/concave for simple
exclusion, but not necessarily for zero-range. However, in the general set-up
of misanthropes processes, unless the rate function b satisfies additional al-
gebraic conditions (see [19, 23]), the model does not have product invariant
measures; Even when this is the case, the flux function is not necessarily
convex/concave. We refer the reader to [6, 23] for examples of misanthropes
processes with product invariant measures. Note also that a misanthropes
process with product invariant measures generally loses this property if dis-
order is introduced, with the sole known exception of the zero-range process
([16, 22]).

The k-step exclusion process (k ∈ N) was introduced in [29] (without disor-
der). Its state space is X := {0, 1}Z. Let p(.) be a probability distribution
on Z, and {Xn}n∈N denote a random walk on Z with jump distribution p(.).
We denote by Px the law of the random walk starting from x; expectation
with respect to this law is denoted by Ex. The k-step exclusion process with
jump distribution p(.) has generator

Lαf(η) =
∑
x,y∈Z

α(x)c(x, y, η) [f (ηx,y)− f(η)] with (5)

c(x, y, η) = η(x)(1− η(y))Ex

[
σy−1∏
i=1

η(Xi), σy ≤ σx, σy ≤ k

]
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where σy = inf {n ≥ 1 : Xn = y} is the first (non zero) arrival time to site
y of the walk starting at site x. In words if a particle at site x wants to
jump it may go to the first empty site encountered before returning to site
x following the walk {Xn}n∈N (starting at x) provided it takes less than k
attempts; otherwise the movement is cancelled. When k = 1, we recover the
simple exclusion process. The k-step exclusion is an attractive process.

Let us now restrict ourselves to the model without disorder. Then (I ∩S)e is
a one-parameter family of product Bernoulli measures. In the totally asym-
metric nearest-neighbor case, c(x, y, η) = 1 if η(x) = 1, y−x ∈ {1, . . . , k} and
y is the first nonoccupied site to the right of x; otherwise c(x, y, η) = 0. The
flux function belongs to C2(R), it has one inflexion point, thus it is neither
convex nor concave. Besides, flux functions with arbitrarily many inflexion
points can be constructed by superposition of different k-step exclusion pro-
cesses with different kernels and different values of k ([6]).

A constructive approach to hydrodynamics. To overcome the diffi-
culties to derive hydrodynamics raised by the above examples, our starting
point was the constructive approach introduced in [4]. There, the authors
proved the conservation of local equilibrium for the one-dimensional zero-
range process with a concave macroscopic flux function G in the Riemann
case (in a translation invariant setting, G is the mean flux of particles through
the origin), that is

∀t > 0, ηNNt
L→ νu(t,x) (6)

where νρ is the product invariant measure of the zero-range process with
mean density ρ, and u(., .) is the entropy solution of the conservation law

∂tu+ ∂x[G(u)] = 0; u(x, 0) = Rλ,ρ(x) = λ1{x<0} + ρ1{x≥0} (7)

One can show (see [33]) that (6) implies the hydrodynamic limit in the sense
of Definition 2.2. Let us begin by explaining (informally) their method. They
first show in [4, Lemma 3.1] that a weak Cesaro limit of (the measure of)
the process is an invariant and translation invariant measure, thus a convex
combination of elements of (I ∩ S)e, the one-parameter family of extremal
invariant and translation invariant probability measures for the dynamics.
Then they compute in [4, Lemma 3.2] the (Cesaro) limiting density inside a
macroscopic box, thanks to the explicit knowledge of the product measures
elements of (I ∩ S)e. They prove next in [4, Lemma 3.3 and Theorem 2.10]
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that the above convex combination is in fact the Dirac measure concentrated
on the solution of the hydrodynamic equation, thanks to the concavity of
their flux function. They conclude by proving that the Cesaro limit implies
the weak limit via monotonicity arguments, in [4, Propositions 3.4 and 3.5].
Their proof is valid for misanthropes processes with product invariant mea-
sures and a concave macroscopic flux.

In [6], we derive by a constructive method the hydrodynamic behavior of
attractive processes with finite range irreducible jumps, and for which the
set (I ∩ S)e consists in a one-parameter family of explicit product measures
but the flux is not necessarily convex or concave. Our approach relies on (i)
an explicit construction of Riemann solutions without assuming convexity of
the macroscopic flux, and (ii) a general result which proves that the hydro-
dynamic limit for Riemann initial profiles implies the same for general initial
profiles.
For point (i), we rely on the (parts of) the proofs in [4] based only on attrac-
tiveness and on the knowledge of the product measures composing (I ∩ S)e,
and we provide a new approach otherwise. Instead of the convexity assump-
tion on the flux, which belongs here to C2(R), we prove that the solution of
the hydrodynamic equation is given by a variational formula, whose index
set is an interval, namely the set of values of the parameter of the elements
of (I ∩ S)e. Knowing (I ∩ S)e explicitly enables us to deal with dynamics
with the non compact state space NZ.
Point (ii) is based on an approximation scheme inspired by Glimm’s scheme
for hyperbolic systems of conservation laws (see [44]). Among our tools are
the finite propagation property and the macroscopic stability of the dynam-
ics. The latter property is due to [17]; both require finite range transitions.
We illustrate our results on variations of our above reference examples.

While the results and examples of [6] include the case K = +∞, in our
subsequent works, for reasons explained below, we considered K < +∞,
thus X = {0, · · · , K}Z, which will be assumed from now on. Under this
additional assumption, in [7], we extend the hydrodynamics result of [6] to
dynamics without explicit invariant measures. Indeed, thanks to monotonic-
ity, we prove that (I ∩ S)e is still a one-parameter family of probability
measures, for which the set R of values of the parameter is a priori not an
interval anymore, but a closed subset of [0, K]:
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Proposition 2.1 ([7, Proposition 3.1]). Assume p satisfies the irreducibility
assumption

∀z ∈ Z,
+∞∑
n=1

[p∗n(z) + p∗n(−z)] > 0 (8)

where p∗n denotes the n-th convolution power of the kernel p, that is the law
of the sum of n independent p-distributed random variables. Then there exists
a closed subset R of [0, K], containing 0 and K, such that

(I ∩ S)e = {νρ : ρ ∈ R} (9)

where the probability measures νρ on X satisfy the following properties:

lim
l→+∞

(2l + 1)−1

l∑
x=−l

η(x) = ρ, νρ- a.s. (10)

and
ρ ≤ ρ′ ⇒ νρ ≤ νρ

′
(11)

Following the same general scheme as in [6], but with additional difficulties,
we then obtain the following main result.

Theorem 2.1 ([7, Theorem 2.2]). Assume p(.) satisfies the irreducibility as-
sumption (8). Then there exists a Lipschitz-continuous function G : [0, K]→
R+ such that the following holds. Let u0 ∈ L∞,K(R), and (ηN. )N be any
sequence of processes with generator (4), such that the sequence (ηN0 )N has
density profile u0(.). Then, the sequence (ηNN.)N has hydrodynamic limit given
by u(., .), the entropy solution to (3) with initial condition u0(.).

The drawback is that we have (and it will also be the case in the follow-
ing papers) to restrict ourselves to dynamics with compact state space to
prove hydrodynamics with general initial data. This is necessary to define
the macroscopic flux outside R, by a linear interpolation; this makes this
flux Lipschitz continuous, a minimal requirement to define entropy solutions.
We have to consider a R-valued Riemann problem, for which we prove con-
servation of local equilibrium. Then we use an averaging argument to prove
hydrodynamics (in the absence of product invariant measures, the passage
from local equilibrium to hydrodynamics is no longer a consequence of [33]).
For general initial profiles, we have to refine the approximation procedure
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of [6]: we go first to R-valued entropy solutions, then to arbitrary entropy
solutions.

In [8], by a refinement of our method, we obtain a strong (that is an almost
sure) hydrodynamic limit, when starting from an arbitrary initial profile. By
almost sure, we mean that we construct the process with generator (4) on an
explicit probability space defined as the product (Ω0 × Ω,F0 ⊗ F , IP0 ⊗ IP),
where (Ω0,F0, IP0) is a probability space used to construct random initial
states, and (Ω,F , IP) is a Poisson space used to construct the evolution from
a given state.

Theorem 2.2 ([8, Theorem 2.1]) Assume p(.) has finite first moment and
satisfies the irreducibility assumption (8). Then the following holds, where G
is the same function as in Theorem 2.1. Let (ηN0 , N ∈ N) be any sequence of
X-valued random variables on a probability space (Ω0,F0, IP0) such that

lim
N→∞

πN(ηN0 )(dx) = u0(.)dx IP0-a.s.

for some measurable [0, K]-valued profile u0(.). Then the IP0 ⊗ IP-a.s. con-
vergence

lim
N→∞

πN(ηNNt)(dx) = u(., t)dx

holds uniformly on all bounded time intervals, where (x, t) 7→ u(x, t) denotes
the unique entropy solution to (3) with initial condition u0(.).

Our constructive approach requires new ideas since the sub-additive ergodic
theorem (central to the few previous existing proofs for strong hydrodynam-
ics) is no longer effective in our setting. We work with the graphical represen-
tation of the dynamics, on which we couple an arbitrary number of processes,
thanks to the complete monotonicity property of the dynamics. To solve the
R-valued Riemann problem, we combine proofs of almost sure analogues of
the results of [4], rephrased for currents which become our centerpiece, with
a space-time ergodic theorem for particle systems and large deviation results
for the empirical measure. In the approximation steps, new error analysis is
necessary: In particular, we have to do an explicit time discretization (vs.
the “instantaneous limit” of [6, 7]), we need estimates uniform in time, and
each approximation step requires a control with exponential bounds.

In [38] we derive the macroscopic stability property when the particles’ jump
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kernel p(.) has a finite first moment and a positive mean. We also extend
under those hypotheses the ergodic theorem for densities due to [40] that we
use in [8]. Finally, we prove the finite propagation property when p(.) has a
finite third moment. This enables us to get rid of the finite range assump-
tion on p required so far, and to extend the strong hydrodynamic result of
[8] when the particles’ jump kernel has a finite third moment and a positive
mean.

In [9], we derive, thanks to the tools introduced in [8], a quenched strong
hydrodynamic limit for a bounded attractive particle system on Z evolving
in a random ergodic environment. (This result, which contains Theorems 2.1
and 2.2 above, is stated later on in this paper as Theorem 3.1). Our method
is robust with respect to the model and disorder (we are not restricted to
site or bond disorder). We introduce a general framework to describe the
rates of the dynamics, which applies to a large class of models. To overcome
the difficulty of the simultaneous loss of translation invariance and lack of
knowledge of explicit invariant measures for the disordered system, we study
a joint disorder-particle process, which is translation invariant. We charac-
terize its extremal invariant and translation invariant measures, and prove its
strong hydrodynamic limit. This implies the quenched hydrodynamic result
we look for.
We illustrate our results on various examples.

3 Main results

The construction of interacting particle systems is done either analytically,
through generators and semi-groups (we refer to [36] for systems with com-
pact state space, and to [37, 1, 23] otherwise), or through a graphical repre-
sentation. Whereas the former is sufficient to derive hydrodynamic limits in
a weak sense, which is done in [6, 7], the latter is necessary to derive strong
hydrodynamic limits, which is done in [8, 9]. First, we explain in Subsection
3.1 the graphical construction, then in Subsection 3.2 we detail our results
from [9] on invariant measures for the dynamics and hydrodynamic limits.
For simplicity, we restrict ourselves in this section to the misanthropes pro-
cess with site disorder, which corresponds to the generator (4). However,
considering only the necessary properties of the misanthropes process re-
quired to prove our hydrodynamic results, it is possible to deal with more
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general models including the k-step exclusion process, by embedding them in
a global framework, in which the dynamics is viewed as a random transfor-
mation of the configuration; the latter simultaneously defines the graphical
construction and generator. More general forms of random environments
than site disorder can also be considered. In Subsection 3.3 we list the above
required properties of misanthropes processes, and we defer the study of the
k-step exclusion process and more general models to Section 6.

3.1 Graphical construction

This subsection is based on [8, Section 2.1]. We now describe the graphical
construction (that is the pathwise construction on a Poisson space) of the
system given by (4), which uses a Harris-like representation ([30, 31]; see
for instance [2, 25, 11, 47] for details and justifications). This enables us
to define the evolution from arbitrarily many different initial configurations
simultaneously on the same probability space, in a way that depends mono-
tonically on these initial configurations.

We consider the probability space (Ω,F , IP) of measures ω on R+×Z2× [0, 1]
of the form

ω(dt, dx, dz, du) =
∑
m∈N

δ(tm,xm,zm,um)

where δ(·) denotes Dirac measure, and (tm, xm, zm, um)m≥0 are pairwise dis-
tinct and form a locally finite set. The σ-field F is generated by the mappings
ω 7→ ω(S) for Borel sets S. The probability measure IP on Ω is the one that
makes ω a Poisson process with intensity

m(dt, dx, dz, du) = ||b||∞λR+(dt)× λZ(dx)× p(dz)× λ[0,1](du)

where λ denotes either the Lebesgue or the counting measure. We denote by
IE the corresponding expectation. Thanks to assumption (M4) on page 10,
we can proceed as in [2, 25] (for a construction with a weaker assumption we
refer to [11, 47]): for IP-a.e. ω, there exists a unique mapping

(α, η0, t) ∈ A×X× R+ 7→ ηt = ηt(α, η0, ω) ∈ X (12)

satisfying: (a) t 7→ ηt(α, η0, ω) is right-continuous; (b) η0(α, η0, ω) = η0; (c)
for t ∈ R+, (x, z) ∈ Z2, ηt = ηx,x+z

t− if

∃u ∈ [0, 1] : ω{(t, x, z, u)} = 1 and u ≤ α(x)
b(ηt−(x), ηt−(x+ z))

||b||∞
(13)
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and (d) for all s, t ∈ R+∗ and x ∈ Z,

ω{[s, t]× Zx × (0, 1)} = 0⇒ ∀v ∈ [s, t], ηv(x) = ηs(x) (14)

where
Zx :=

{
(y, z) ∈ Z2 : y = x or y + z = x

}
In short, (13) tells how the state of the system can be modified by an “ω-
event”, and (14) says that the system cannot be modified outside ω-events.

Thanks to assumption (M2) on page 10, we have that

(α, η0, t) 7→ ηt(α, η0, ω) is nondecreasing w.r.t. η0 (15)

Property (15) implies (2), that is, attractiveness. But it is more powerful:
it implies the complete monotonicity property ([24, 20]), that is, existence
of a monotone Markov coupling for an arbitrary number of processes with
generator (4), which is necessary in our proof of strong hydrodynamics for
general initial profiles. The coupled process can be defined by a Markov
generator, as in [19] for two components, that is

Lαf(η, ξ) =∑
x,y∈Z:x 6=y

{
α(x)p(y − x)[b(η(x), η(y)) ∧ b(ξ(x), ξ(y))] [f(ηx,y, ξx,y)− f(η, ξ)]

+α(x)p(y − x)[b(η(x), η(y))− b(ξ(x), ξ(y))]+ [f(ηx,y, ξ)− f(η, ξ)]

+α(x)p(y − x)[b(ξ(x), ξ(y))− b(η(x), η(y))]+ [f(η, ξx,y)− f(η, ξ)]
}

(16)

One may further introduce an “initial” probability space (Ω0,F0, IP0), large
enough to construct random initial configurations η0 = η0(ω0) for ω0 ∈ Ω0.
The general process with random initial configurations is constructed on the
enlarged space (Ω̃ = Ω0 × Ω, F̃ = σ(F0 ×F), ĨP = IP0 ⊗ IP) by setting

ηt(α, ω̃) = ηt(α, η0(ω0), ω)

for ω̃ = (ω0, ω) ∈ Ω̃. One can show (see for instance [11, 25, 47]) that
this defines a Feller process with generator (4): that is for any t ∈ R+ and
f ∈ C(X) (the set of continuous functions on X), Sα(t)f ∈ C(X) where
Sα(t)f(η0) = IE[f(ηt(α, η0, ω))]. If η0 has distribution µ0, then the process
thus constructed is Feller with generator (4) and initial distribution µ0.
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We define on Ω the space-time shift θx0,t0 : for any ω ∈ Ω, for any (t, x, z, u)

(t, x, z, u) ∈ θx0,t0ω if and only if (t0 + t, x0 + x, z, u) ∈ ω (17)

where (t, x, z, u) ∈ ω means ω{(t, x, z, u)} = 1. By its very definition, the
mapping introduced in (12) enjoys the following properties, for all s, t ≥ 0,
x ∈ Z and (η, ω) ∈ X× Ω:

ηs(α, ηt(α, η, ω), θ0,tω) = ηt+s(α, η, ω) (18)

which implies Markov property, and

τxηt(α, η, ω) = ηt(τxα, τxη, θx,0ω) (19)

which yields the commutation property

Lατx = τxLτxα (20)

3.2 Hydrodynamic limit and invariant measures

This section is based on [9, Sections 2, 3]. A central issue in interacting par-
ticle systems, and more generally in the theory of Markov processes, is the
characterization of invariant measures ([36]). Besides, this characterization
plays a crucial role in the derivation of hydrodynamic limits ([33]). We detail
here our results on these two questions.

Hydrodynamic limit. We first state the strong hydrodynamic behavior
of the process with quenched site disorder.

Theorem 3.1 ([9, Theorem 2.1]). Assume K < +∞, p(.) has finite third
moment, and satisfies the irreducibility assumption (8). Let Q be an ergodic
probability distribution on A. Then there exists a Lipschitz-continuous func-
tion GQ on [0, K] defined in (35) and (36)–(37) below (depending only on
p(.), b(., .) and Q) such that the following holds. Let (ηN0 , N ∈ N) be a se-
quence of X-valued random variables on a probability space (Ω0,F0, IP0) such
that

lim
N→∞

πN(ηN0 )(dx) = u0(.)dx IP0-a.s.
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for some measurable [0, K]-valued profile u0(.). Then for Q-a.e. α ∈ A, the
IP0 ⊗ IP-a.s. convergence

lim
N→∞

πN(ηNt(α, η
N
0 (ω0), ω))(dx) = u(., t)dx

holds uniformly on all bounded time intervals, where (x, t) 7→ u(x, t) denotes
the unique entropy solution with initial condition u0 to the conservation law

∂tu+ ∂x[G
Q(u)] = 0 (21)

The IP-almost sure convergence in Theorem 3.1 refers to the graphical con-
struction of Subsection 3.1, and is stronger than the usual notion of hydro-
dynamic limit, which is a convergence in probability (cf. Definition 2.2).
The strong hydrodynamic limit implies the weak one ([8]). This leads to the
following weaker but more usual statement, which also has the advantage of
not depending on a particular construction of the process.

Theorem 3.2 Under assumptions and notations of Theorem 3.1, there ex-
ists a subset A′ of A, with Q-probability 1, such that the following holds for
every α ∈ A′. For any u0 ∈ L∞(R), and any sequence ηN. = (ηNt )t≥0 of
processes with generator (4) satisfying the convergence in probability

lim
N→∞

πN(ηN0 )(dx) = u0(.)dx, (22)

one has the locally uniform convergence in probability

lim
N→∞

πN
(
ηNNt
)

(dx) = u(., t)dx (23)

Remark 3.1 Theorem 2.1 (resp. Theorem 2.2) is a special case of Theorem
3.2 (resp. Theorem 3.1). Indeed, it suffices to consider the “disorder” dis-
tribution Q that is the Dirac measure supported on the single homogeneous
environment αhom defined by αhom(x) = 1 for all x ∈ Z (see also Remark
3.2).

Note that the statement of Theorem 3.2 is stronger than hydrodynamic limit
in the sense of Definition 2.2, because it states convergence of the empirical
measure process rather then convergence at every fixed time. To define the
macroscopic flux GQ, we first define the microscopic flux as follows. The
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generator (4) can be decomposed as a sum of translates of a “seed” generator
centered around the origin:

Lα =
∑
x∈Z

Lxα (24)

Note that such a decomposition is not unique. A natural choice of component
Lxα at x ∈ Z is given in the case of (4) by

Lxαf(η) = α(x)
∑
z∈Z

p(z)
[
f
(
ηx,x+z

)
− f(η)

]
(25)

We then define j to be either of the functions j1, j2 defined below:

j1(α, η) := Lα

[∑
x>0

η(x)

]
, j2(α, η) := L0

α

[∑
x∈Z

xη(x)

]
(26)

The definition of j1 is partly formal, because the function
∑

x>0 η(x) does
not belong to the domain of the generator Lα. Nevertheless, the formal
computation gives rise to a well-defined function j1, because the rate b is a
local function. Rigorously, one defines j1 by difference, as the unique function
such that

j1 − τxj1 = Lα

[
x∑
y=1

η(y)

]
(27)

for every x ∈ N. The action of the generator in (27) is now well defined,
because we have a local function that belongs to its domain.

In the case of (4), we obtain the following microscopic flux functions:

j1(α, η) =
∑

(x,z)∈Z2,x≤0<x+z

α(x)b(η(x), η(x+ z))

−
∑

(x,z)∈Z2,x+z≤0<x

α(x)b(η(x), η(x+ z)) (28)

j2(α, η) = α(0)
∑
z∈Z

zp(z)b(η(0), η(z)) (29)

Once a microscopic flux function j is defined, the macroscopic flux function
is obtained by averaging with respect to a suitable family of measures, that
we now introduce.
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Invariant measures. We define the markovian joint disorder-particle pro-
cess (αt, ηt)t≥0 on A × X with generator given by, for any local function f
on A×X,

Lf(α, η) =
∑
x,y∈Z

α(x)p(y − x)b(η(x), η(y)) [f (α, ηx,y)− f(α, η)] (30)

Given α0 = α, this dynamics simply means that αt = α for all t ≥ 0, while
(ηt)t≥0 is a Markov process with generator Lα given by (4). Note that L is
translation invariant, that is

τxL = Lτx (31)

where τx acts jointly on (α, η). This is equivalent to the commutation rela-
tion (20) for the quenched dynamics.

Let IL, S and SA denote the sets of probability measures that are respec-
tively invariant for L, shift-invariant on A × X and shift-invariant on A.

Proposition 3.1 ([9, Proposition 3.1]). For every Q ∈ SA
e , there exists a

closed subset RQ of [0, K] containing 0 and K, depending on p(.) and b(., .),
such that

(IL ∩ S)e =
{
νQ,ρ, Q ∈ SA

e , ρ ∈ RQ
}

where index e denotes the set of extremal elements, and (νQ,ρ : ρ ∈ RQ) is a
family of shift-invariant measures on A×X, weakly continuous with respect
to ρ, such that ∫

η(0)νQ,ρ(dα, dη) = ρ (32)

lim
l→∞

(2l + 1)−1
∑

x∈Z:|x|≤l

η(x) = ρ, νQ,ρ − a.s. (33)

ρ ≤ ρ′ ⇒ νQ,ρ � νQ,ρ
′

(34)

Here,� denotes the conditional stochastic order defined in Lemma 3.1 below.

From the family of invariant measures in the above proposition for the joint
disorder-particle process, one may deduce a family of invariant measures for
the quenched particle process.
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Corollary 3.1 ([9, Corollary 3.1]). There exists a subset ÃQ of A with Q-
probability 1 (depending on p(.) and b(., .)), such that the family of probability

measures (νQ,ρα : α ∈ ÃQ, ρ ∈ RQ) on X, defined by νQ,ρα (.) := νQ,ρ(.|α) sat-
isfies the following properties, for every ρ ∈ RQ:

(B1) For every α ∈ ÃQ, νQ,ρα is an invariant measure for Lα.

(B2) For every α ∈ ÃQ, νQ,ρα -a.s.,

lim
l→∞

(2l + 1)−1
∑

x∈Z: |x|≤l

η(x) = ρ

(B3) The quantity

GQ
α (ρ) :=

∫
j(α, η)νQ,ρα (dη) =: GQ(ρ), ρ ∈ RQ (35)

does not depend on α ∈ ÃQ.

Remark 3.2 As already observed in Remark 3.1 above, we can view the
non-disordered model as a special “disordered” model by taking Q to be the
Dirac measure on the homogeneous environment αhom with constant value 1.
Hence, Proposition 2.1 is a special case of Proposition 3.1. Note that we then
have νρ = νQ,ρα and νQ,ρ = δαhom

⊗ νρ for Q-a.e. α ∈ A.

We now come back to the macroscopic flux function GQ(ρ). We define it as
(35) for ρ ∈ RQ and we extend it by linear interpolation on the complement
of RQ, which is a finite or countably infinite union of disjoint open intervals:
that is, we set

GQ(ρ) :=
ρ− ρ−

ρ+ − ρ−
G(ρ+) +

ρ+ − ρ
ρ+ − ρ−

G(ρ−), ρ 6∈ RQ (36)

where
ρ− := sup[0, ρ] ∩RQ, ρ+ := inf[ρ,+∞) ∩RQ (37)

By definition of νQ,ρα and statement (B3) of Corollary 3.1, we also have

GQ(ρ) :=

∫
j(α, η)νQ,ρ(dα, dη), ρ ∈ RQ (38)
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We point out that (38) yields the same macroscopic flux function, whether
j = j1 or j = j2 defined in (26) is plugged into it. It does not depend on the
choice of a particular decomposition (24) either. These invariance properties
follow from translation invariance of νQ,ρ and translation invariance (31) of
the joint dynamics. Definitions (26) of the microscopic flux, and (35)–(38) of
the macroscopic flux are model-independent, and can thus be used for other
models, such as the k-exclusion process, or the models reviewed in Section 6.
Of course, the invariant measures involved in (35)–(38) depend on the model
and disorder.

The function GQ can be shown to be Lipschitz continuous ([9, Remark 3.3]).
This is the minimum regularity required for the classical theory of entropy
solutions, see Section 4. We cannot say more about GQ in general, because
the measures νQ,ρα are most often not explicit.

Note that in the special case of the non-disordered model investigated in
[7] (see Proposition 2.1, Theorem 2.1, Remarks 3.1 and 3.2 above), the mi-
croscopic flux functions do not depend on α, and (35) or (38) both reduce
to

G(ρ) :=

∫
j(η)dνρ(η), ρ ∈ R (39)

Even in the absence of disorder, only a few models have explicit invariant
measures, and thus an explicit flux function. In Section 6, we define a vari-
ant of the k-step exclusion process, that we call the exclusion process with
overtaking. It is possible to tune the microscopic parameters of this model so
as to obtain any prescribed polynomial flux function (constrained to vanish
at density values 0 and 1 due to the exclusion rule).
In contrast, a most natural and seemingly simple generalization of the asym-
metric exclusion process, the asymmetric K-exclusion process, for which
K ≥ 2 and b(n,m) = 1{n>0}1{m<K} in (4), does not have explicit invari-
ant measures. Thus, nothing more than the Lipschitz property can be said
about its flux function in general. In the special case of the totally asymmet-
ric K-exclusion process, that is for p(1) = 1, the flux function is shown to be
concave in [43], as a consequence of the variational approach used there to
derive hydrodynamic limit. But this approach does not apply to the models
we consider in the present paper.

An important open question is whether the set RQ (or its analogue R in
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the absence of disorder) covers the whole range of possible densities, or if it
contains gaps corresponding to phase transitions. The only partial answer to
this question so far was given by the following result from [7] for the totally
asymmetric K-exclusion process without disorder.

Theorem 3.3 ([7, Corollary 2.1]). For the totally asymmetric K-exclusion
process without disorder, 0 and K are limit points of R, and R contains at
least one point in [1/3, K − 1/3].

We end this section with a skeleton of proof for Proposition 3.1. We com-
bine the steps done to prove [7, Proposition 3.1] (without disorder) and [9,
Proposition 3.1].

Proof of proposition 3.1. The proof has two parts.
Part 1. It is an extension to the joint particle-disorder process of a classical
scheme in a non-disordered setting due to [35], which is also the basis for
similar results in [1, 19, 29, 27]. It relies on couplings.
a) We first need to couple measures, through the following lemma, analogous
to Strassen’s Theorem ([46]).

Lemma 3.1 ([9, Lemma 3.1]). For two probability measures µ1, µ2 on A×
X, the following properties (denoted by µ1 � µ2) are equivalent:
(i) For every bounded measurable local function f on A×X, such that f(α, .)
is nondecreasing for all α ∈ A, we have

∫
f dµ1 ≤

∫
f dµ2.

(ii) The measures µ1 and µ2 have a common α-marginal Q, and µ1(dη|α) ≤
µ2(dη|α) for Q-a.e. α ∈ A.
(iii) There exists a coupling measure µ(dα, dη, dξ) supported on {(α, η, ξ) ∈
A×X2 : η ≤ ξ} under which (α, η) ∼ µ1 and (α, ξ) ∼ µ2.

b) Then, for the dynamics, we denote by L the coupled generator for the
joint process (αt, ηt, ξt)t≥0 on A×X2 defined by

Lf(α, η, ξ) = (Lαf(α, .))(η, ξ) (40)

for any local function f on A × X2, where Lα was defined in (16). Given
α0 = α, this means that αt = α for all t ≥ 0, while (ηt, ξt)t≥0 is a Markov
process with generator Lα. We denote by S the set of probability measures
on A×X2 that are invariant by space shift τx(α, η, ξ) = (τxα, τxη, τxξ). We
prove successively (next lemma combines [9, Lemmas 3.2, 3.4 and Proposition
3.2]):
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Lemma 3.2 (i) Let µ′, µ′′ ∈ (IL ∩ S)e with a common α-marginal Q. Then
there exists ν ∈

(
IL ∩ S

)
e

such that the respective marginal distributions of
(α, η) and (α, ξ) under ν are µ′ and µ′′.
(ii) Let ν ∈

(
IL ∩ S

)
e
. Then ν{(α, η, ξ) ∈ A×X2 : η ≤ ξ} and ν{(α, η, ξ) ∈

A×X2 : ξ ≤ η} belong to {0, 1}.
(iii) Every ν ∈

(
IL ∩ S

)
e

is supported on {(α, η, ξ) ∈ A×X2 : η ≤ ξ or ξ ≤
η}.

c) This last point (iii) is the core of the proof of Proposition 3.1: Attractive-
ness assumption ensures that an initially ordered pair of coupled configura-
tions remains ordered at later times. We say that there is a positive (resp.
negative) discrepancy between two coupled configurations ξ, ζ at some site
x if ξ(x) > ζ(x) (resp. ξ(x) < ζ(x)). Irreducibility assumption (8) induces
a stronger property: pairs of discrepancies of opposite signs between two
coupled configurations eventually get killed, so that the two configurations
become ordered.

Part 2. We define

RQ :=

{∫
η(0)ν(dα, dη) : ν ∈ (IL ∩ S)e , ν has α-marginal Q

}
Let νi ∈ (IL ∩ S)e with α-marginal Q and ρi :=

∫
η(0)νi(dα, dη) ∈ RQ for

i ∈ {1, 2}. Assume ρ1 ≤ ρ2. Using Lemma 3.1,(iii), then Lemma 3.2, we
obtain ν1 � ν2, that is (34). Existence (33) of an asymptotic particle density
can be obtained by a proof analogous to [38, Lemma 14], where the space-
time ergodic theorem is applied to the joint disorder-particle process. Then,
closedness of RQ is established as in [7, Proposition 3.1]: it uses (34), (33).
Given the rest of the proposition, the weak continuity statement comes from
a coupling argument, using (34) and Lemma 3.1. �

3.3 Required properties of the model

For the proofs of Theorem 3.1 and Proposition 3.1, we have not used the
particular form of Lα in (4), but the following properties.

1) The set of environments is a probability space (A,FA, Q), where A is
a compact metric space and FA its Borel σ-field. On A we assume given
a group of space shifts (τx : x ∈ Z), with respect to which Q is ergodic.
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For each α ∈ A, Lα is the generator of a Feller process on X that satisfies
(20). The latter should be viewed as the assumption on “how the disorder
enters the dynamics”. It is equivalent to L satisfying (31), that is being a
translation-invariant generator on A×X.

2) For Lα we can define a graphical construction on a space-time Poisson
space (Ω,F , IP) satisfying the complete monotonicity property (15).

3) Irreducibility assumption (8), combined with attractiveness assumption
(M2) on page 10, are responsible for Lemma 3.2,(iii).

Indeed, given the generator (4) of the process, there is not a unique graph-
ical construction. The strong convergence in Theorem 3.1 would hold for
any graphical construction satisfying (15) plus the existence of a sequence of
Poissonian events killing any remaining pair of discrepancies of opposite signs
(see Part 1,c) of the proof of Proposition 3.1 for this last point). The latter
property follows in the case of the misanthropes process from irreducibility
assumption (8).

In Section 6 we shall therefore introduce a general framework to consider
other models satisfying 1) and 2), with appropriate assumptions replacing
(8) to imply Proposition 3.1. We refer to Lemma 6.1 for a statement and
proof of Property (15) in the context of a general model, including the k-
step exclusion process. The coupled process linked to this property can be
tedious to write in the usual form of explicit coupling rates for more than
two components, or for complex models. We shall see that it can be written
in a simple model-independent way using the framework of Section 6.1.

4 Scalar conservation laws and entropy solu-

tions

In Subsection 4.1, we recall the definition and characterizations of entropy
solutions to scalar conservation laws, which will appear as hydrodynamic
limits of the above models. Then in Subsection 4.2, we explain our varia-
tional formula for the entropy solution in the Riemann case, first when the
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flux function G is Lipschitz continuous, then when G ∈ C2(R) has a single
inflexion point, so that the entropy solution has a more explicit form. Fi-
nally, in Subsection 4.3, we explain the approximation schemes to go from a
Riemann initial profile to a general initial profile.

4.1 Definition and properties of entropy solutions

This section is taken from [7, Section 2.2] and [8, Section 4.1]. For more
details, we refer to the textbooks [28, 44], or [18]. Equation (3) has no strong
solutions in general: even starting from a smooth Cauchy datum u(., 0) = u0,
discontinuities (called shocks in this context) appear in finite time. Therefore
it is necessary to consider weak solutions, but then uniqueness is lost for the
Cauchy problem. To recover uniqueness, we need to define entropy solutions.

Let φ : [0, K] ∩ R → R be a convex function. In the context of hyper-
bolic systems, such a function is called an entropy. We define the associated
entropy flux ψ on [0, K] as

ψ(u) :=

∫ u

0

φ′(v)G′(v)dv

(φ, ψ) is called an entropy-flux pair. A Borel function u : R × R+∗ → [0, K]
is called an entropy solution to (3) if and only if it is entropy-dissipative, i.e.

∂tφ(u) + ∂xψ(u) ≤ 0 (41)

in the sense of distributions on R×R+∗ for any entropy-flux pair (φ, ψ). Note
that, by taking φ(u) = ±u and hence ψ(u) = ±G(u), we see that an entropy
solution is indeed a weak solution to (3). This definition can be motivated
by the following points: i) when G and φ are continuously differentiable, (3)
implies equality in strong sense in (41) (this follows from the chain rule for
differentiation); ii) this no longer holds in general if u is only a weak solution
to (3); iii) the inequality (41) can be seen as a macroscopic version of the
second law of thermodynamics that selects physically relevant solutions. In-
deed, one should think of the concave function h = −φ as a thermodynamic
entropy, and spatial integration of (41) shows that the total thermodynamic
entropy may not decrease during the evolution (this is rigorously true for pe-
riodic boundary conditions, in which case the total entropy is well defined).

Kružkov proved the following fundamental existence and uniqueness result:
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Theorem 4.1 ([34, Theorem 2 and Theorem 5]). Let u0 : R → [0, K] be a
Borel measurable initial datum. Then there exists a unique (up to a Lebesgue-
null subset of R×R+∗) entropy solution u to (3) subject to the initial condition

lim
t→0+

u(., t) = u0(.) in L1
loc(R) (42)

This solution (has a representative in its L∞(R×R+∗) equivalence class that)
is continuous as a mapping t 7→ u(., t) from R+∗ to L1

loc(R).

We recall here that a sequence (un, n ∈ N) of Borel measurable functions on
R is said to converge to u in L1

loc(R) if and only if

lim
n→∞

∫
I

|un(x)− u(x)| dx = 0

for every bounded interval I ⊂ R.

Remark 4.1 Kružkov’s theorems are stated for a continuously differentiable
G. However the proof of the uniqueness result ([34, Theorem 2]) uses only
Lipschitz continuity. In the Lipschitz-continuous case, existence could be
derived from Kružkov’s result by a flux approximation argument. However a
different, self-contained (and constructive) proof of existence in this case can
be found in [18, Chapter 6].

The following proposition is a collection of results on entropy solutions. We
first recall the following definition. Let TVI denote the variation of a function
defined on some bounded closed interval I = [a, b] ⊂ R, i.e.

TVI [u(.)] := sup
x0=a<x1···<xn=b

n−1∑
i=0

|u(xi+1)− u(xi)|

The total variation of u is defined by

TV[u(.)] := sup
I⊂R

TVI [u(.)]

Let us say that u = u(., .) defined on R × R+∗ has locally bounded space
variation if

sup
t∈J

TVI [u(., t)] < +∞ (43)
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for every bounded closed space interval I ⊂ R and bounded time interval
J ⊂ R+∗.

For two measures α, β ∈M+(R) with compact support, we define

∆(α, β) := sup
x∈R
|α((−∞, x])− β((−∞, x])| (44)

When α or β is of the form u(.)dx for u(.) ∈ L∞(R) with compact support, we
simply write u in (44) instead of u(.)dx. For a sequence (µn)n≥0 of measures
with uniformly bounded support, the following equivalence holds:

µn → µ vaguely if and only if lim
n→∞

∆(µn, µ) = 0 (45)

Proposition 4.1 ([8, Proposition 4.1])

i) Let u(., .) be the entropy solution to (3) with Cauchy datum u0 ∈ L∞(R).
Then the mapping t 7→ ut = u(., t) lies in C0([0,+∞), L1

loc(R)).

ii) If u0 has constant value c, then for all t > 0, ut has constant value
c.

iii) If ui0(.) has finite variation, that is TVui0(.) < +∞, then so does ui(., t)
for every t > 0, and TVui(., t) ≤ TVui0(.).

iv) Finite propagation property: Assume ui(., .) (i ∈ {1, 2}) is the entropy
solution to (3) with Cauchy data ui0(.). Let

V = ||G′||∞ := sup
ρ
|G′(ρ)| (46)

Then, for every x < y and 0 ≤ t < (y − x)/2V ,∫ y−V t

x+V t

[
u1(z, t)− u2(z, t)

]±
dz ≤

∫ y

x

[
u1

0(z)− u2
0(z)

]±
dz (47)

In particular, assume u1
0 = u2

0 (resp. u1
0 ≤ u2

0) on [a, b] for some a, b ∈ R
such that a < b. Then, for all t ≤ (b− a)/(2V ), u1

t = u2
t (resp. u1

t ≤ u2
t ) on

[a+ V t, b− V t].
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(v) If

∫
R
ui0(z)dz < +∞, then

∆(u1(., t), u2(., t)) ≤ ∆(u1
0(.), u2

0(.)) (48)

Properties (o)–(iv) are standard. Property (v) can be deduced from the
correspondence between entropy solutions of (3) and viscosity solutions of
the Hamilton-Jacobi equation

∂th(x, t) +G[∂xh(x, t)] = 0 (49)

Namely, h is a viscosity solution of (49) if and only if u = ∂xh is an en-
tropy solution of (3). Then (v) follows from the monotonicity of the solution
semigroup for (49). Properties (iv) and (v) have microscopic analogues (re-
spectively Lemma 5.5 and Proposition 5.5) in the class of particle systems
we consider, which play an important role in the proof of the hydrodynamic
limit, as will be sketched in Section 5.

We next recall a possibly more familiar definition of entropy solutions based
on shock admissibility conditions, but valid only for solutions with bounded
variation. This point of view selects the relevant weak solutions by specifying
what kind of discontinuities are permitted. First, in particular, the following
two conditions are necessary and sufficient for a piecewise smooth function
u(x, t) to be a weak solution to equation (3) with initial condition (52) (see
[14]):
1. u(x, t) solves equation (3) at points of smoothness.
2. If x(t) is a curve of discontinuity of the solution then the Rankine-Hugoniot
condition

d

dt
x(t) = S[u+;u−] :=

G(u−)−G(u+)

u− − u+
(50)

holds along x(t).
Moreover, to ensure uniqueness, the following geometric condition, known as
Olĕınik’s entropy condition (see e.g. [28] or [44]), is sufficient. A disconti-
nuity (u−, u+), with u± := u(x±0, t), is called an entropy shock, if and only if:

The chord of the graph of G between u− and u+ lies:
below the graph if u− < u+, above the graph if u+ < u−.

(51)

In the above condition, “below” or“above” is meant in wide sense, i.e. does
not exclude that the graph and chord coincide at some points between u−
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and u+. In particular, when G is strictly convex (resp. concave), one recovers
the fact that only (and all) decreasing (resp. increasing) jumps are admitted
(as detailed in subsection 4.2 below). Note that, if the graph of G is linear
on some nontrivial interval, condition (51) implies that any increasing or de-
creasing jump within this interval is an entropy shock.

Indeed, condition (51) can be used to select entropy solutions among weak
solutions. The following result is a consequence of [48].

Proposition 4.2 ([7, Proposition 2.2]). Let u be a weak solution to (3) with
locally bounded space variation. Then u is an entropy solution to (3) if and
only if, for a.e. t > 0, all discontinuities of u(., t) are entropy shocks.

One can show that, if the Cauchy datum u0 has locally bounded variation,
the unique entropy solution given by Theorem 4.1 has locally bounded space
variation. Hence Proposition 4.2 extends into an existence and uniqueness
theorem within functions of locally bounded space variation, where entropy
solutions may be defined as weak solutions satisfying (51), without reference
to (41).

4.2 The Riemann problem

This subsection is based first on [7, Section 4.1], then on [6, Section 2.1]. Of
special importance among entropy solutions are the solutions of the Riemann
problem, i.e. the Cauchy problem for particular initial data of the form

Rλ,ρ(x) = λ1{x<0} + ρ1{x≥0} (52)

Indeed: (i) as developed in the sequel of this subsection, these solutions can
be computed explicitly and have a variational representation; (ii) as will be
seen in Subsection 4.3, one can construct approximations to the solution of
the general Cauchy problem by using only Riemann solutions. This has in-
spired our belief that one could derive general hydrodynamics from Riemann
hydrodynamics.

In connection with Theorem 3.1 and Proposition 3.1, it will be important
in the sequel to consider flux functions G with possible linear degeneracy on
some density intervals. Therefore, in the sequel of this section, R will denote
a closed subset of [0, K] ∩ R such that G is affine on each of the countably

32



many disjoint open intervals whose union is the complement of R. Such a
subset exists (for instance one can take R = [0, K]∩R) and is not necessarily
unique.

From now on we assume λ < ρ; adapting to the case λ > ρ is straight-
forward, by replacing in the sequel lower with upper convex hulls, and min-
ima/minimizers with maxima/maximizers. Consider Gc, the lower convex
envelope of G on [λ, ρ]. There exists a nondecreasing function Hc (hence
with left/right limits) such that Gc has left/right hand derivative denoted
by Hc(α± 0) at every α. The function Hc is defined uniquely outside the at
most countable set of non-differentiability points of Gc

Θ = {α ∈ [λ, ρ] : Hc(α− 0) < Hc(α + 0)} (53)

As will appear below, the particular choice of Hc on Θ does not matter. Let
v∗ = v∗(λ, ρ) := Hc(λ + 0) and v∗ = v∗(λ, ρ) := Hc(ρ − 0). Since Hc is
nondecreasing, there is a nondecreasing function hc on [v∗, v

∗] such that, for
every v ∈ [v∗, v

∗],
α < hc(v)⇒ Hc(α) ≤ v
α > hc(v)⇒ Hc(α) ≥ v

(54)

Any such hc satisfies

hc(v − 0) = inf{α ∈ R : Hc(α) ≥ v} = sup{α ∈ R : Hc(α) < v}
hc(v + 0) = inf{α ∈ R : Hc(α) > v} = sup{α ∈ R : Hc(α) ≤ v} (55)

We have that, anywhere in (55), Hc(α) may be replaced with Hc(α±0). The
following properties can be derived from (54) and (55):

1. Given G, hc is defined uniquely, and is continuous, outside the at most
countable set

Σlow(G) = {v ∈ [v∗, v
∗] : Gc is differentiable with derivative v

in a nonempty open subinterval of [λ, ρ]} (56)

By “defined uniquely” we mean that for such v’s, there is a unique hc(v)
satisfying (54), which does not depend on the choice of Hc on Θ.

2. Given G, hc(v ± 0) is uniquely defined, i.e. independent of the choice
of Hc on Θ, for any v ∈ [v∗, v

∗]. For v ∈ Σlow(G), (hc(v− 0), hc(v+ 0)) is the
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maximal open interval over which Hc has constant value v.

3. For every α ∈ Θ and v ∈ (Hc(α − 0), Hc(α + 0)), hc(v) is uniquely
defined and equal to α.

In the sequel we extend hc outside [v∗, v
∗] in a natural way by setting

hc(v) = λ for v < v∗, hc(v) = ρ for v > v∗ (57)

Next proposition extends [6, Proposition 2.1], where we assumed G ∈ C2(R).

Proposition 4.3 ([7, Proposition 4.1]). Let λ, ρ ∈ [0, K] ∩ R, λ < ρ. For
v ∈ R, we set

Gv(λ, ρ) := inf {G(r)− vr : r ∈ [λ, ρ] ∩R} (58)

Then i) For every v ∈ R \ Σlow(G), The minimum in (58) is achieved at
the unique point hc(v), and u(x, t) := hc(x/t) is the weak entropy solution to
(3) with Riemann initial condition (52), denoted by Rλ,ρ(x, t).

ii) If λ ∈ R and ρ ∈ R, the previous minimum is unchanged if restricted to
[λ, ρ] ∩R. As a result, the Riemann entropy solution is a.e. R-valued.

iii) For every v, w ∈ R,∫ w

v

Rλ,ρ(x, t)dx = t[Gv/t(λ, ρ)− Gw/t(λ, ρ)] (59)

In the case when G ∈ C2(R) is such that G′′ vanishes only finitely many times,
the expression of u(x, t) is more explicit. Let us detail, as in [6, Section 2.1],
following [14], the case where G has a single inflexion point a ∈ (0, K) and
G(u) is strictly convex in 0 ≤ u < a and strictly concave in a < u ≤ 1. We
denote H = G′, h1 the inverse of H restricted to (−∞, a), and h2 the inverse
of H restricted to (a,+∞). We have

Lemma 4.1 ([14, Lemma 2.2, Lemma 2.4]). Let w < a be given, and define

w∗ := sup{u > w : S[w;u] > S[v;w], ∀v ∈ (w, u)}

Suppose that w∗ <∞. Then
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a) S[w;w∗] = H(w∗);

b) w∗ is the only zero of S[u;w]−H(u), u > w.

If ρ < λ < ρ∗ (ρ < a), then H(λ) > H(ρ): the characteristics starting from
x ≤ 0 have a speed (given by H) greater than the speed of those starting
from x > 0. If the characteristics intersect along a curve x(t), then Rankine-
Hugoniot condition will be satisfied if

x′(t) = S[u+;u−] =
G(λ)−G(ρ)

λ− ρ
= S[λ; ρ].

The convexity of G implies that Olĕınik’s Condition is satisfied across x(t).
Therefore the unique entropy weak solution is the shock :

u(x, t) =

{
λ, x ≤ S[λ; ρ]t;
ρ, x > S[λ; ρ]t;

(60)

If λ < ρ < a, the relevant part of the flux function is convex. The charac-
teristics starting respectively from x ≤ 0 and x > 0 never meet, and they
never enter the space-time wedge between lines x = H(λ)t and x = H(ρ)t. It
is possible to define piecewise smooth weak solutions with a jump occurring
in the wedge satisfying the Rankine-Hugoniot condition. But the convexity
of G prevents such solutions from satisfying Olĕınik’s Condition. Thus the
unique entropy weak solution is the continuous solution with a rarefaction
fan:

u(x, t) =


λ, x ≤ H(λ)t;
h1(x/t), H(λ)t < x ≤ H(ρ)t;
ρ, H(ρ)t < x;

(61)

Let ρ < ρ∗ < λ (ρ < a): Lemma 4.1 applied to ρ suggests that a jump from ρ∗

to ρ along the line x = H(ρ∗)t will satisfy the Rankine-Hugoniot condition.
Due to the definition of ρ∗, a solution with such a jump will also satisfy
Olĕınik’s Condition, therefore it would be the unique entropic weak solution.
Notice that since H(λ) < H(ρ∗), no characteristics intersect along the line of
discontinuity x = H(ρ∗)t. This case is called a contact discontinuity in [14].
The solution is defined by

u(x, t) =


λ, x ≤ H(λ)t;
h2(x/t), H(λ)t < x ≤ H(ρ∗)t;
ρ, H(ρ∗)t < x;

(62)
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Corresponding cases on the concave side of G are treated similarly.

Let us illustrate this description on a reference example, the totally asym-
metric 2-step exclusion (what follows is taken from [6, Section 4.1.1]):
Its flux function G2(u) = u+ u2 − 2u3 is strictly convex in 0 ≤ u < 1/6 and
strictly concave in 1/6 < u ≤ 1. For w < 1/6, w∗ = (1 − 2w)/4, and for
w > 1/6, w∗ = (1 − 2w)/4; h1(x) = (1/6)(1 −

√
7− 6x) for x ∈ (−∞, 7/6),

and h2(x) = (1/6)(1 +
√

7− 6x) for x ∈ (7/6,+∞). We reproduce here [6,
Figure 1], which shows the six possible behaviors of the (self-similar) solu-
tion u(v, 1), namely a rarefaction fan with either an increasing or a decreasing
initial condition, a decreasing shock, an increasing shock, and a contact dis-
continuity with either an increasing or a decreasing initial condition. Cases
(a) and (b) present respectively a rarefaction fan with increasing initial con-
dition and a preserved decreasing shock. These situations as well as cases (c)
and (f) cannot occur for simple exclusion. Observe also that ρ ≥ 1/2 implies
ρ∗ ≤ 0, which leads only to cases (d),(e), and excludes case (f) (going back
to a simple exclusion behavior).

4.3 From Riemann to Cauchy problem

The beginning of this subsection is based on [7, Section 2.4]. We will briefly
explain here the principle of approximation schemes based on Riemann solu-
tions, the most important of which is probably Glimm’s scheme, introduced
in [26]. Consider as initial datum a piecewise constant profile with finitely
many jumps. The key observation is that, for small enough times, this can
be viewed as a succession of noninteracting Riemann problems. To formalize
this, we recall part of [6, Lemma 3.4], which is a consequence of the finite
propagation property for (3), see statement iv) of Proposition 4.1. We denote
by Rλ,ρ(x, t) the entropy solution to the Riemann problem with initial datum
(52).

Lemma 4.2 ([7, Lemma 2.1]). Let x0 = −∞ < x1 < · · · < xn < xn+1 =
+∞, and ε := mink(xk+1 − xk). Consider the Cauchy datum

u0 :=
n∑
k=0

rk1(xk,xk+1)

where rk ∈ [0, K]. Then for t < ε/(2V ), with V given by (46), the entropy

36



solution u(., t) at time t coincides with Rrk−1,rk(.−xk, t) on (xk−1 +V t, xk+1−
V t). In particular, u(., t) has constant value rk on (xk + V t, xk+1 − V t).

Given some Cauchy datum u0, we construct an approximate solution ũ(., .)
for the corresponding entropy solution u(., .). To this end we define an ap-
proximation scheme based on a time discretization step ∆t > 0 and a space
discretization step ∆x > 0. In the limit we let ∆x → 0 with the ratio
R := ∆t/∆x kept constant, under the condition

R ≤ 1/(2V ) (63)

known as the Courant-Friedrichs-Lewy (CFL) condition. Let tk := k∆t de-
note discretization times. We start with k = 0, setting ũ−0 := u0.

Step one (approximation step): Approximate ũ−k with a piecewise constant
profile ũ+

k whose step lengths are bounded below by ∆x.

Step two (evolution step): For t ∈ [tk, tk+1), denote by ũk(., t) the en-
tropy solution at time t with initial datum ũ+

k at time tk. By (63) and
Lemma 4.2, ũk(., t) can be computed solving only Riemann problems. Set
ũ−k+1 = ũk(., tk+1).

Step three (iteration): increment k and go back to step one.

The approximate entropy solution is then defined by

ũ(., t) :=
∑
k∈N

ũk(., t)1[tk,tk+1)(t) (64)

The efficiency of the scheme depends on how the approximation step is per-
formed. In Glimm’s scheme, the approximation ũ+

k is defined as

ũ+
k :=

∑
j∈k/2+Z

ũ−k ((j + ak/2)∆x)1((j−1/2)∆x,(j+1/2)∆x) (65)

where ak ∈ (−1, 1). Then we have the following convergence result.

Theorem 4.2 ([7, Theorem 2.3]). Let u0 be a given measurable initial da-
tum. Then every sequence εn ↓ 0 as n → ∞ has a subsequence δn ↓
0 such that, for a.e. sequence (ak) w.r.t. product uniform measure on
(−1, 1)Z

+
, the Glimm approximation defined by (64) and (65) converges to u

in L1
loc(R× R+∗) as ∆x = δn ↓ 0.
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When u0 has locally bounded variation, the above result is a specialization
to scalar conservation laws of a more general result for systems of conserva-
tion laws: see Theorems 5.2.1, 5.2.2, 5.4.1 and comments following Theorem
5.2.2 in [44]. In [7, Appendix B], we prove that it is enough to assume u0

measurable.

Due to the nature of the approximation step (65), the proof of Theorem 4.2
does not proceed by direct estimation of the error between ũ±k and u(., tk),
but indirectly, by showing that limits of the scheme satisfy (41).

We will now present a different Riemann-based approximation procedure,
introduced first in [6, Lemma 3.6], and refined in [7, 8]. This approximation
allows direct control of the error by using the distance ∆ defined in (44).
Intuitively, errors accumulate during approximation steps, but might be am-
plified by the resolution steps. The key properties of our approximation are
that the total error accumulated during the approximation step is negligible
as ε → 0, and the error is not amplified by the resolution step, because ∆
does not increase along entropy solutions, see Proposition 4.1(v).

Theorem 4.3 ([6, Theorem 3.1]). Assume (Tt)t≥0 is a semigroup on the set
of bounded R-valued functions, with the following properties:

(1) For any Riemann initial condition u0, t 7→ ut = Ttu0 is the entropy
solution to (3) with Cauchy datum u0.

(2) (Finite speed of propagation). There is a constant v such that, for any
a, b ∈ R, any two initial conditions u0 and u1 coinciding on [a; b], and any
t < (b− a)/(2V ), ut = Ttu0 and vt = Ttv0 coincide on [a+ V t; b− V t].

(3) (Time continuity). For every bounded initial condition u0 with bounded
support and every t ≥ 0, limε→0+∆(Ttu0, Tt+εu0) = 0.

(4) (Stability). For any bounded initial conditions u0 and v0, with bounded
support, ∆(Ttu0, Ttv0) ≤ ∆(u0, v0).

Then, for any bounded u0, t 7→ Ttu0 is the entropy solution to (3) with
Cauchy datum u0.

A crucial point is that properties (1)–(4) in the above Theorem 4.3 hold at
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particle level, where this will allow us to mimic the scheme. The proof of
Theorem 4.3 relies on the following uniform approximation (in the sense of
distance ∆) by step functions, which is also important at particle level.

Lemma 4.3 ([8, Lemma 4.2]). Assume u0(.) is a.e. R-valued, has bounded
support and finite variation, and let (x, t) 7→ u(x, t) be the entropy solution to
(3) with Cauchy datum u0(.). For every ε > 0, let Pε be the set of piecewise
constant R-valued functions on R with compact support and step lengths at
least ε, and set

δε(t) := ε−1 inf{∆(u(.), u(., t)) : u(.) ∈ Pε}

Then there is a sequence εn ↓ 0 as n → ∞ such that δεn converges to 0
uniformly on any bounded subset of R+.

5 Proof of hydrodynamics

In this section, based on [9, Section 4], we prove the hydrodynamic limit in
the quenched disordered setting, that is Theorem 3.1, following the strategy
introduced in [6, 7] and significantly strengthened in [8] and [9]. First, we
prove the hydrodynamic limit for RQ-valued Riemann initial conditions (the
so-called Riemann problem), and then use a constructive scheme to mimic
the proof of Theorem 4.3 at microscopic level.

5.1 Riemann problem

Let λ, ρ ∈ RQ with λ < ρ (for λ > ρ replace infimum with supremum below).
We first need to derive hydrodynamics for the Riemann initial condition
Rλ,ρ defined in (52). Microscopic Riemann states with profile (52) can be
constructed using the following lemma.

Lemma 5.1 ([9, Lemma 4.1]). There exist random variables α and (ηρ :
ρ ∈ RQ) on a probability space (ΩA,FA, IPA) such that

(α, ηρ) ∼ νQ,ρ, α ∼ Q (66)

IPA − a.s., ρ 7→ ηρ is nondecreasing (67)

Let νQ,λ,ρ denote the distribution of (α, ηλ, ηρ), and νλ,ρα the conditional dis-
tribution of (α, ηλ, ηρ) given α. Recall the definition (17) of the space-time
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shift θx0,t0 on Ω for (x0, t0) ∈ Z × R+. We now introduce an extended shift
θ′ on Ω′ = A ×X2 × Ω. If ω′ = (α, η, ξ, ω) denotes a generic element of Ω′,
we set

θ′x,tω
′ = (τxα, τxηt(α, η, ω), τxηt(α, ξ, ω), θx,tω) (68)

It is important to note that this shift incorporates disorder. Let T : X2 → X
be given by

T (η, ξ)(x) = η(x)1{x<0} + ξ(x)1{x≥0} (69)

A strong (that is almost sure with respect to the Poisson space) form of
hydrodynamic limit for Riemann data can now be stated as follows.

Proposition 5.1 ([9, Proposition 4.1]). Set, for t ≥ 0,

βNt (ω′)(dx) := πN(ηt(α, T (η, ξ), ω))(dx) (70)

For all t > 0, s0 ≥ 0 and x0 ∈ R, we have that, for Q-a.e. α ∈ A,

lim
N→∞

βNNt(θ
′
bNx0c,Ns0ω

′)(dx) = Rλ,ρ(., t)dx, νλ,ρα ⊗ IP-a.s.

Proposition 5.1 will follow from a law of large numbers for currents. Let
x. = (xt, t ≥ 0) be a Z-valued cadlag random path, with |xt − xt− | ≤ 1,
independent of the Poisson measure ω. We define the particle current seen
by an observer travelling along this path by

ϕx.t (α, η0, ω) = ϕx.,+t (α, η0, ω)− ϕx.,−t (α, η0, ω) + ϕ̃x.t (α, η0, ω) (71)

where ϕx.,±t (α, η0, ω) count the number of rightward/leftward crossings of x.
due to particle jumps, and ϕ̃x.t (α, η0, ω) is the current due to the self-motion
of the observer. We shall write ϕvt in the particular case xt = bvtc. Set
φvt (ω

′) := ϕvt (α, T (η, ξ), ω). Note that for (v, w) ∈ R2,

βNNt(ω
′)([v, w]) = t(Nt)−1(φ

v/t
Nt (ω

′)− φw/tNt (ω′)) (72)

We view (72) as a microscopic analogue of (59). Thus, Proposition 5.1 boils
down to showing that each term of (72) converges to its counterpart in (59).

Proposition 5.2 ([9, Proposition 4.2]). For all t > 0, a ∈ R+, b ∈ R and
v ∈ R,

lim
N→∞

(Nt)−1φvNt(θ
′
bbNc,aNω

′) = Gv(λ, ρ) νQ,λ,ρ ⊗ IP− a.s. (73)

where Gv(λ, ρ) is defined by (58).
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To prove Proposition 5.2, we introduce a probability space Ω+, whose generic
element is denoted by ω+, on which is defined a Poisson process (Nt(ω

+))t≥0

with intensity |v| (v ∈ R). Denote by IP+ the associated probability. Set

xNs (ω+) := (sgn(v))
[
NaN+s(ω

+)−NaN(ω+)
]

(74)

η̃Ns (α, η0, ω, ω
+) := τxNs (ω+)ηs(α, η0, ω) (75)

α̃Ns (α, ω+) := τxNs (ω+)α (76)

Thus (α̃Ns , η̃
N
s )s≥0 is a Feller process with generator

Lv = L + Sv, Svf(α, ζ) = |v| [f(τsgn(v)α, τsgn(v)ζ)− f(α, ζ)]

for f local and α ∈ A, ζ ∈ X. Since any translation invariant measure on
A×X is stationary for the pure shift generator Sv, we have IL∩S = ILv ∩S.
Define the time and space-time empirical measures (where ε > 0) by

mtN(ω′, ω+) := (Nt)−1

∫ tN

0

δ(α̃N
s (α,ω+),η̃Ns (α,T (η,ξ),ω,ω+))ds (77)

mtN,ε(ω
′, ω+) := |Z ∩ [−εN, εN ]|−1

∑
x∈Z: |x|≤εN

τxmtN(ω′, ω+) (78)

Notice that there is a disorder component we cannot omit in the empirical
measure, although ultimately we are only interested in the behavior of the
η-component. Let MQ

λ,ρ denote the compact set of probability measures

µ(dα, dη) ∈ IL ∩S such that µ has α-marginal Q, and νQ,λ � µ� νQ,ρ. By
Proposition 3.1,

MQ
λ,ρ =

{
ν(dα, dη) =

∫
νQ,r(dα, dη)γ(dr) : γ ∈ P([λ, ρ] ∩RQ)

}
(79)

The key ingredients for Proposition 5.2 are the following lemmas.

Lemma 5.2 ([9, Lemma 4.2]). The function φvt (α, η, ξ, ω) is increasing in
η, decreasing in ξ.

Lemma 5.3 ([9, Lemma 4.3]). With νQ,λ,ρ⊗ IP⊗ IP+-probability one, every
subsequential limit as N →∞ of mtN,ε(θ

′
bbNc,aNω

′, ω+) lies in MQ
λ,ρ.

Lemma 5.2 is a consequence of the monotonicity property (15). Lemma 5.3
relies in addition on a space-time ergodic theorem and on a general uniform
large deviation upper bound for space-time empirical measures of Markov
processes. We state these two results before proving Proposition 5.2.
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Proposition 5.3 ([8, Proposition 2.3]). Let (ηt)t≥0 be a Feller process on
X with a translation invariant generator L, that is

τ1Lτ−1 = L (80)

Assume further that
µ ∈ (IL ∩ S)e

where IL denotes the set of invariant measures for L. Then, for any local
function f on X, and any a > 0

lim
`→∞

1

a`2

∫ a`

0

∑̀
i=0

τif(ηt)dt =

∫
fdµ = lim

`→∞

1

a`2

∫ a`

0

−1∑
i=−`

τif(ηt)dt (81)

a.s. with respect to the law of the process with initial distribution µ.

Lemma 5.4 ([8, Lemma 3.4]) Let Pv
ν denote the law of a Markov process

(α̃., ξ̃.) with generator Lv and initial distribution ν. For ε > 0, let

πt,ε := |Z ∩ [−εt, εt]|−1
∑

x∈Z∩[−εt,εt]

t−1

∫ t

0

δ(τxα̃s,τxξ̃s)ds (82)

Then, there exists a functional Dv which is nonnegative, l.s.c., and satisfies
D−1
v (0) = ILv , such that, for every closed subset F of P(A×X),

lim sup
t→∞

t−1 log sup
ν∈P(A×X)

Pv
ν

(
πt,ε(ξ̃.) ∈ F

)
≤ − inf

µ∈F
Dv(µ) (83)

Proof of Proposition 5.2. We will show that

lim inf
N→∞

(Nt)−1φvtN ◦ θ′bbNc,aN(ω′) ≥ Gv(λ, ρ), νQ,λ,ρ ⊗ IP-a.s. (84)

lim sup
N→∞

(Nt)−1φvtN ◦ θ′bbNc,aN(ω′) ≤ Gv(λ, ρ), νQ,λ,ρ ⊗ IP-a.s. (85)

Step one: proof of (84).
Setting $aN = $aN(ω′) := T

(
τbbNcηaN(α, η, ω), τbbNcηaN(α, ξ, ω)

)
, we have

(Nt)−1φvtN ◦ θ′bbNc,aN(ω′) = (Nt)−1ϕvtN(τbbNcα,$aN , θbbNc,aNω) (86)
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Let, for every (α, ζ, ω, ω+) ∈ A×X× Ω× Ω+ and xN. (ω+) given by (74),

ψv,εtN (α, ζ, ω, ω+) := |Z ∩ [−εN, εN ]|−1
∑

y∈Z: |y|≤εN

ϕ
xN. (ω+)+y
tN (α, ζ, ω) (87)

Note that limN→∞(Nt)−1xNtN(ω+) = v, IP+-a.s., and that for two paths y., z.
(see (71)),

|ϕy.tN(α, η0, ω)− ϕz.tN(α, η0, ω)| ≤ K (|ytN − ztN |+ |y0 − z0|)

Hence the proof of (84) reduces to that of the same inequality where we re-
place (Nt)−1φvtN ◦ θ′bbNc,aN(ω′) by (Nt)−1ψv,εtN (τbbNcα,$aN , θbbNc,aNω, ω

+) and

νQ,λ,ρ ⊗ IP by νQ,λ,ρ ⊗ IP⊗ IP+. By definitions (26), (71) of flux and current,
for any α ∈ A, ζ ∈ X,

Mx,v
tN (α, ζ, ω, ω+) := ϕ

xN. (ω+)+x
tN (α, ζ, ω)−∫ tN

0

τx
{
j(α̃Ns (α, ω+), η̃Ns (α, ζ, ω, ω+))− v(η̃Ns (α, ζ, ω, ω+))(1{v>0})

}
ds

is a mean 0 martingale under IP⊗ IP+. Let

Rε,v
tN := (Nt |Z ∩ [−εN, εN ]|)−1

∑
x∈Z: |x|≤εN

Mx,v
tN (τbbNcα,$aN , θbbNc,aNω, ω

+)

= (Nt)−1ψv,εtN (τbbNcα,$aN , θbbNc,aNω, ω
+)

−
∫

[j(α, η)− vη(1{v>0})]mtN,ε(θ
′
bbNc,aNω

′, ω+)(dα, dη) (88)

where the last equality comes from (78), (87). The exponential martingale
associated with Mx,v

tN yields a Poissonian bound, uniform in (α, ζ), for the
exponential moment of Mx,v

tN with respect to IP⊗ IP+. Since $aN is indepen-
dent of (θbbNc,aNω, ω

+) under νQ,λ,ρ⊗ IP⊗ IP+, the bound is also valid under
this measure, and Borel-Cantelli’s lemma implies limN→∞R

ε,v
tN = 0. From

(88), Lemma 5.3 and Corollary 3.1, (B2) imply (84), as well as

lim sup
N→∞

(Nt)−1φvtN ◦ θ′bbNc,aN(ω′) ≤ sup
r∈[λ,ρ]∩RQ

[GQ(r)− vr], νQ,λ,ρ ⊗ IP-a.s.

(89)
Step two: proof of (85). Let r ∈ [λ, ρ] ∩ RQ. We define νQ,λ,r,ρ as the
distribution of (α, ηλ, ηr, ηρ). With respect to this measure, by (84) and
(89), we have the almost sure limit

lim
N→∞

(Nt)−1φvtN ◦ θ′bbNc,aN(α, ηr, ηr, ω) = GQ(r)− vr
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By Lemma 5.2,

φvtN ◦ θ′bbNc,aN(ω′) ≤ φvtN ◦ θ′bbNc,aN(α, ηr, ηr, ω)

The result follows by continuity of GQ and minimizing over r. �

5.2 Cauchy problem

Using (48) and the fact that an arbitrary function can be approximated by a
RQ-valued function with respect to the distance ∆ defined by (44), the proof
of Theorem 3.1 for general initial data u0 can be reduced (see [7]) to the case
of RQ-valued initial data by coupling and approximation arguments (see [8,
Section 4.2.2]).

Proposition 5.4 ([9, Proposition 4.3]). Assume (ηN0 ) is a sequence of con-
figurations such that: (i) there exists C > 0 such that for all N ∈ N, ηN0 is
supported on Z ∩ [−CN,CN ];
(ii) πN(ηN0 ) → u0(.)dx as N → ∞, where u0 has compact support, is a.e.
RQ-valued and has finite space variation.
Let u(., t) denote the unique entropy solution to (21) with Cauchy datum
u0(.). Then, Q⊗ IP-a.s. as N →∞,

∆N(t) := ∆(πN(ηNNt(α, η
N
0 , ω)), u(., t)dx)

converges uniformly to 0 on [0, T ] for every T > 0.

Before proving this proposition, we state two crucial tools in their most
complete form (see [38]), the macroscopic stability and the finite propaga-
tion property for the particle system. Macroscopic stability yields that the
distance ∆ defined in (44) is an “almost” nonincreasing functional for two
coupled particle systems. It is thus a microscopic analogue of property (48)
in Proposition 4.1. The finite propagation property is a microscopic analogue
of Proposition 4.1, iv). For the misanthropes process, it follows essentially
from the finite mean assumption (M4) on page 10.

Proposition 5.5 ([8, Proposition 4.2] with [38, Theorem 2]) Assume p(.)
has a finite first moment and a positive mean. Then there exist constants C >
0 and c > 0, depending only on b(., .) and p(.), such that the following holds.
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For every N ∈ N, (η0, ξ0) ∈ X2 with |η0|+ |ξ0| :=
∑

x∈Z[η0(x)+ξ0(x)] < +∞,
and every γ > 0, the event

∀t > 0 : ∆(πN(ηt(α, η0, ω)), πN(ηt(α, ξ0, ω))) ≤ ∆(πN(α, η0), πN(α, ξ0)) + γ
(90)

has IP-probability at least 1− C(|η0|+ |ξ0|)e−cNγ.

Lemma 5.5 ([38, Lemma 15]) Assume p(.) has a finite third moment. There
exist constant v, and function A(.) (satisfying

∑
nA(n) < ∞), depending

only on b(., .) and p(.), such that the following holds. For any x, y ∈ Z, any
(η0, ξ0) ∈ X2, and any 0 < t < (y − x)/(2v): if η0 and ξ0 coincide on the
site interval [x, y], then with IP-probability at least 1− A(t), ηs(α, η0, ω) and
ηs(α, ξ0, ω) coincide on the site interval [x+vt, y−vt]∩Z for every s ∈ [0, t].

To prove Proposition 5.5, we work with a coupled process, and reduce the
problem to analysing the evolution of labeled positive and negative discrep-
ancies to control their coalescences. For this we order the discrepancies, we
possibly relabel them according to their movements to favor coalescences,
and define windows, which are space intervals on which coalescences are fa-
vored, in the same spirit as in [17]. The irreducibility assumption (that is
(8) in the case of the misanthropes process) plays an essential role there. To
take advantage of [17], we treat separately the movements of discrepancies
corresponding to big jumps, which can be controlled thanks to the finiteness
of the first moment (that is, assumption (M4) on page 10).

Proof of proposition 5.4. By assumption (ii) of the proposition, limN→∞∆N(0) =
0. Let ε > 0, and ε′ = ε/(2V ), for V given by (46). Set tk = kε′ for
k ≤ κ := bT/ε′c, tκ+1 = T . Since the number of steps is proportional to ε−1,
if we want to bound the total error, the main step is to prove

lim sup
N→∞

sup
k=0,...,K−1

[
∆N(tk+1)−∆N(tk)

]
≤ 3δε, Q⊗ IP-a.s. (91)

where δ := δ(ε) goes to 0 as ε goes to 0; the gaps between discrete times
are filled by an estimate for the time modulus of continuity of ∆N(t) (see [8,
Lemma 4.5]).

Proof of (91). Since u(., tk) has locally finite variation, by [8, Lemma 4.2],
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for all ε > 0 we can find functions

vk =

lk∑
l=0

rk,l1[xk,l,xk,l+1) (92)

with −∞ = xk,0 < xk,1 < . . . < xk,lk < xk,lk+1 = +∞, rk,l ∈ RQ, rk,0 =
rk,lk = 0, such that xk,l − xk,l−1 ≥ ε, and

∆(u(., tk)dx, vkdx) ≤ δε (93)

For tk ≤ t < tk+1, we denote by vk(., t) the entropy solution to (21) at time t
with Cauchy datum vk(.). The configuration ξN,k defined on (ΩA ⊗Ω,FA ⊗
F , IPA ⊗ IP) (see Lemma 5.1) by

ξN,k(ωA, ω)(x) := ηNtk(α(ωA), ηrk,l(ωA), ω)(x), if bNxk,lc ≤ x < bNxk,l+1c

is a microscopic version of vk(.), since by Proposition 5.1 with λ = ρ = rk,l,

lim
N→∞

πN(ξN,k(ωA, ω))(dx) = vk(.)dx, IPA ⊗ IP-a.s. (94)

We denote by ξN,kt (ωA, ω) = ηt(α(ωA), ξN,k(ωA, ω), θ0,Ntkω) the evolved con-
figuration starting from ξN,k. By triangle inequality,

∆N(tk+1)−∆N(tk) ≤ ∆
[
πN(ηNNtk+1

), πN(ξN,kNε′ )
]
−∆N(tk) (95)

+ ∆
[
πN(ξN,kNε′ ), vk(., ε

′)dx
]

(96)

+ ∆(vk(., ε
′)dx, u(., tk+1)dx) (97)

To conclude, we rely on Properties (45), (90) and (48) of ∆: Since ε′ =
ε/(2V ), finite propagation property for (21) and for the particle system (see
Proposition 4.1, iv) and Lemma 5.5) and Proposition 5.1 imply

lim
N→∞

πN(ξN,kNε′ (ωA, ω)) = vk(., ε
′)dx, IPA ⊗ IP-a.s.

Hence, the term (96) converges a.s. to 0 as N →∞. By ∆-stability for (21),
the term (97) is bounded by ∆(vk(.)dx, u(., tk)dx) ≤ δε. We now consider
the term (95). By macroscopic stability (Proposition 5.5), outside probability
e−CNδε,

∆
[
πN(ηNNtk+1

), πN(ξN,kNε′ )
]
≤ ∆

[
πN(ηNNtk), πN(ξN,k)

]
+ δε (98)
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Thus the event (98) holds a.s. for N large enough. By triangle inequality,

∆
[
πN(ηNNtk), πN(ξN,k)

]
−∆N(tk)

≤ ∆ (u(., tk)dx, vk(.)dx) + ∆
[
vk(.)dx, π

N(ξN,k)
]

for which (93), (94) yield as N →∞ an upper bound 2δε, hence 3δε for the
term (95). �

6 Other models under a general framework

As announced in Section 3, we first define in Subsection 6.1, as in [5, 9, 47]
a general framework (which encompasses all known examples), that we illus-
trate with our reference examples, the misanthropes process (with generator
(4)), and the k-exclusion process (with generator (5)). Next in Subsection
6.2, we study examples of more complex models thanks to this new frame-
work.

6.1 Framework

This section is based on parts of [9, Sections 2, 5]. The interest of an ab-
stract description is to summarize all details of the microscopic dynamics in
a single mapping, hereafter denoted by T . This mapping contains both the
generator description of the dynamics and its graphical construction. Once
a given model is written in this framework, all proofs can be done without
any model-specific computations, only relying on the properties of T .

Monotone transformations. Given an environment α ∈ A, we are going
to define a Markov generator whose associated dynamics can be generically
understood as follows: we pick a location on the lattice and around this loca-
tion, apply a random monotone transformation to the current configuration.
Let (V ,FV ,m) be a measure space, where m is a nonnegative finite measure.
This space will be used to generate a monotone conservative transformation,
that is a mapping T : X→ X such that:
(i) T is nondecreasing: that is, for every η ∈ X and ξ ∈ X, η ≤ ξ implies
T η ≤ T ξ;
(ii) T acts on finitely many sites, that is, there exists a finite subset S of Z
such that, for all η ∈ X, T η only depends on the restriction of η to S, and

47



coincides with η outside S;
(iii) T η is conservative, that is, for every η ∈ X,∑

x∈S

T η(x) =
∑
x∈S

η(x) (99)

We denote by T the set of monotone conservative transformations, endowed
with the σ-field FT generated by the evaluation mappings T 7→ T η for all
η ∈ X.
Definition of the dynamics. In order to define the process, we specify a
mapping

A× V → T, (α, v) 7→ T α,v

such that for every α ∈ A and η ∈ X, the mapping v 7→ T α,vη is measurable
from (V ,FV ,m) to (T,FT). When m is a probability measure, this amounts
to saying that for each α ∈ A, the mapping v 7→ T α,v is a T-valued ran-
dom variable. The transformation T α,v must be understood as applying a
certain update rule around 0 to the current configuration, depending on the
environment around 0. If x ∈ Z \ {0}, we define

T α,x,v := τ−xT
τxα,vτx (100)

This definition can be understood as applying the same update rule around
site x, which involves simultaneous shifts of the initial environment and trans-
formation.

We now define the Markov generator

Lαf(η) =
∑
x∈Z

∫
V

[f (T α,x,vη)− f(η)]m(dv) (101)

As a result of (100), the generator (101) satisfies the commutation property
(20).

Basic examples. To illustrate the above framework, we come back to our
reference examples of Section 2.2.

The misanthropes process. Let

V := Z× [0, 1], v = (z, u) ∈ V , m(dv) = c−1||b||∞p(dz)λ[0,1](du) (102)
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For v = (z, u) ∈ V , T α,v is defined by

T α,vη =

 η0,z if u < α(0)
b(η(0), η(z))

c−1||b||∞
η otherwise

(103)

Once given T α,v in (103), we deduce T α,x,v from (100):

T α,x,vη =

 ηx,x+z if u < α(x)
b(η(x), η(x+ z))

c−1||b||∞
η otherwise

(104)

Though T α,v is the actual input of the model, from which T α,x,v follows, in
the forthcoming examples, for the sake of readability, we will directly define
T α,x,v.

Monotonicity of the transformation T α,x,z given in (104) follows from as-
sumption (M2) on page 10. One can deduce from (101) and (104) that Lα is
indeed given by (4).

The k-step exclusion process. Here we let V = Zk and m denote the distribu-
tion of the first k steps of a random walk on Z with increment distribution
p(.) absorbed at 0. We define, for (x, v, η) ∈ Z×V×X, with v = (z1, . . . , zk),

N(x, v, η) = inf{i ∈ {1, . . . , k} : η(x+ zi) = 0}

with the convention that inf ∅ = +∞. We then set

T α,x,vη =

{
ηx,x+N(x,v,η) if N(x, v, η) < +∞
η if N(x, v, η) = +∞ (105)

One can show that this transformation is monotone, either directly, or by
application of Lemma 6.1, since the k-step exclusion is a particular k-step
misanthropes process (see special case 2a below). Plugging (105) into (101)
yields (5).

We now describe the so-called graphical construction of the system given
by (101), that is its pathwise construction on a Poisson space. We consider
the probability space (Ω,F , IP) of locally finite point measures ω(dt, dx, dv)
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on R+ × Z× V , where F is generated by the mappings ω 7→ ω(S) for Borel
sets S of R+ × Z× V , and IP makes ω a Poisson process with intensity

M(dt, dx, dv) = λR+(dt)λZ(dx)m(dv)

denoting by λ either the Lebesgue or the counting measure. We write IE for
expectation with respect to IP. There exists a unique mapping

(α, η0, t) ∈ A×X× R+ 7→ ηt = ηt(α, η0, ω) ∈ X (106)

satisfying: (a) t 7→ ηt(α, η0, ω) is right-continuous; (b) η0(α, η0, ω) = η0; (c)
the particle configuration is updated at points (t, x, v) ∈ ω (and only at such
points; by (t, x, v) ∈ ω we mean ω{(t, x, v)} = 1) according to the rule

ηt(α, η0, ω) = T α,x,vηt−(α, η0, ω) (107)

The processes defined by (101) and (106)–(107) exist and are equal in law
under general conditions given in [47], see also [11] for a summary of this
construction).

Coupling and monotonicity. The monotonocity of T α,x,u implies mono-
tone dependence (15) with respect to the initial state. Thus, an arbitrary
number of processes can be coupled via the graphical construction. This
implies complete monotonicity and thus attractiveness. It is also possible
to define the coupling of any number of processes using the tranformation
T . For instance, in order to couple two processes, we define the coupled
generator Lα on X2 by

Lαf(η, ξ) :=
∑
x∈Z

∫
V

[f (T α,x,vη, T α,x,vξ)− f(η, ξ)]m(dv) (108)

for any local function f on X2.

6.2 Examples

We refer the reader to [9, Section 5] for various examples of completely mono-
tone models defined using this framework. We now review two of the models
introduced in [9, Section 5], then present a new model containing all the
other models in this paper, the k-step misanthropes process.
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The generalized misanthropes process. ([9, Section 5.1]). Let K ∈ N.
Let c ∈ (0, 1), and p(.) (resp. P (.)), be a probability distribution on Z. De-
fine A to be the set of functions B : Z2 × {0, . . . , K}2 → R+ such that:

(GM1) For all (x, z) ∈ Z2, B(x, z, ., .) satisfies assumptions (M1)–(M3) on
page 10;
(GM2) There exists a constant C > 0 and a probability measure P (.) on Z
such that B(x, z,K, 1) ≤ CP (z) for all x ∈ Z.

Assumption (GM2) is a natural sufficient assumption for the existence of
the process and graphical construction below. The shift operator τy on A is
defined by (τyB)(x, z, n,m) = B(x+ y, z, n,m) We generalize (4) by setting

LBf(η) =
∑
x,y∈Z

B(x, y − x, η(x), η(y)) [f (ηx,y)− f(η)] (109)

Thus, the environment at site x is given here by the jump rate function
B(x, ., .) with which jump rates from site x are computed.

For v = (z, u), set m(dv) = CP (dz)λ[0,1](du) in (102), and replace (103)
with

T B,x,vη =

 ηx,x+z if u <
B(x, z, η(x), η(x+ z))

CP (z)
η otherwise

(110)

A natural irreducibility assumption generalizing (8) is the existence of a
constant c > 0 and a probability measure p(.) on Z satisfying (8), such that

∀z ∈ Z, inf
x∈Z

b(x, z, 1, K − 1) ≥ cp(z) (111)

The basic model (4) is recovered for B(x, z, n,m) = α(x)p(z)b(n,m). An-
other natural example is the misanthropes process with bond disorder. Here
A = [c, 1/c]Z

2
with the space shift defined by τzα = α(. + z, . + z). We set

B(x, z, n,m) = α(x, x+ z)b(n,m), where α ∈ A. Assumption (GM2) is now
equivalent to existence of a constant C > 0 and a probability measure P (.)
on Z such that α(x, y) ≤ CP (y − x).

The microscopic flux function j2 in (26) is given here by

j2(α, η) =
∑
z∈Z

zB(0, z, η(0), η(z)) (112)
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that is well defined under the assumption that P (.) has a finite first moment.

Asymmetric exclusion process with overtaking. This example is a
particular case of the generalized k-step K-exclusion studied in [9, Section
5.2, Example 5.4], see also the traffic flow model in [9, Section 5.3]. The for-
mer model is itself a special case of the k-step misanthropes process defined
below.
Let K = 1, k ∈ N, and K denote the set of (2k)-tuples (βj)j∈{−k,...,k}\{0}
such that βj+1 ≤ βj for every j = 1, . . . , k − 1, βj−1 ≤ βj for every
j = −1, . . . ,−k + 1, and β1 + β−1 > 0. We define A = KZ. An element
of A is denoted by β = (βjx)j∈{−k,...,k},x∈Z. The dynamics of this model is
defined informally as follows. A site x ∈ Z is chosen as the initial site, then
a jump direction (right or left) is chosen, and in this direction, the particle
jumps to the first available site if it is no more than k sites ahead. The jump
occurs at rate βjx if the first available site is x + j. Let V = [0, 1] × {−1, 1}
and m = δ1 + δ−1. For x ∈ Z and v ∈ {−1, 1}, we set

N(x, v, η) := inf {i ∈ {1, . . . , k} : η(x+ iv) = 0}

with the usual convention inf ∅ = +∞. The corresponding monotone trans-
formation is defined for (u, v) ∈ V by

T α,x,vη =

{
ηx,x+N(x,v,η)v if N(x, v, η) < +∞ and u ≤ β

vN(x,v,η)
x

η otherwise
(113)

Monotonicity of the transformation T α,x,z is given by [9, Lemma 5.1], and is
also a particular case of Lemma 6.1 below, which states the same property
for the k-step misanthropes process. It follows from (101) and (113) that the
generator of this process is given for β ∈ A by

Lβf(η) =
∑
x∈Z

η(x)
k∑
j=1

{
βjx[1− η(x+ j)]

i=j−1∏
i=1

η(x+ i)

+ β−jx [1− η(x− j)]
i=j−1∏
i=1

η(x− i)

}
(114)

A sufficient irreducibility property replacing (8) is the existence of a constant
c > 0 such that

inf
x∈Z

(
β1
x + β−1

x

)
> 0 (115)
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The microscopic flux function j2 in (26) is given here by

j2(β, η) = η(0)
k∑
j=1

jβj0[1− η(j)]

j−1∏
i=1

η(i)

− η(0)
k∑
j=1

jβ−j0 [1− η(j)]

j−1∏
i=1

η(i) (116)

with the convention that an empty product is equal to 1. For ρ ∈ [0, 1], let
Bρ denote the Bernoulli distribution on {0, 1}. In the absence of disorder,
that is when βix does not depend on x, the measure νρ defined by

νρ(dη) =
⊗
x∈Z

Bρ[dη(x)]

is invariant for this process. It follows from (116) that the macroscopic flux
function for the model without disorder is given by

G(u) = (1− u)
k∑
j=1

j[βj − β−j]uj (117)

The k-step misanthropes process. In the sequel, an element of Zk is
denoted by z = (z1, . . . , zk). Let K ≥ 1, k ≥ 1, c ∈ (0, 1).

Define D0 to be the set of functions b : {0, . . . , K}2 → R+ such that b(0, .) =
b(., K) = 0, b(n,m) > 0 for n > 0 and m < K, and b is nondecreasing (resp.
nonincreasing) w.r.t. its first (resp. second) argument. Let D denote the
set of functions b = (b1, . . . , bk) from Zk × {0, . . . , K}2 → (R+)k such that
bj(z, ., .) ∈ D0 for each j = 1, . . . , k, and

∀j = 2, . . . , k, bj(., K, 0) ≤ bj−1(., 1, K − 1) (118)

Let q be a probability distribution on Zk, and b ∈ D. We define the (q, b)
k-step misanthrope process as follows. A particle at x (if some) picks a
q-distributed random vector Z = (Z1, . . . , Zk), and jumps to the first site
x + Zi (i ∈ {1, . . . , k}) with strictly less than K particles along the path
(x + Z1, . . . , x + Zk), if such a site exists, with rate bi(Z, η(x), η(x + Zi)).
Otherwise, it stays at x.
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Next, disorder is introduced: the environment is a field α = ((qx, bx) : x ∈
Z) ∈ A := (P(Zk)×D)Z. For a given realization of the environment, the dis-
tribution of the path Z picked by a particle at x is qx, and the rate at which
it jumps to x + Zi is bix(Z, η(x), η(x + Zi)). The corresponding generator is
given by

Lαf(η) =
k∑
i=1

∑
x,y∈Z

ciα(x, y, η) [f(ηx,y)− f(η)] (119)

for a local function f on X, where (with the convention that an empty
product is equal to 1)

ciα(x, y, η) =

∫ [
bix(z, η(x), η(y))1{x+zi=y}

i−1∏
j=1

1{η(x+zj)=K}

]
dqx(z)

The distribution Q of the environment on A is assumed ergodic with respect
to the space shift τy, where τyα = ((qx+y, bx+y) : x ∈ Z).

A sufficient condition for the existence of the process and graphical con-
struction below is the existence of a probability measure P (.) on Z and a
constant C > 0 such that

sup
i=1,...,k

sup
x∈Z

qix(.) ≤ C−1P (.) (120)

where qix denotes the i-th marginal of qx. On the other hand, a natural
irreducibility assumption sufficient for Proposition 3.1 and Theorem 3.1, is
the existence of a constant c > 0, and a probability measure p(.) on Z
satisfying (120), such that

inf
x∈Z

q1
x(.) ≥ cp(.) (121)

To define a graphical construction, we set, for (x, z, η) ∈ Z×Zk ×X, b ∈ D0

and u ∈ [0, 1],

N(x, z, η) = inf {i ∈ {1, . . . , k} : η (x+ zi) < K} with inf ∅ = +∞(122)

Y (x, z, η) =

{
x+ zN(x,z,η) if N(x, z, η) < +∞
x if N(x, z, η) = +∞ (123)

T0
x,z,b,uη =

{
ηx,Y (x,z,η) if u < bN(x,z,η)(z, η(x), η(Y (x, z, η)))
η otherwise

(124)
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Let V = [0, 1]×[0, 1], m = λ[0,1]⊗λ[0,1]. For each probability distribution q on
Zk, there exists a mapping Fq : [0, 1]→ Zk such that Fq(V1) has distribution
q if V1 is uniformly distributed on [0, 1]. Then the transformation T in (107)
is defined by (with v = (v1, v2) and α = ((qx, βx) : x ∈ Z))

T α,x,vη = T x,Fqx (v1),bx(Fqx (v1),.,.),v2
0 η (125)

The definition of j2 in (26), applied to the generator (119), yields

j2(α, η) =
∑
z∈Z

zcα(0, z, η) (126)

where

cα(x, y, η) :=
k∑
i=1

ciα(x, y, η)

Special cases.

1. The generalized misanthropes process is recovered for k = 1, because
then in (119) we have c1

α(x, y, η) = q1
x(y − x)b1

x(y − x, η(x), η(y)).

2. A generalized disordered k-step exclusion process is obtained if K = 1
and bjx(z, n,m) = βjx(z)n(1−m). In this process, if site x is the initial loca-
tion of an attempted jump, and a particle is indeed present at x, a random
path of length k with distribution qx is picked, and the particle tries to find
an empty location along this path. If it finds none, then it stays at x. Previ-
ous versions of the k-step exclusion process are recovered if one makes special
choices for the distribution qx:

2a. The usual k-step exclusion process with site disorder, whose genera-
tor was given by (5), corresponds to the case where qx is the distribution
of the first k steps of a random walk with kernel p(.) absorbed at 0, and
βjx = α(x).

2b. The exclusion process with overtaking, whose generator was given by
(114), corresponds to the case where the random path is chosen as follows:
first, one picks with equal probability a jumping direction (left or right);
next, one moves in this direction by successive deterministic jumps of size 1.
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3. For K ≥ 2, the generalized k-step K-exclusion process ([9, Subsection
5.2]) corresponds to bjx(z, n,m) = βjx(z)1{n>0}1{m<K}.

Returning to the general case, condition (118) is the relevant extension of
the condition βjx(z) ≤ βj−1

x (z) in the exclusion process with overtaking. If
K ≥ 2, it means that any possible j-step jump has rate larger or equal than
any (j − 1)-step jump.

The monotonicity property (15) of the graphical construction, and thus
the complete monotonicity of the process, is a consequence of the follow-
ing lemma.

Lemma 6.1 For every (x, z, u) ∈ Z × Zk × [0, 1] and b ∈ D0, T x,z,b,u0 is an
increasing mapping from X to X.

Proof of lemma 6.1. Let (η, ξ) ∈ X2 with η ≤ ξ. To prove that T x,z,b,u0 η ≤
T x,z,b,u0 ξ, since η and ξ can only possibly change at sites x, y := Y (x, z, η)
and y′ := Y (x, z, ξ), it is sufficient to verify the inequality at these sites.

If ξ(x) = 0, then by (124), η and ξ are both unchanged by T x,z,b,u0 . If
η(x) = 0 < ξ(x), then T x,z,b,u0 ξ(y′) ≥ ξ(y′) ≥ η(y′) = T x,z,b,u0 η(y′).

Now assume η(x) > 0. Then η ≤ ξ implies N(x, z, η) ≤ N(x, z, ξ). If
N(x, z, η) = +∞, η and ξ are unchanged. If N(x, z, η) < N(x, z, ξ) = +∞,
then T x,z,b,u0 η = ηx,y, and ξ(y) = K. Thus, T x,z,b,u0 η(x) = η(x)− 1 ≤ ξ(x) =
T x,z,b,u0 ξ(x), and T x,z,b,u0 ξ(y) = ξ(y) = K ≥ T x,z,b,u0 η(y).

In the sequel, we assume N(x, z, η) and N(x, z, ξ) both finite. Let β :=
bN(x,z,η)(η(x), η(y)) and β′ := bN(x,z,ξ)(ξ(x), ξ(y′)).

1) Assume N(x, z, η) = N(x, z, ξ) < +∞, then y = y′. If u ≥ max(β, β′),
both η and ξ are unchanged. If u < min(β, β′), T x,z,b,u0 η = ηx,y and T x,z,b,u0 ξ =
ξx,y, whence the conclusion. We are left to examine different cases where
min(β, β′) ≤ u < max(β, β′).

a) If η(x) = ξ(x), then β′ ≤ β, and β′ ≤ u < β implies η(y) < ξ(y). In
this case, T x,z,b,u0 ξ(x) = ξ(x) ≥ η(x) > T x,z,b,u0 η(x) and T x,z,b,u0 ξ(y) = ξ(y) =
K ≥ T x,z,b,u0 η(y).
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b) If η(x) < ξ(x), then T x,z,b,u0 ξ(x) ≥ ξ(x) − 1 ≥ η(x) ≥ T x,z,b,u0 η(x). If
β ≤ u < β′, then T x,z,b,u0 ξ(y) = ξ(y) + 1 > η(y) = T x,z,b,u0 η(y). If β′ ≤ u < β,
then η(y) < ξ(y) and T x,z,b,u0 ξ(y) = ξ(y) ≥ η(y) + 1 = T x,z,b,u0 η(y).

2) Assume N(x, z, η) < N(x, z, ξ) < +∞, hence β ≥ β′ by (118), and
η(y) < ξ(y) = K. If u ≥ β, η and ξ are unchanged. If u < β′, then
T x,z,b,u0 η(y) = η(y) + 1 ≤ ξ(y) = T x,z,b,u0 ξ(y), and T x,z,b,u0 ξ(y′) = ξ(y′) + 1 ≥
T x,z,b,u0 η(y′) = η(y′). If β′ ≤ u < β, then T x,z,β,u0 η(x) = η(x)−1 ≤ T x,z,b,u0 ξ(x)
and T x,z,b,u0 η(y) = η(y) + 1 ≤ T x,z,b,u0 ξ(y) = ξ(y) = K. �
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