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We describe an algorithm that allows to compute the Euclidean minimum (for the norm form) of any order of a totally definite quaternion field over a number field K of degree strictly greater than 1. Our approach is a generalization of previous work dealing with number fields. The algorithm was practically implemented when K has degree 2.

Introduction

If K is a number field, we denote by n its degree, by Z K its ring of integers, by Z × K its unit group, and by N K/Q : K → Q the norm form. Throughout this paper F will be a totally definite quaternion field over a number field K. Let us recall the relevant definitions, the reader may refer to [START_REF] Deuring | [END_REF][START_REF] Reiner | Maximal orders[END_REF][START_REF] Vignéras | Arithmétique des algèbres de quaternions[END_REF] for a complete theory. Let F be a quaternion algebra over a number field K, i.e. a 4-dimensional algebra over K with basis (1, i, j, k) such that i 2 = a, j 2 = b and k = ij = -ji, where a, b are non-zero elements of K. This algebra is denoted by a, b K . Let w = x + yi + zj + tk ∈ F , where x, y, z, t ∈ K. We denote by w the image of w under the canonical involution of F , which is defined by w = x-yi -zj -tk, and by nrd F/K (w) = ww its reduced norm. The algebra F is a division algebra if and only if the quadratic form nrd F/K (x + yi + zj + tk) = x 2 -ay 2 -bz 2 + abt 2 represents zero on K only trivially. In this case, we say that F is a quaternion field.

In addition, we will suppose that F is totally definite, or equivalently that every infinite place of K is ramified in F . This implies in particular that K is totally real, that a and b are totally negative and that for every x ∈ F \ {0}, nrd F/K (x) is totally positive. Let us denote by N : F -→ Q ≥0 the reduced norm map defined by N = N K/Q • nrd F/K . Definition 1.1. Let Λ be an order of F . For any ξ ∈ F , we set

m Λ (ξ) = inf λ∈Λ N (ξ -λ)
and we call it the local Euclidean minimum of Λ at ξ. We define the Euclidean minimum of Λ by M (Λ) = sup ξ∈F m Λ (ξ).

Set F R = F ⊗ Q R and let N R : F R → R ≥0 be the extended norm corresponding to N . Definition 1.2. Let Λ be an order of F . For any x ∈ F R , we set

mΛ (x) = inf λ∈Λ N R (x -λ)
and we call it the local inhomogeneous minimum of Λ at x. We define the inhomogeneous minimum of Λ by

M (Λ) = sup x∈F R mΛ (x).
Let us notice that these suprema are well-defined positive real numbers, that M (Λ) ≤ M (Λ) and that for every ξ ∈ F there exists a λ ∈ Λ such that m Λ (ξ) = N (ξ -λ) (see [START_REF] Chaubert | Minimum euclidien des ordres maximaux dans les algèbres centrales à division[END_REF][START_REF] Bayer | Euclidean minima and central division algebras[END_REF]). Let us call (P ) the following property: there exists some ξ ∈ F such that m Λ (ξ) = M (Λ). In particular, if (P ) holds, then M (Λ) = M (Λ) ∈ Q. Recall that we have the following results:

• The order Λ is right-norm-Euclidean if and only if it is left-norm-Euclidean (so that we can speak of norm-Euclidean orders) and that in this case Λ is necessarily a maximal order of F ;

• If M (Λ) < 1 then Λ is norm-Euclidean; • If M (Λ) > 1 then Λ is neither right neither left-norm-Euclidean;
• If M (Λ) = 1 and if property (P ) is satisfied then Λ is neither right neither left-norm-Euclidean; • If Λ is norm-Euclidean, then every other maximal order Λ ′ of F is also norm-Euclidean and M (Λ) = M (Λ ′ ) • If K has unit rank strictly greater than 1, i.e. n > 2 if K is totally real, then (P ) holds.

Note that these results still hold when F is not totally definite. For more details, the reader can refer to [START_REF] Chaubert | Minimum euclidien des ordres maximaux dans les algèbres centrales à division[END_REF][START_REF] Bayer | Euclidean minima and central division algebras[END_REF][START_REF] Cerri | Euclidean totally definite quaternion fields over the rational field and over quadratic number fields[END_REF].

A first natural question arises: what can be said when the degree of K is 1 or 2, i.e. when K = Q or is a real quadratic field? Do we also have M (Λ) = M (Λ) or does property (P ) hold? We will answer to this question in Section 2, showing that the equality is always satisfied and that property (P ) holds when K = Q. Showing that it also holds when K is quadratic seems out of reach, as in the number field case, which is a famous conjecture due to Barnes and Swinnerton-Dyer. As in the number field case (see [START_REF] Cerri | Euclidean minima of totally real number fields: Algorithmic determination[END_REF][START_REF] Lezowski | Computation of the Euclidean Minimum of Algebraic Number Fields[END_REF]), it is also natural to ask whether it is possible to use an algorithm allowing to compute M (Λ) = M (Λ) and to check that property (P ) is satisfied, even in the conjectural case. We will see that such an algorithm is already well known when K = Q so that we have just to study the case where K has degree at least 2. Note also that, as in the number field case, such an algorithm might allow to determine the upper part of the so called inhomogeneous spectrum associated to Λ. The paper is organized as follows. In Section 2, we recall what we know when n = 1 and we establish some preliminary results allowing to prove M (Λ) = M (Λ) when n = 2, and that we will use later in the algorithm. In Section 3, we explain the ideas that will be used in the algorithm when n ≥ 2. In Section 4, we describe the algorithm itself (Algorithm 2); in Section 5, we give technical details of the algorithm, and finally, in Section 6 we give the results obtained when K is quadratic, the only case that we can treat with the computers that we used. 

Preliminary results

2.1.

Φ(ξ) = σ 1 (α), . . . , σ n (α), σ 1 (β), . . . , σ n (β), σ 1 (γ), . . . , σ n (γ), σ 1 (δ), . . . , σ n (δ) ,
and in further computations we see this vector as a column vector. Then Φ(Λ) is a lattice of R 4n that will be denoted by R.

Identifying F R with R 4n , if x ∈ R 4n we put N R (x) = n l=1 nrd l (x)
where

nrd l (x) = x 2 l -σ l (a)x 2 l+n -σ l (b)x 2 l+2n + σ l (ab)x 2 l+3n . With this notation, if ξ ∈ F and x ∈ R 4n , we have • nrd l (Φ(ξ)) = σ l (nrd F/K (ξ)) for every l; • N (ξ) = N R (Φ(ξ)); • mΛ (x) = inf λ∈Λ N R (x -Φ(λ)); • m Λ (ξ) = mΛ (Φ(ξ)). The multiplicative group K \ {0} acts on R 4n in the following way. If α ∈ K \ {0} and x ∈ R 4n we put α ⋆ x = (σ 1 (α)x 1 , . . . , σ n (α)x n , . . . , σ 1 (α)x 3n+1 , . . . , σ n (α)x 4n ). Hence, if ξ ∈ F we have α ⋆ Φ(ξ) = Φ(αξ). Moreover, if ν ∈ Z × K , then ν ⋆ R = R, and if x ∈ R 4n , then N R (ν ⋆ x) = N R (x). This implies that that for every x ∈ R 4n and every ν ∈ Z × K , we have mΛ (ν ⋆ x) = mΛ (x). Remark 2.1. Since mΛ is R-periodic, we have mΛ (ν ⋆ x+ Φ(λ)) = mΛ (x) for every (x, ν, λ) ∈ R 4n × Z × K × Λ.
Recall that mΛ is not only R-periodic, but also upper semi-continuous. These two properties imply that there exists an x ∈ R 4n such that M (Λ) = mΛ (x). Such an x will be called critical.

2.2.

The case n = 1. Here K = Q, a, b ∈ Q <0 and we can write

Λ = ⊕ 4
l=1 (a l,1 + a l,2 i + a l,3 j + a l,4 k)Z, where a l,i ∈ Q for every 1 ≤ l, i ≤ 4 and where the matrix M = (a l,i ) is invertible. We also have

F = ⊕ 4 l=1 (a l,1 + a l,2 i + a l,3 j + a l,4 k)Q = Q ⊕ Qi ⊕ Qj ⊕ Qk. With our notation, R is the lattice M t Z 4 ⊂ Q 4 and Φ(F ) = M t Q 4 . Let x ∈ R 4 and let us put x = M t y. Then mΛ (x) = inf X∈Z 4 q(M t (y -X)) where q(z) = z 2 1 -az 2 2 -bz 2 3 + abz 2 4
which is equivalent to

mΛ (x) = inf X∈Z 4 SM t (y -X) 2
where • is the usual Euclidean norm and

S =     1 0 0 0 0 √ -a 0 0 0 0 √ -b 0 0 0 0 √ ab     . As a consequence M (Λ)
is the square of the covering radius of the lattice L = SM t Z 4 ⊂ R 4 and if x ∈ R 4 is a critical point, i.e. satisfies mΛ (x) = M (Λ), then OP , where O = (0, 0, 0, 0) and P = Sx = SM t y, is the covering radius of L. Let A and B be two points of L and let us put A = SM t α, B = SM t β where α, β ∈ Z 4 . Then the mediator hyperplane of A and B is the set of z = SM t r such that SM t (r -α+β 2 ), SM t (α -β) = 0, i.e. r -α+β 2 , M S 2 M t (α -β) = 0, where • , • is the usual Euclidean scalar product. Note that α+β 2 , M S 2 M t (α -β) ∈ Q 4 . Now, the point P = SM t y belongs to 4 independent such mediator hyperplanes and the y i satisfy 4 independent linear equations with rational coefficients, so that y ∈ Q 4 . From this we deduce that x = M t y ∈ Φ(F ). This implies that property (P ) is satisfied and that M (Λ) = M (Λ) ∈ Q. Let us conclude by noting that there exist well known algorithms to compute the covering radius of L (see [START_REF] Sikirić | Complexity and algorithms for computing Voronoi cells of lattices[END_REF][START_REF] Schürmann | Computational Geometry of Positive Definite Quadratic Forms[END_REF]) and then M (Λ) = M (Λ), so that the case n = 1 is completely settled.

2.3.

Computation of m Λ (ξ). From now on, we suppose that n ≥ 2. We are interested in computing m Λ (ξ) where ξ ∈ F . We will rely on it for the actual computation of M (Λ) later on. Let (ε i ) 1≤i≤n-1 be a fundamental system of units of K. We denote by L the logarithmic embedding of K \ {0} in R n defined by

L(α) = (ln |σ 1 (α)|, . . . , ln |σ n (α)|).
We know that L(Z × K ) is a lattice of the hyperplane H of R n defined by the equation 1≤i≤n x i = 0, which admits (L(ε i )) 1≤i≤n-1 as a Z-basis and that the kernel of L is {±1}. For 1 ≤ i ≤ n we set

Γ i = n-1 j=1 max |σ i (ε j )|, 1 |σ i (ε j )| .
Lemma 2.2. Units of K have the following properties.

(i) Let l ∈ {1, . . . , n}. There exists a ν ∈ Z × K such that |σ i (ν)| < 1 for every i = l. (ii) If c 1 , . . . , c n-1 are given positive real numbers, there exists a ν ∈ Z × K such that c i ≤ σ i (ν) 2 ≤ c i Γ 2
i for all i ∈ {1, . . . , n -1}.

Proof. (i) L(Z × K ) being a lattice of H, it is easy to see that H ∩ {x ∈ R n ; x l > 0 and x i < 0 for i = l}, which is a nonempty open cone of H, contains an element L(ν) of L(Z × K ). (ii) This a consequence of [START_REF] Cerri | Euclidean minima of totally real number fields: Algorithmic determination[END_REF]Lemma 3.1]. See also [START_REF] Cerri | Spectres euclidiens et inhomogènes des corps de nombres[END_REF]Lemma 2.1] for a detailed proof.

Proposition 2.3. Let k > 0. Suppose that x ∈ R 4n and X ∈ R satisfy N R (x-X) < k. Then there exist an ε ∈ Z × K and some Y ∈ R such that y = ε ⋆ x -Y satisfies N R (y) < k and 0 ≤ nrd i (y) ≤ Γ(k) for every 1 ≤ i ≤ n,
where

Γ(k) = k n-1 i=1 Γ 2 i 1 n . Proof. First, if N R (x -X) = 0 we have nrd l (x -X) = 0 for some index l. By Lemma 2.2 (i), there exists a ν ∈ Z × K such that |σ i (ν)| < 1 for every i = l. Since nrd i (ν p ⋆ x -ν p ⋆ X) = σ i (ν) 2p nrd i (x -X), for p sufficiently large we have nrd i (ν p ⋆ x -ν p ⋆ X) ≤ Γ(k) for i = l and nrd l (ν p ⋆ x -ν p ⋆ X) = 0. Taking ε = ν p and Y = ν p ⋆ X, we obtain the result announced. Now, if N R (x -X) = 0, we apply Lemma 2.2 (ii) with c i = Γ(k) Γ 2 i nrd i (x -X) for 1 ≤ i ≤ n -1. There exists a ν ∈ Z × K such that Γ(k) Γ 2 i nrd i (x -X) ≤ σ i (ν) 2 ≤ Γ(k) nrd i (x -X) for 1 ≤ i ≤ n -1. From N R (ν ⋆ x -ν ⋆ X) = N R (x -X) = σ n (ν) 2 nrd n (x -X) n-1 i=1 σ i (ν) 2 nrd i (x -X) we deduce σ n (ν) 2 nrd n (x -X) ≤ k n-1 i=1 Γ 2 i Γ(k) n-1 = Γ(k).
Taking ε = ν and Y = ν ⋆ X we have again the result announced. Now, consider the orbits of elements of R 4n under the action of

Z × K . Let x, y ∈ R 4n and ν ∈ Z × K . As x -y ∈ R ⇒ ν ⋆ x -ν ⋆ y ∈ R, the group Z × K also acts on R 4n /R by (ν, x) → ν ⋆ x, where y is the class of y ∈ R 4n modulo R. Let F be a fundamental domain of R. Identifying R 4n /R with F , if x ν is the unique element of F congruent to ν ⋆ x modulo R, we set Orb(x) = {x ν ; ν ∈ Z × K }. Remark that for all x ∈ R 4n , if z ∈ Orb(x) we have mΛ (z) = mΛ (x).
Using this new notation, we have the following essential result.

Theorem 2.1. There exists a finite set S ⊂ R such that for every x ∈ R 4n , we have

mΛ (x) = inf z∈Orb(x) min Z∈S N R (z -Z) .
Proof. Let k ′ be any positive real number satisfying

k ′ > M (Λ) and let ǫ > 0 such that M (Λ) + ǫ < k ′ . Let S ′ = {t ∈ R 4n ; nrd i (t) ≤ Γ(k ′ ) for every 1 ≤ i ≤ n}.
Since for every i,

nrd i (t) = t 2 i -σ i (a)t 2 i+n -σ i (b)t 2 i+2n + σ i (ab)t 2 i+3n , where σ i (a), σ i (b) < 0, we see that S ′ is a bounded subset of R 4n . Now, let us put S = (F + S ′ ) ∩ R. As S ′ + F is also bounded, the set S is a finite subset of R. Let x ∈ R 4n . There exists some X ∈ R such that N R (x -X) < mΛ (x) + ǫ ≤ M (Λ) + ǫ < k ′ . Applying Proposition 2.3 with k = mΛ (x) + ǫ, we see that there exists a ν ∈ Z × K and some Y ∈ R such that, if y = ν ⋆ x -Y , then N R (y) < mΛ (x) + ǫ < k ′ and nrd i (y) ≤ Γ( mΛ (x) + ǫ) ≤ Γ(k ′ ) (because Γ is an increasing function). Let z ∈ F such that z -y ∈ R. Then, z ∈ Orb(x) and y = z -Z, where Z ∈ S and N R (z -Z) < mΛ (x) + ǫ. Since this is true for any ǫ > 0 we have mΛ (x) ≥ inf z∈Orb(x) min Z∈S N R (z -Z) .
On the other hand, for every z ∈ Orb(x) and any Z ∈ R, we have mΛ (x) = mΛ (z) ≤ N R (z -Z), which leads to the equality.

Remark 2.4. This result shows that if x ∈ Φ(F ), we can compute mΛ (x) in a finite number of steps. In fact, Orb(x) is finite if and only x ∈ Φ(F ). Indeed, if x ∈ Φ(F ) we can write x = X/d where X ∈ R and d ∈ Z > 0, and Orb(x) can be identified with a subset of R/dR which is finite. Conversely, if Orb(x) is finite and if ν is a nontorsion unit of K, considering the sequence (x ν p ) p≥0 , we see that there exists k > l ≥ 0 such that x ν k = x ν l . This implies that there exists an

X = Φ(λ) ∈ R, with λ ∈ Λ, such that (ν k -ν l ) ⋆ x = X which implies x = Φ(λ/(ν k -ν l )) ∈ Φ(F ).
As in the number field case, this allows to establish an algorithm to compute mΛ (x). We could use the formula for S in the proof of Theorem 2.1 but we do not know M (Λ), so we cannot compute S. However, we can proceed as follows. Let us take some k ′ > 0 and set S k ′ = S as defined in the previous proof. Let us put (1)

M k ′ = min z∈Orb(x) min Z∈S k ′ N R (z -Z) .
Then

M k ′ ≤ k ′ ⇒ mΛ (x) = M k ′ .
Of course, mΛ (x) ≤ M k ′ . Suppose that mΛ (x) < M k ′ so that there exists some

X ∈ R such that N R (x -X) < M k ′ . Then by Proposition 2.3 there exists a ν ∈ Z × K and some Y ∈ R such that if y = ν ⋆ x -Y , then N R (y) < M k ′ and nrd i (y) ≤ Γ(M k ′ ) ≤ Γ(k ′ ) for every i. This contradicts the definition of M k ′ .
Finally, we have the following algorithm to compute mΛ (x).

Algorithm 1: Computation of mΛ (x) when x ∈ Φ(F ) Input: x ∈ Φ(F ). Output: mΛ (x). 1 Computation of Orb(x). 2 Computation of k ′′ = M k ′ for a k ′ > 0. 3 if k ′′ ≤ k ′ then 4 mΛ (x) = k ′′ 5 else 6 Computation of k = M k ′′ . 7 mΛ (x) = k.
The correctness of the algorithm follows from the fact that k

′ -→ M k ′ is a decreasing function: if k ′′ > k ′ then M k ′′ ≤ M k ′ = k ′′ and mΛ (x) = M k ′′ . 2.4. The case n = 2.
Here we use Theorem 2.1 to show that when n = 2, as in every other case, we have

M (Λ) = M (Λ). Theorem 2.2. If n = 2, then M (Λ) = M (Λ).
Proof. We follow the idea of the proof given by Barnes and Swinnerton-Dyer in the real quadratic number field case [START_REF] Barnes | The inhomogeneous minima of binary quadratic forms (II)[END_REF].

Let K = Q( √ d), where d > 1 is a squarefree integer. Denote by σ the nontrivial embedding of K into R, i.e. the Q-automorphism of K such that σ( √ d) = - √ d.
Let ν be a fundamental unit of K. We can suppose ν > 1 so that |σ(ν)| < 1. Let ǫ > 0. Keep the notation of the proof of Theorem 2.1. The map N R being continuous, let ǫ ′ > 0 such that for every x, y

∈ F + S + {z ∈ R 4n ; |z i | < 1 for all i}, which is a bounded set, if |x i -y i | < ǫ ′ for every i, then |N R (x) -N R (y)| < ǫ. Choose ǫ ′ < 1. Let x ∈ R 8 such that mΛ (x) = M (Λ). If x ∈ Φ(F )
we are done, so that we can suppose x ∈ Φ(F ). The set {x ν p ; p ≥ 0} ⊂ F is infinite and bounded , and there exist

n 2 > n 1 ≥ 0 such that for every i, |(x ν n 2 ) i -(x ν n 1 ) i | < ǫ ′ /2. Without loss of generality we can suppose ν n2-n1 > 2. We have ν n2-n1 ⋆ x ν n 1 = x ν n 2 + X where X ∈ R. Let us put X = Φ(λ) with λ ∈ Λ. Set ξ = λ ν n2-n1 -1 ∈ F and α = Φ(ξ) ∈ Φ(F ). Since ν n2-n1 ⋆ α = α mod R, we have Orb(α) = n2-n1-1 k=0 {α ν k , α -ν k } ⊂ F .
It is easy to see that

α i =      (x ν n 1 ) i + (x ν n 1 ) i -(x ν n 2 ) i ν n2-n1 -1 for i odd, (x ν n 1 ) i + (x ν n 1 ) i -(x ν n 2 ) i σ(ν) n2-n1 -1 for i even. Since |(x ν n 1 ) i -(x ν n 2 ) i | < ǫ ′ /2 and ν n2-n1 > 2, this implies that |α i -(x ν n 1 ) i | < ǫ ′ ν n2-n1 for i odd, and |α i -(x ν n 1 ) i | < ǫ ′ for i even. Consequently for every 0 ≤ k < n 2 -n 1 , we have (2) |(ν k ⋆ α) i -(ν k ⋆ x ν n 1 ) i | < ǫ ′ for all i. Now, for every 0 ≤ k < n 2 -n 1 , ν k ⋆ α = α ν k + X k where X k ∈ R. Let X ∈ S.
Then for every i, we have

|(α ν k -X) i -(ν k ⋆ x ν n 1 -X k -X) i | < ǫ ′ . But α ν k -X ∈ F + S and since ǫ ′ < 1, we have ν k ⋆ x ν n 1 -X k -X ∈ F + S + {z ∈ R 4n ; |z i | < 1 for all i}. By choice of ǫ ′ this implies that for every 0 ≤ k < n 2 -n 1 , (3) |N R (α ν k -X) -N R (ν k ⋆ x ν n 1 -X k -X)| < ǫ.
Now inequality [START_REF] Bayer | Euclidean minima and central division algebras[END_REF] shows that for every 0

≤ k < n 2 -n 1 , |(-ν k ⋆ α) i -(-ν k ⋆ x ν n 1 ) i | < ǫ ′ for all i. Putting -ν k ⋆ α = α -ν k + Y k where Y k ∈ R for 0 ≤ k < n 2 -n 1 ,
we obtain in the same way that for every x ∈ S and every 0

≤ k < n 2 -n 1 , (4) |N R (α -ν k -X) -N R (-ν k ⋆ x ν n 1 -Y k -X)| < ǫ.
Thus, by ( 3) and ( 4), for every y ∈ Orb(α) and every X ∈ S,

N R (y -X) > N R (z -Z) -ǫ
for some z ∈ Orb(x ν n 1 ) and Z ∈ R. We deduce from Theorem 2.1 that

mΛ (α) > mΛ (x ν n 1 ) -ǫ = mΛ (x) -ǫ = M (Λ) -ǫ.
Since for every ǫ > 0, there exists some α ∈ Φ(F ) such that mΛ (α) > M (Λ) -ǫ, we have necessarily M (Λ) = M (Λ).

Remark 2.5. The second part of our proof does not follow [START_REF] Barnes | The inhomogeneous minima of binary quadratic forms (II)[END_REF] because the third "equation" of [1, p. 313] is incorrect.

Corollary 2.6. In all cases, we have M (Λ) = M (Λ).

Proof. By [START_REF] Bayer | Euclidean minima and central division algebras[END_REF], the equality holds when n > 2, and by Subsection 2.2, it also holds when n = 1. Of course, in both cases we have a better result since property (P ) holds.

Theoretic argumentation

3.1. Overview of the strategy. Now, it is time to set out the ideas which are behind the algorithm used to compute M (Λ) = M (Λ) when n ≥ 2. The strategy is the same as in the number field case.

To simplify things we assume that we have an idea of the exact value of M (Λ). We shall see later how one can find a good candidate for the Euclidean minimum. From now on, we denote by k our guess of M (Λ).

In fact, instead of proving the equality M (Λ) = k, we shall establish the stronger and more precise result:

M (Λ) ≤ k and there exists a ξ ∈ F such that m Λ (ξ) = k.
It will clearly follow that M (Λ) = M (Λ) = k. Moreover, we shall try to find all the critical points which belong to F . Since mΛ is R-periodic, it is sufficient to work on a fundamental domain F of R, i.e. to prove that for all x ∈ F , mΛ (x) ≤ k, and to find all the ξ ∈ F such that Φ(ξ) ∈ F and m Λ (ξ) = k (every solution to m Λ (ξ) = k will be of this form modulo Λ).

Let k ′ be a positive number smaller than k. In practice one takes k ′ = k -ǫ where ǫ is a small positive number. Let us consider a finite family of elements of R, say X , and the regions of R 4n centered in the X of X and defined by the inequations N R (x -X) ≤ k ′ . Every element x of the subset H of F covered by these regions satisfies mΛ (x) ≤ k ′ < k, and since k ′ is supposed smaller than M (Λ), "holes" appear in the covering of F by these regions. These holes contain the potentially critical points of F .

The main idea is then to analyze the action of the unit group Z × K on uncovered subsets of F , in the following way. Let T be a hole of F , and ε a non-torsion unit of K (ε = ±1). We look at the possible intersections of ε ⋆ T with holes of F modulo R. If ε ⋆ T does not intersect any hole of F modulo R, we know by Remark 2.1 that for every x of T , we have mΛ (x) ≤ k ′ , so that T can be eliminated as a subset of F potentially containing a critical point. The interesting case is when the intersection is nonempty.

Remark 3.1. Here we have expressed things in terms of holes. In what follows, we consider "easy" regions larger than holes. For instance, in the algorithm, holes are replaced by regions composed of small parallelotopes. All what we need is to have a partition of F in a covered region and in regions potentially containing critical points. Then we check that these regions have an exploitable behaviour under the action of Z × K . 3.2. Theoretic arguments. As in the previous subsection, we consider k ′ > 0 and and a subset H of R 4n which satisfies mΛ (x) ≤ k ′ for all x ∈ H. We consider also a unit ε = ±1.

The cyclic case.

Let us first study the cyclic situation.

Theorem 3.1. Let T 0 ,. . . , T j-1 be bounded subsets of R 4n (j ≥ 1). Assume that for all l there is an Υ l ∈ Λ such that

(5) (ε ⋆ T l -Φ(Υ l )) \ H ⊂ T l+1 ,
where the indices in T r are to be read modulo j. Assume also that there is an x in T 0 which satisfies mΛ (x) > k ′ and define Ω ∈ Λ by

Ω = ε j-1 Υ 0 + ε j-2 Υ 1 + . . . . + εΥ j-2 + Υ j-1 .
Consider the sequence defined by y 0 = x and y p+1 = ε j ⋆ y p -Φ(Ω) for all p ≥ 0.

Then, if we put

ξ = Ω ε j -1 ∈ F and t = Φ(ξ),
we have i) For all i ∈ {1, . . . , n} such that |σ i (ε)| > 1 and for all p ≥ 0 and all k ∈ {0, 1, 2, 3}, (y p

) i+kn = t i+kn . ii) The sequence (y p ) p≥0 converges to t. iii) k ′ < mΛ (x) ≤ mΛ (t). iv) If x ∈ Φ(F ) then x = t. Proof. Put H ′ = {x ∈ R 4n ; mΛ (x) ≤ k ′ } so that H ⊂ H ′ . First of all, let us prove that (6) ε j ⋆ T 0 -Φ(Ω) \ H ′ ⊂ T 0 .
Put z = ε j ⋆ z 0 -Φ(Ω) where z 0 ∈ T 0 and suppose z ∈ H ′ . Let us define z 1 , z 2 , . . . , z j by the induction formula z p+1 = ε ⋆ z p -Φ(Υ p ) for 0 ≤ p < j.

It is easy to see that we have z j = z. By Remark 2.1 we can write

mΛ (z) = mΛ (z j ) = mΛ (z j-1 ) = . . . = mΛ (z 0 ) > k ′ .
Thus for all p ∈ {0, . . . , j} we have z p ∈ H ′ , which implies z p ∈ H, and by successive applications of (5) we get z p ∈ T p for all p ∈ {0, . . . , j -1}, and finally z = z j ∈ T 0 , so that we have [START_REF] Cerri | Euclidean totally definite quaternion fields over the rational field and over quadratic number fields[END_REF]. Now, consider the sequence (y p ) p≥0 . By Remark 2.1 we see by induction that for all p ≥ 0

(7) mΛ (y p ) = mΛ (x) > k ′
so that for all p ≥ 0, y p ∈ H ′ . Then, as y 0 = x ∈ T 0 , using [START_REF] Cerri | Euclidean totally definite quaternion fields over the rational field and over quadratic number fields[END_REF] we easily establish by induction that y p ∈ T 0 for all p ≥ 0. Thus, as T 0 was assumed to be bounded, the sequence (y p -t) p≥0 is bounded.

But, by the definition of t and the induction formula which defines (y p ) p≥0 , we have y p -t = ε jp ⋆ (x -t) for all p ≥ 0, so that

(8) |(y p ) i -t i | = |σ i mod n (ε)| jp |x i -t i |
for all i ∈ {1, 2, . . . , 4n} and for all p ≥ 0.

Let i ∈ {1, . . . , n}. If |σ i (ε)| > 1, since the sequence (|(y p ) i+kn -t i+kn |) p≥0 is bounded for every k ∈ {0, 1, 2,
3}, we must have x i+kn -t i+kn = 0, and then by ( 8) we obtain [START_REF] Deuring | [END_REF] (y p ) i+kn = t i+kn for all k ∈ {0, 1, 2, 3} and for all p ≥ 0.

This is i).

Moreover if |σ i (ε)| < 1, then [START_REF] Chaubert | Minimum euclidien des ordres maximaux dans les algèbres centrales à division[END_REF] shows that (10) lim p→+∞ (y p ) i+kn = t i+kn for all k ∈ {0, 1, 2, 3}.

Since |σ i (ε)| = 1 (otherwise ε = ±1, which is excluded by hypothesis), ( 9) and ( 10) yield lim p→+∞ y p = t. This is ii). Finally, since mΛ is upper semi-continuous, by [START_REF] Cerri | Tables of Euclidean minima of orders in totally definite quaternion fields over quadratic fields[END_REF], we obtain:

k ′ < mΛ (x) = lim sup p→+∞ mΛ (y p ) ≤ mΛ (t),
which gives iii). Now, assume that x ∈ Φ(F ). Since we cannot have |σ i (ε)| ≤ 1 for every i, there exists an i ∈ {1, . . . , n} such that |σ i (ε)| > 1, and by i) (with p = 0) we have [START_REF] Lezowski | Computation of the Euclidean Minimum of Algebraic Number Fields[END_REF] x i+kn = t i+kn for every k ∈ {0, 1, 2, 3}.

But x and t are both in Φ(F ), and if we write x = α 0 + α 1 i + α 2 j + α 3 k, t = β 0 + β 1 i + β 2 j + β 3 k with α j , β j ∈ K for every j, by [START_REF] Lezowski | Computation of the Euclidean Minimum of Algebraic Number Fields[END_REF] we have σ i (α j ) = σ i (β j ) for every j. By injectivity of σ i , this leads to α j = β j for every j, so that x = t.

Remark 3.2. Obviously the same property holds for T 1 , T 2 , . . . , T j-1 , the single difference is the formula for Ω, in which indices must be trivially permuted. More precisely, for r ∈ {0, . . . , j -1}, if we put t r = Φ(ξ r ) with

ξ r = Ω r ε j -1 ,
and

Ω r = ε j-1 Υ r + ε j-2 Υ r+1 + . . . + Υ r+j-1 ,
where the indices are still to be read modulo j, we have the same property as in Theorem 3.1 for T r (with t r instead of t). Moreover t 0 = t and we have the cyclic law:

t r+1 = Φ(ε) • t r -Φ(Υ r
) for all r ∈ {0, . . . , j -1}. In particular, all the t r are in Orb(t).

3.2.2. Generalization. Even if Theorem 3.1 allows one to treat some situations, it is not sufficient, in the form seen above, to cover all the cases that one meets in practice. A generalization of the previous situation is the following one.

Let T i (0 ≤ i ≤ s -1) be distinct bounded sets of R 4n , and T = {T 0 , . . . , T s-1 }. Assume that for all T i in T there exists an X i ∈ R and s i integers n i,1 ,. . . ,n i,si (s i > 0) such that [START_REF]PARI/GP version 2.9[END_REF] (ε

⋆ T i -X i ) \ H ⊂ 1≤k≤si T n i,k .
To simplify notation we shall consider the T i as the vertices of a directed graph (from now on digraph) G and represent ( 12) by s i directed edges (from now on arcs) whose tail is T i and whose respective heads the

T n i,k (1 ≤ k ≤ s i ).
Of course, such an arc can be a loop. We shall write

T i → T n i,k (X i ) or T i → T n i,k , if it is not necessary to precise X i .
Example 3.3. Theorem 3.1 corresponds to the digraph

G 1 : T 0 → T 1 (Φ(Υ 0 )) → . . . → T j-1 (Φ(Υ j-2 )) → T 0 (Φ(Υ j-1 )).
To describe paths of G we shall use the notation

T ′ 1 → T ′ 2 → . . . → T ′ k .
The digraph G has the following properties: if T and T ′ are vertices of G, there is at most one arc whose tail is T and whose head is T ′ , and every vertex of G has a positive outvalency. Obviously the last property implies that G contains circular paths (or circuits). Consequently, the set C of simple circuits of G (paths of the form

T ′ 0 → . . . → T ′ k → T ′ 0 ,
where k ≥ 0 and all the T ′ i are distinct) is nonempty (take a circuit of minimal length) and is finite (their length cannot exceed s). Each element c of C of length j is of the form of the circular path met in Theorem 3.1 (and seen above in G 1 ),

T ′ 0 → T ′ 1 (X ′ 0 ) . . . → T ′ j-1 (X ′ j-2 ) → T ′ 0 (X ′ j-1 ) with X ′ i = Φ(Υ i ).
It defines, in a unique way, j points of Φ(F ), t 0 , . . . , t j-1 by the formulae of Remark 3.2.

In this context, we say that t 0 , . . . , t j-1 are associated to c (implicitly t i corresponds to T ′ i ). The t i are in the same orbit modulo R and satisfy mΛ (t 0 ) = . . . = mΛ (t j-1 ). Let us denote this rational number by m Λ (c) and put

m Λ (G) = max c∈C m Λ (c).
Moreover, let us denote by E the set of all points of Φ(F ) associated to the elements of C. The set E is finite and we also have

m Λ (G) = max t∈E mΛ (t).

Finally let us put

E ′ = {t ∈ E such that mΛ (t) = m Λ (G)}.
An infinite path of G is an infinite sequence of arcs of G, (A i ) i≥0 such that the head of A i is the tail of A i+1 . If A i is defined by T ′ i → T ′ i+1 , we shall denote the path by (T ′ i ) i≥0 . Such a path is not simple, but can have a periodicity property. An infinite path (T ′ i ) i≥0 is said to be ultimately periodic if there exist integers r ≥ 0 and p ≥ 1 such that [START_REF] Reiner | Maximal orders[END_REF] for all i ≥ r, T ′ i+p = T ′ i .

Let (T ′ i ) i≥0 be an ultimately periodic infinite path. Let P be the set of p ≥ 1 such that there exists an r which satisfies [START_REF] Reiner | Maximal orders[END_REF]. Then P is nonempty and we can define ρ = min P ≥ 1.

Then there exists an r ρ such that ∀i ≥ r ρ , T ′ i+ρ = T ′ i . The integer ρ will be called the period length of (T ′ i ) i≥0 and every circuit T ′ i → . . . → T ′ i+ρ , where i ≥ r ρ , will be called a period of (T ′ i ) i≥0 Definition 3.4. We shall say that G is convenient if every infinite path of G is ultimately periodic.

Convenient digraphs have the following properties. Assume that G is convenient. Then every circuit is a power of a simple circuit. It can be shown that this condition implies that G is convenient. Another characterisation of convenient digraphs could be the following one: two distinct simple circuits have no common vertex. Assume that G is convenient and let P = (T ′ i ) i≥0 be an infinite path of G. Then, every period of P is a simple circuit (see [START_REF] Cerri | Euclidean minima of totally real number fields: Algorithmic determination[END_REF] for more details).

Example 3.5. G 1 is convenient. Figure 1 gives examples of convenient and not convenient digraphs.

T 2 T 3 T 4 T 5 T 6 T 1 X 2 X 5 X 3 X 4 X 6 X 7 X 1 (a) G1 is convenient T 2 T 3 T 4 T 5 X 1 X 2 X 3 X 4 X 5 X 6 (b) G2 is not convenient (X2 = X3) T 1 T 2 T 3 T 4 T 5 T 6 X 1 X 1 X 1 X 1 X 2 X 3 X 4 X 5 X 6 (c) G3 is not convenient T 1 T 2 T 3 T 4 T 5 T 6 T 7 X 1 X 2 X 3 X 4 X 5 X 6 X 7 X 9 X 10 X 8 (d) G4 is convenient Figure 1. Some digraphs.
Now, we can establish the theorem which will allow us to treat (almost) all the situations. Theorem 3.2. Assume that G is convenient and that there exist a T ∈ T and an

x ∈ T such that mΛ (x) > k ′ . Then i) k ′ < mΛ (x) ≤ m Λ (G). ii) If x ∈ Φ(F ), there exists a t ∈ E such that x ≡ t mod R. iii) If x ∈ Φ(F ) is critical, there exists a t ∈ E ′ such that x ≡ t mod R.
Proof. The proof is exactly the same as the proof of Theorem 4.5 of [START_REF] Cerri | Euclidean minima of totally real number fields: Algorithmic determination[END_REF] with some changes of notation. Let us rephrase it. Put x 0 = x and T ′ 0 = T . By [START_REF]PARI/GP version 2.9[END_REF] we know that there exists X ′ 0 ∈ R and s ′ 0 elements of T , denoted by

T n ′ 0,k (1 ≤ k ≤ s ′ 0 ) such that (ε ⋆ T ′ 0 -X ′ 0 ) \ H ⊂ 1≤k≤s ′ 0 T n ′ 0,k . Set x 1 = ε ⋆ x 0 -X ′ 0 . Since mΛ (x 1 ) = mΛ (x 0 ) > k ′ , we have x 1 ∈ (ε ⋆ T ′ 0 -X ′ 0 ) \ H, and necessarily, there is an i ∈ {1, . . . , s ′ 0 } such that x 1 ∈ T n ′ 0,i . We put T ′ 1 = T ′ n ′ 0,i
, and we continue with

x 2 = ε ⋆ x 1 -X ′ 1 where X ′ 1 is the element of R associated to T ′
1 by [START_REF]PARI/GP version 2.9[END_REF]. We see that we can construct by induction a sequence (x i ) i≥0 and an infinite path (T ′ i ) i≥0 which satisfy:

x 0 = x, for all i ≥ 0, x i+1 = ε ⋆ x i -X ′ i where X ′ i ∈ R and (14)
for all i ≥ 0, x i ∈ T ′ i . Moreover, by Remark 2.1, we have mΛ (x i ) = mΛ (x) > k ′ for all i. G being convenient, the infinite path (T ′ i ) i≥0 is ultimately periodic. We denote its period length ρ and we consider one of its periods c, described by

T ′ r → . . . → T ′ r+ρ = T ′ r , which is a simple circuit. Define T ′′ s = {x r+s+iρ ; i ∈ N}, for 0 ≤ s ≤ ρ -1.
By [START_REF] Schürmann | Computational Geometry of Positive Definite Quadratic Forms[END_REF] we have ∀s ∈ {0, . . . , ρ -1}, T ′′ s ⊂ T ′ r+s . This implies that the T ′′ s are bounded. Moreover, by construction, for all s there exists

Υ s ∈ Λ (in fact Φ -1 (X ′ r+s )) such that ε ⋆ T ′′ s -Φ(Υ s ) \ H = ε ⋆ T ′′ s -Φ(Υ s ) ⊂ T ′′ s+1
where the indices are to be read modulo ρ. Putting y = x r ∈ T ′′ 0 which satisfies mΛ (y) > k ′ , we see that we are exactly under the hypotheses of Theorem 3.1 (with y instead of x, T ′′ i instead of T i and ρ instead of j). This theorem defines ρ rational points t i associated to the simple circuit c. By definition of m Λ (c), and by Theorem 3.1.iii), we obtain

k ′ < mΛ (x) = mΛ (x r ) ≤ m Λ (c),
and by definition of m Λ (G) we have i).

Assume now that x ∈ Φ(F ) so that, by induction, x r ∈ Φ(F ). By Theorem 3.1.iv) we have x r = t 0 , and thus x r -t 0 ∈ R. By the induction formula of the definition of (x i ) and the formulae of Remark 3.2, we see that

for all k ∈ {0, . . . , r}, ε ⋆ (x r-k -t -k ) ∈ R,
where the index in t -k is taken modulo ρ. Finally, x = x 0 ≡ t -r mod R which is an element of E by definition of E. This proves ii).

Assume now that x is critical so that we have mΛ (x) = M (Λ). From the definitions, we can write mΛ (x) ≥ m Λ (G) and by i) we obtain mΛ (x) = m Λ (G) so that mΛ (t -r ) = m Λ (G). Since t -r ∈ E, we find t -r ∈ E ′ . This proves iii).

4. The algorithm, theoretic aspect 4.1. General strategy. Let Λ be an order of F . Since Λ is a torsion-free module over Z which is a PID, Λ admits a Z-basis whose cardinality is 4n. Suppose that we know such a basis (e 1 , e 2 , . . . , e 4n ). For every 1 ≤ l ≤ 4n, let us write e l = β l,i + β l,2 i + β l,3 j + β l,4 k where β l,m ∈ K for every m. Now, consider the matrix M ∈ M 4n (R) defined by

M =                           σ 1 (β 1,1 ) σ 1 (β 2,1 ) . . . σ 1 (β 4n,1 ) σ 2 (β 1,1 ) σ 2 (β 2,1 ) . . . σ 2 (β 4n,1 ) . . . . . . . . . σ n (β 1,1 ) σ n (β 2,1 ) . . . σ n (β 4n,1 ) σ 1 (β 1,2 ) σ 1 (β 2,2 ) . . . σ 1 (β 4n,2 ) . . . . . . . . . σ n (β 1,2 ) σ n (β 2,2 ) . . . σ n (β 4n,2 ) σ 1 (β 1,3 ) σ 1 (β 2,3 ) . . . σ 1 (β 4n,3 ) . . . . . . . . . σ n (β 1,3 ) σ n (β 2,3 ) . . . σ n (β 4n,3 ) σ 1 (β 1,4 ) σ 1 (β 2,4 ) . . . σ 1 (β 4n,4 ) . . . . . . . . . σ n (β 1,4 ) σ n (β 2,4 ) . . . σ n (β 4n,4 )                           .
Then it is not difficult to see that we have

Φ(F ) = M •Q 4n , R = Φ(Λ) = M •Z 4n , F = M • [0, 1) 4n , ∆ = M • (Q ∩ [0, 1)) 4n and F = ∆ = M • [0, 1] 4n
. Now, as in the totally real number field case (see [START_REF] Cerri | Euclidean minima of totally real number fields: Algorithmic determination[END_REF]) we consider a cutting-covering of F = ∆ using parallelotopes whose faces are orthogonal to the canonical axes of R 4n . These parallelotopes P are of the form ( 15)

P = {(u l ) 1≤l≤4n ∈ R 4n ; |u l -C l | ≤ h l },
where C = (C l ) 1≤l≤4n is the center of the parallelotope and 0 < h l for every l.

The way we obtain a cutting-covering of F is similar to the way we proceed in the totally real number field case, so we refer to [START_REF] Cerri | Euclidean minima of totally real number fields: Algorithmic determination[END_REF] for details. The structure of the algorithm is also the same. Let us recall its general strategy and explain where differences occur. Assume that we have an idea of M (Λ) denoted k. Suppose that we have at our disposal a set X of elements of R, and let us take a small ǫ > 0. Definition 4.1. A subset of R 4n will be said to be absorbed by X ∈ X , if it is contained in the region defined by the inequality N R (x -X) ≤ k -ǫ.

The computations are organized as described in Algorithm 2. 4.2. The absorption test. Let P be a parallelotope defined as in [START_REF] Vignéras | Arithmétique des algèbres de quaternions[END_REF] and X be some element of R. Since for t ∈ R 4n we have

N R (t) = n i=1 (t 2 i -σ i (a)t 2 i+n -σ i (b)t 2 i+2n + σ i (ab)t 2 i+3n ),
where for every i, σ ( a), σ i (b) < 0, we see that P is absorbed by X if (16)

n i=1 A i (P, X) ≤ k -ǫ.
where

A i (P, X) = |C i -X i | + h i 2 -σ i (a) |C i+n -X i+n | + h i+n 2 -σ i (b) |C i+2n -X i+2n | + h i+2n 2 +σ i (ab) |C i+3n -X i+3n | + h i+3n 2 .
where for every i,

ν i ∈ Z ∩ [⌊α i ⌋, ⌊β i ⌋], α i = 4n j=1 m ′ i,j (C ′ j -δ i,j h ′ j ), β i = 4n j=1 m ′ i,j (C ′ j + δ i,j h ′ j
) and δ i,j = 1 or -1 according to whether m ′ i,j > 0 or not. Remark that X 0 satisfies (17) and denote by X 0 , X 1 , . . . , X g (g ≥ 0) all the elements of R satisfying (17). As in [START_REF] Cerri | Euclidean minima of totally real number fields: Algorithmic determination[END_REF], if for all j (0 ≤ j ≤ g) we have for all p ∈ {1, . . . , N }, there exists i p ∈ {1, . . . n} and k ∈ {0, . . . , 3} such that |(C ′′ -X j -D p ) ip+kn | > 1 + |σ ip (ε)| h ip+kn , then P can be eliminated from the list of problematic parallelotopes. 4.4. Termination without failure. It can be shown, using arguments similar to those that are used in [START_REF] Bayer | Euclidean minima and central division algebras[END_REF][START_REF] Chaubert | Minimum euclidien des ordres maximaux dans les algèbres centrales à division[END_REF][START_REF] Cerri | Spectres euclidiens et inhomogènes des corps de nombres[END_REF] (see in particular [START_REF] Cerri | Spectres euclidiens et inhomogènes des corps de nombres[END_REF]Proposition 4.25]), that the algorithm terminates as soon as n > 2 for a good choice of k and a sufficiently thin initial cutting-covering. But, in the case n = 2, which is the only case that we can treat with our computers, nothing can be said a priori.

5.

The algorithm, technical aspect 5.1. Symmetry and fundamental domain. For any x ∈ R 4n , we have mΛ (x) = mΛ (-x). Therefore, we can restrict our calculation to one half of F in Step 3 of Algorithm 2. Nevertheless, the symmetry should be kept in mind for the remainder of the algorithm (e.g. for Step 4, we should take it into account for G).

Some problematic parallelotopes can lie on the boundary of the fundamental domain, which may add unnecessary vertices to the digraph, making it non convenient. To tackle this issue, we change the fundamental domain by translating the problematic parallelotopes or the fundamental domain itself (which is equivalent anyway). For more details, see [4, Section 5.7.2]. 5.2. Initial value of k. Algorithm 2 requires an initial value of k in Step 2. For the algorithm to be successful, we need k ≤ M (Λ). If every parallelotope is eliminated by the absorption of integers or the action of units, then M (Λ) < k and we can start again with smaller k.

We observe that the points x ∈ F such that M (Λ) = m Λ (x) have a "small" orbit under the action of units. Therefore, if we denote by ε a unit of K which is not a root of unity, then ε ℓ x -x ∈ Λ for some "small" ℓ ∈ Z >0 . In other words, there exist some a ∈ Λ and some "small" ℓ ∈ Z >0 such that x = a ε ℓ -1 .

We may study such points and apply Algorithm 1 to find their minimum m Λ (x). This can provide a lower bound on M (Λ). This heuristic can turn out to be non applicable when N K/Q (ε ℓ -1) is large. Instead, we can simply consider points

x = a b ,
where b is a factor of ε ℓ -1 of small norm.

5.3.

Analysis of the digraph. In Step 6 of Algorithm 2, we try to apply Theorem 3.2, that is to say to obtain a convenient graph. This digraph may be not convenient, but we can try to simplify it to make it convenient, as in [11, Section 3.2.2]. The basic idea is to merge parallelotopes which have the same translation vector. For example, in Figure 1c, we can merge T 1 , T 2 , and T 3 to make the digraph convenient.

Execution of Algorithm 1.

Once we have a convenient digraph, it remains to apply Algorithm 1 to a finite set of points. This algorithm is described with elements of R 4n , which would suggest using floating point numbers, but it actually deals with elements of F . Consequently, the orbit is computed as a subset of the quaternion field F in Step 1.

In practice, we compute the orbit of x = Φ(ξ) ∈ Φ(F ), where ξ ∈ F as follows. Let {ε i , 1 ≤ i < n} be a fundamental system of units of K. For fixed 1 ≤ i < n and for increasing k ≥ 1, we compute the elements

ε k i • ξ reduced modulo Λ, which is denoted by ε k i • ξ red , until ε k i • ξ red = ξ
red , which happens for some finite m i ≥ 1.

Then the orbit of x is the image by Φ of the set

   ± n-1 i=1 ε ki i • ξ red red , 0 ≤ k j < m j for any 1 ≤ j < n    ,
where repetitions are discarded. As for Steps 2 and 6, to compute M k ′ or M k , we deal with quantities N R (z -Z) (see [START_REF] Barnes | The inhomogeneous minima of binary quadratic forms (II)[END_REF]) which are in fact rational numbers.Therefore, during the actual execution of the algorithm we can compute exactly these numbers and the output of Algorithm 2 is a rational number (whenever its execution is successful).

Results

6.

1. An example. Let us introduce this section with an example. We know by [START_REF] Bayer | Euclidean minima and central division algebras[END_REF] 

that if K = Q( √ 2), F = -1, -1 K and Λ is a maximal order of F , then M (Λ) ≤ 1 2 .
Let us consider the maximal order

Λ = Z K ⊕ Z K √ 2(1 + i) 2 ⊕ Z K √ 2(1 + j) 2 ⊕ Z K 1 + i + j + k 2 .
Since there exist elements λ ∈ Λ satisfying N (λ) = 2 which implies m Λ ( 1 λ ) = 1 2 , we know that M (Λ) ≥ 1 2 . Consequently we have

M (Λ) = 1 2 .
Now, let us come back to our algorithm. A Z-basis of Λ is for instance

1, √ 2, √ 2 2 (1 + i), 1 + i, √ 2 2 (1 + j), 1 + j, 1 2 (1 
+ i + j + k), √ 2 2 (1 
+ i + j + k)
and, according to this choice of basis, the matrix of the fundamental embedding is

M =              1 √ 2 √ 2/2 1 √ 2/2 1 1/2 √ 2/2 1 - √ 2 - √ 2/2 1 - √ 2/2 1 1/2 - √ 2/2 0 0 √ 2/2 1 0 0 1/2 √ 2/2 0 0 - √ 2/2 1 0 0 1/2 - √ 2/2 0 0 0 0 √ 2/2 1 1/2 √ 2/2 0 0 0 0 - √ 2/2 1 1/2 - √ 2/2 0 0 0 0 0 0 1/2 √ 2/2 0 0 0 0 0 0 1/2 - √ 2/2              .
We use the following cutting-covering of F: if a l = min{x l ; x ∈ F } and b l = max{x l ; x ∈ F} for every 1 ≤ l ≤ 8, we put h l = (b l -a l )/2n l where n 1 = n 2 = 70, n 3 = n 4 = n 5 = n 6 = 30, n 7 = n 8 = 12 and we cover F with parallelotopes P as in [START_REF] Vignéras | Arithmétique des algèbres de quaternions[END_REF] where for every l, C l = a l + (2i l + 1)h l for some 0 ≤ i l ≤ n l -1. Of course, as in the number field case, we only consider parallelotopes that intersect F . Running Algorithm 2 with k = 1/2, X = M • ([-2, 3] ∩ Z) 8 , after four loops of Steps 3, 4, and 5, we finally obtain a convenient digraph composed of nine disjointed simple circuits whose length is 1. This leads to E = {t i = Φ(ξ i ); 1 ≤ i ≤ 9} where 2 j. This leads to M (Λ) = 1/2 as expected.

Of course, and this is the interest of the algorithm, in general we do not have any theoretic argument that allows to establish the value of M (Λ) as in the previous example.

6.2. Some other results. Table 1 gives some of the results that we have obtained. More extensive tables are available from [START_REF] Cerri | Tables of Euclidean minima of orders in totally definite quaternion fields over quadratic fields[END_REF]. In this table, K is a number field, F is a quaternion field and Λ is an order of F . For brevity, the order Λ is described by a quadruple (q 1 , q 2 , q 3 , q 4 ) ∈ F 4 such that Λ = ⊕ 4 i=1 q i Z K , which is always possible in the cases that we have studied. The column Max indicates if Λ is maximal or not (maximal orders were obtained with [START_REF]Handbook of Magma functions[END_REF]), T is the number of critical points in Φ(F ) modulo R = Φ(Λ) and M (Λ) is the Euclidean minimum of Λ. 6.3. Timings. The time required to execute Algorithm 2 obviously depends on the choice of parameters. Indeed, if we choose k > 0 strictly larger than M (Λ), then we will have to start again with a smaller value of k. The timings presented here are for a choice of k smaller than M (K), typically k = M (Λ) -ǫ, where ǫ = 10 -4 .

In Table 2, the orders are the maximal orders corresponding to the quaternion field given in Table 1. It should be noted that no particular efficiency was pursued for Step 6 because it turned out to be short enough in the examples considered.

The times given are total computation times (cpu times). The computations were carried out on an Intel Xeon E5-2680 (2.50GHz) processor with 24 cores. 

d F Λ Max T M (Λ) Q( √ 2) -1, -1 K 1, √ 2(1+i) 2 , √ 2 

Table 1 .

 1 Euclidean minima of some quaternion fields.

										(1+j) 2	,	yes	9	1/2
										1+i+j+k
											2
	-1, -1 K -3, -√ 2 -2 K		(1, i, j, k) 1, 1+i 2 , j, j+k 2	no yes 36 1	4 41 16
	Q( √ 3)	-1, -1 K	1, 1+i 2 ( √ 3 + 1), 1+j 2 ( √ 3 + 1), 1+i+j+k 2	yes	9	1
		-1, -1 K	1, i,	√	3+j 2 ,	√ 3i-k 2	yes	9	1
	Q( √ 5)	-1, -1 K	1, i, 1+	√ 5+(3+ 4	√	5)i+2j	,	yes	3	1/4
										1+i+j+k
											2
	-1,	√ 5 -7 K	1, i,	√ 5+3 4 (1 + i) + j 2 , √ 5+3 4	+ k 2	yes	6	9/4
	Q( √ 13)	-1, -1 K	1, i, 3+	√ 13 4	+ (5+	√ 13)i 4	yes 24	3/4
								+ j 2 , 1+i+j+k 2
	F		time for loops of			time for	total time
			absorption and units		tests
				(Steps 3 to 5)			(Step 6)
	-1, -1 Q( √ 2) -1, -√ 5 -7 Q( √ 5)			24h16min 7h19min					44min 5 min	25h2min 7h25min
	-1, -1 Q( √ 13)			9d12h36min				1d2h41min	10d15h21min

Table 2 .

 2 Some timings for Algorithm 2.Experiments presented in this paper were carried out using the PLAFRIM experimental testbed, being developed under the Inria PlaFRIM development action with support from Bordeaux INP, LABRI and IMB and other entities: Conseil Régional d'Aquitaine, Université de Bordeaux and CNRS, and ANR in accordance to the "programme d'investissements d'Avenir" (see http://www.plafrim.fr).
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Algorithm 2: Computation of M (Λ)

Input: Λ, order of quaternion field F over K.

Output: M (Λ) or failure. 1 Cover F with parallelotopes as described above.

2 Choose k > 0, choose a list X of small elements of R: for instance, X ∈ X iff X = M T where T ∈ Z 4n and -B ≤ T i ≤ B + 1 for some bound B ≥ 0 Moreover, the upper bound used in ( 16) is optimal because there exists a vertex S of P which satisfies N R (S -X) = n i=1 A i (P, X).

4.3.

The units test. Let ε = ±1 be the unit of Z K used for this test. Write {P 1 , . . . , P N } for the set of problematic parallelotopes remaining after Step 3, and for every p ∈ {1, . . . , N }, let us denote by D p the center of P p . Let P be one of these parallelotopes, centered in C:

Then ε ⋆ P is a parallelotope centered in C ′′ where C ′′ i+kn = σ i (ε)C i+kn for 1 ≤ i ≤ n and 0 ≤ k ≤ 3 and whose faces are also orthogonal to the canonical axes of R 4n . More precisely

. We first determine a list of elements of R containing all the X ∈ R such that ε ⋆ P -X meets F . Using the same argument as in [START_REF] Cerri | Euclidean minima of totally real number fields: Algorithmic determination[END_REF] we see that such an X is of the form (17) X = X 0 + M (ν 1 , . . . , ν 4n ),