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COMPUTATION OF EUCLIDEAN MINIMA IN TOTALLY

DEFINITE QUATERNION FIELDS

JEAN-PAUL CERRI AND PIERRE LEZOWSKI

Abstract. We describe an algorithm that allows to compute the Eu-
clidean minimum (for the norm form) of any order of a totally definite
quaternion field over a number field K of degree strictly greater than 1.
Our approach is a generalization of previous work dealing with number
fields. The algorithm was practically implemented when K has degree
2.

1. Introduction

If K is a number field, we denote by n its degree, by ZK its ring of
integers, by Z×

K its unit group, and by NK/Q : K → Q the norm form.
Throughout this paper F will be a totally definite quaternion field over a
number field K. Let us recall the relevant definitions, the reader may refer
to [9, 13, 15] for a complete theory. Let F be a quaternion algebra over a
number field K, i.e. a 4-dimensional algebra over K with basis (1, i, j, k)
such that i2 = a, j2 = b and k = ij = −ji, where a, b are non-zero elements

of K. This algebra is denoted by

(
a, b

K

)
. Let w = x+yi+zj+tk ∈ F , where

x, y, z, t ∈ K. We denote by w the image of w under the canonical involution
of F , which is defined by w = x − yi − zj − tk, and by nrdF/K(w) = ww
its reduced norm. The algebra F is a division algebra if and only if the
quadratic form nrdF/K(x+ yi+ zj + tk) = x2 − ay2 − bz2 + abt2 represents
zero on K only trivially. In this case, we say that F is a quaternion field.

In addition, we will suppose that F is totally definite, or equivalently
that every infinite place of K is ramified in F . This implies in particular
that K is totally real, that a and b are totally negative and that for every
x ∈ F \ {0}, nrdF/K(x) is totally positive. Let us denote by N : F −→ Q≥0

the reduced norm map defined by N = NK/Q ◦ nrdF/K .

Definition 1.1. Let Λ be an order of F . For any ξ ∈ F , we set

mΛ(ξ) = inf
λ∈Λ

N(ξ − λ)

and we call it the local Euclidean minimum of Λ at ξ. We define the Eu-
clidean minimum of Λ by

M(Λ) = sup
ξ∈F

mΛ(ξ).
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Set FR = F ⊗Q R and let NR : FR → R≥0 be the extended norm corre-
sponding to N .

Definition 1.2. Let Λ be an order of F . For any x ∈ FR, we set

m̃Λ(x) = inf
λ∈Λ

NR(x− λ)

and we call it the local inhomogeneous minimum of Λ at x. We define the
inhomogeneous minimum of Λ by

M̃(Λ) = sup
x∈FR

m̃Λ(x).

Let us notice that these suprema are well-defined positive real numbers,

that M(Λ) ≤ M̃(Λ) and that for every ξ ∈ F there exists a λ ∈ Λ such that
mΛ(ξ) = N(ξ − λ) (see [8, 2]). Let us call (P ) the following property: there

exists some ξ ∈ F such that mΛ(ξ) = M̃(Λ). In particular, if (P ) holds,

then M(Λ) = M̃(Λ) ∈ Q. Recall that we have the following results:

• The order Λ is right-norm-Euclidean if and only if it is left-norm-
Euclidean (so that we can speak of norm-Euclidean orders) and that
in this case Λ is necessarily a maximal order of F ;

• If M(Λ) < 1 then Λ is norm-Euclidean;
• If M(Λ) > 1 then Λ is neither right neither left-norm-Euclidean;
• If M(Λ) = 1 and if property (P ) is satisfied then Λ is neither right

neither left-norm-Euclidean;
• If Λ is norm-Euclidean, then every other maximal order Λ′ of F is

also norm-Euclidean and M(Λ) = M(Λ′)
• If K has unit rank strictly greater than 1, i.e. n > 2 if K is totally

real, then (P ) holds.

Note that these results still hold when F is not totally definite. For more
details, the reader can refer to [8, 2, 6].

A first natural question arises: what can be said when the degree of K
is 1 or 2, i.e. when K = Q or is a real quadratic field? Do we also have

M(Λ) = M̃(Λ) or does property (P ) hold? We will answer to this question
in Section 2, showing that the equality is always satisfied and that property
(P ) holds when K = Q. Showing that it also holds when K is quadratic
seems out of reach, as in the number field case, which is a famous conjecture
due to Barnes and Swinnerton-Dyer.

As in the number field case (see [4, 11]), it is also natural to ask whether

it is possible to use an algorithm allowing to compute M(Λ) = M̃(Λ) and to
check that property (P ) is satisfied, even in the conjectural case. We will see
that such an algorithm is already well known when K = Q so that we have
just to study the case where K has degree at least 2. Note also that, as in
the number field case, such an algorithm might allow to determine the upper
part of the so called inhomogeneous spectrum associated to Λ. The paper
is organized as follows. In Section 2, we recall what we know when n = 1

and we establish some preliminary results allowing to prove M(Λ) = M̃(Λ)
when n = 2, and that we will use later in the algorithm. In Section 3,
we explain the ideas that will be used in the algorithm when n ≥ 2. In
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Section 4, we describe the algorithm itself (Algorithm 2); in Section 5, we
give technical details of the algorithm, and finally, in Section 6 we give the
results obtained when K is quadratic, the only case that we can treat with
the computers that we used.

2. Preliminary results

2.1. The fundamental embedding. Let F =

(
a, b

K

)
be a totally definite

quaternion field over a number field K and let Λ be an order of F . Let us
denote by σ1, . . . , σn the n embeddings of K into R. Now, let us embed F
into R4n in the following way: if ξ = α+βi+γj+δk ∈ F where α, β, γ, δ ∈ K,
we put

Φ(ξ) =
(
σ1(α), . . . , σn(α), σ1(β), . . . , σn(β), σ1(γ), . . . , σn(γ),

σ1(δ), . . . , σn(δ)
)
,

and in further computations we see this vector as a column vector.
Then Φ(Λ) is a lattice of R4n that will be denoted by R. Identifying FR

with R4n, if x ∈ R4n we put

NR(x) =

n∏

l=1

nrdl(x)

where nrdl(x) = x2
l −σl(a)x

2
l+n−σl(b)x

2
l+2n+σl(ab)x

2
l+3n. With this notation,

if ξ ∈ F and x ∈ R4n, we have

• nrdl(Φ(ξ)) = σl(nrdF/K(ξ)) for every l;
• N(ξ) = NR(Φ(ξ));
• m̃Λ(x) = infλ∈Λ NR(x− Φ(λ));
• mΛ(ξ) = m̃Λ(Φ(ξ)).

The multiplicative group K \ {0} acts on R4n in the following way. If α ∈
K \ {0} and x ∈ R4n we put

α ⋆ x = (σ1(α)x1, . . . , σn(α)xn, . . . , σ1(α)x3n+1, . . . , σn(α)x4n).

Hence, if ξ ∈ F we have α ⋆ Φ(ξ) = Φ(αξ). Moreover, if ν ∈ Z×
K , then

ν ⋆R = R, and if x ∈ R4n, then NR(ν ⋆ x) = NR(x). This implies that that
for every x ∈ R4n and every ν ∈ Z×

K , we have m̃Λ(ν ⋆ x) = m̃Λ(x).

Remark 1. Since m̃Λ is R-periodic, we have m̃Λ(ν ⋆ x+ Φ(λ)) = m̃Λ(x) for
every (x, ν, λ) ∈ R4n × Z×

K × Λ.

Recall that m̃Λ is not only R-periodic, but also upper semi-continuous.

These two properties imply that there exists an x ∈ R4n such that M̃(Λ) =
m̃Λ(x). Such an x will be called critical.

2.2. The case n = 1. Here K = Q, a, b ∈ Q<0 and we can write

Λ = ⊕4
l=1(al,1 + al,2i+ al,3j + al,4k)Z,

where al,i ∈ Q for every 1 ≤ l, i ≤ 4 and where the matrix M = (al,i) is
invertible. We also have F = ⊕4

l=1(al,1 + al,2i+ al,3j + al,4k)Q = Q ⊕Qi ⊕
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Qj⊕Qk. With our notation, R is the lattice M tZ4 ⊂ Q4 and Φ(F ) = M tQ4.
Let x ∈ R4 and let us put x = M ty. Then m̃Λ(x) = infX∈Z4 q(M t(y −X))
where q(z) = z21 − az22 − bz23 + abz24 which is equivalent to

m̃Λ(x) = inf
X∈Z4

‖SM t(y −X)‖2

where ‖ · ‖ is the usual Euclidean norm and S =




1 0 0 0
0

√
−a 0 0

0 0
√
−b 0

0 0 0
√
ab


.

As a consequence M̃(Λ) is the square of the covering radius of the lattice L =

SM tZ4 ⊂ R4 and if x ∈ R4 is a critical point, i.e. satisfies m̃Λ(x) = M̃(Λ),
then ‖OP‖, where O = (0, 0, 0, 0) and P = Sx = SM ty, is the covering
radius of L. Let A and B be two points of L and let us put A = SM tα,
B = SM tβ where α, β ∈ Z4. Then the mediator hyperplane of A and B
is the set of z = SM tr such that 〈SM t(r − α+β

2
), SM t(α − β)〉 = 0, i.e.

〈r − α+β
2
,MS2M t(α − β)〉 = 0, where 〈· , ·〉 is the usual Euclidean scalar

product. Note that α+β
2
,MS2M t(α − β) ∈ Q4. Now, the point P = SM ty

belongs to 4 independent such mediator hyperplanes and the yi satisfy 4
independent linear equations with rational coefficients, so that y ∈ Q4.
From this we deduce that x = M ty ∈ Φ(F ). This implies that property (P )

is satisfied and that M(Λ) = M̃(Λ) ∈ Q.
Let us conclude by noting that there exist well known algorithms to compute

the covering radius of L (see [10, 14]) and then M̃(Λ) = M(Λ), so that the
case n = 1 is completely settled.

2.3. Computation of mΛ(ξ). From now on, we suppose that n ≥ 2. We
are interested in computing mΛ(ξ) where ξ ∈ F . We will rely on it for the
actual computation of M(Λ) later on.
Let (εi)1≤i≤n−1 be a fundamental system of units of K. We denote by L the
logarithmic embedding of K \ {0} in Rn defined by

L(α) = (ln |σ1(α)|, . . . , ln |σn(α)|).
We know that L(Z×

K) is a lattice of the hyperplane H of Rn defined by the
equation

∑
1≤i≤n xi = 0, which admits (L(εi))1≤i≤n−1 as a Z-basis and that

the kernel of L is {±1}. For 1 ≤ i ≤ n we set

Γi =

n−1∏

j=1

max
{
|σi(εj)|,

1

|σi(εj)|
}
.

Lemma 2.1. Units of K have the following properties.

(i) Let l ∈ {1, . . . , n}. There exists a ν ∈ Z×
K such that |σi(ν)| < 1 for

every i 6= l.
(ii) If c1, . . . , cn−1 are given positive real numbers, there exists a ν ∈ Z×

K

such that ci ≤ σi(ν)
2 ≤ ciΓ

2
i for all i ∈ {1, . . . , n− 1}.

Proof. (i) L(Z×
K) being a lattice of H, it is easy to see that H∩{x ∈ Rn; xl >

0 and xi < 0 for i 6= l}, which is a nonempty open cone of H, contains an
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element L(ν) of L(Z×
K).

(ii) This a consequence of [4, Lemma 3.1]. See also [5, Lemma 2.1] for a
detailed proof. �

Proposition 2.2. Let k > 0. Suppose that x ∈ R4n and X ∈ R satisfy
NR(x − X) < k. Then there exist an ε ∈ Z×

K and some Y ∈ R such that
y = ε ⋆ x− Y satisfies NR(y) < k and

0 ≤ nrdi(y) ≤ Γ(k),

where

Γ(k) =

(
k

n−1∏

i=1

Γ2
i

) 1

n

.

Proof. First, if NR(x−X) = 0 we have nrdl(x−X) = 0 for some index l. By
Lemma 2.1 (i), there exists a ν ∈ Z×

K such that |σi(ν)| < 1 for every i 6= l.
Since nrdi(ν

p ⋆ x− νp ⋆ X) = σi(ν)
2pnrdi(x−X), for p sufficiently large we

have nrdi(ν
p ⋆ x − νp ⋆ X) ≤ Γ(k) for i 6= l and nrdl(ν

p ⋆ x − νp ⋆ X) = 0.
Taking ε = νp and Y = ν ⋆ X, we obtain the result announced.

Now, if NR(x−X) 6= 0, we apply Lemma 2.1 (ii) with ci =
Γ(k)

Γ2
inrdi(x−X)

for 1 ≤ i ≤ n− 1. There exists a ν ∈ Z×
K such that

Γ(k)

Γ2
inrdi(x−X)

≤ σi(ν)
2 ≤ Γ(k)

nrdi(x−X)
for 1 ≤ i ≤ n− 1.

From NR(ν⋆x−ν⋆X) = NR(x−X) = σn(ν)
2nrdn(x−X)

∏n−1
i=1 σi(ν)

2nrdi(x−
X) we deduce

σn(ν)
2nrdn(x−X) ≤ k

∏n−1
i=1 Γ2

i

Γ(k)n−1
= Γ(k).

Taking ε = ν and Y = ν ⋆ X we have again the result announced. �

Now, consider the orbits of elements of R4n under the action of Z×
K . Let

x, y ∈ R4n and ν ∈ Z×
K . As x − y ∈ R ⇒ ν ⋆ x − ν ⋆ y ∈ R, the group

Z×
K also acts on R4n/R by (ν, x) 7→ ν ⋆ x, where y is the class of y ∈ R4n

modulo R. Let F be a fundamental domain of R. Identifying R4n/R with
F , if xν is the unique element of F congruent to ν ⋆ x modulo R, we set
Orb(x) = {xν ; ν ∈ Z×

K}. Remark that for all x ∈ R4n, if z ∈ Orb(x) we have
m̃Λ(z) = m̃Λ(x). Using this new notation, we have the following essential
result.

Theorem 2.3. There exists a finite set Ω ⊂ R such that for every x ∈ R4n,
we have

m̃Λ(x) = inf
z∈Orb(x)

(
min
Z∈Ω

NR(z − Z)
)
.

Proof. Let k′ be any positive real number satisfying k′ > M̃(Λ) and let

ǫ > 0 such that M̃(Λ) + ǫ < k′. Let

Ω′ = {t ∈ R4n; nrdi(t) ≤ Γ(k′) for every 1 ≤ i ≤ n}.
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Since for every i,

nrdi(t) = t2i − σi(a)t
2
i+n − σi(b)t

2
i+2n + σi(ab)t

2
i+3n,

where σi(a), σi(b) < 0, we see that Ω′ is a bounded subset of R4n. Now, let
us put

Ω = (F + Ω′) ∩R.

As Ω′ + F is also bounded, the set Ω is a finite subset of R. Let x ∈ R4n.

There exists some X ∈ R such that NR(x−X) < m̃Λ(x)+ǫ ≤ M̃(Λ)+ǫ < k′.
Applying Proposition 2.2 with k = m̃Λ(x)+ ǫ, we see that there exists a ν ∈
Z×
K and some Y ∈ R such that, if y = ν⋆x−Y , then NR(y) < m̃Λ(x)+ǫ < k′

and nrdi(y) ≤ Γ(m̃Λ(x) + ǫ) ≤ Γ(k′) (because Γ is an increasing function).
Let z ∈ F such that z − y ∈ R. Then, z ∈ Orb(x) and y = z − Z, where
Z ∈ Ω and NR(z−Z) < m̃Λ(x) + ǫ. Since this is true for any ǫ > 0 we have

m̃Λ(x) ≥ inf
z∈Orb(x)

(
min
Z∈Ω

NR(z − Z)
)
.

On the other hand, for every z ∈ Orb(x) and any Z ∈ R, we have m̃Λ(x) =
m̃Λ(z) ≤ NR(z − Z), which leads to the equality. �

Remark 2. This result shows that if x ∈ Φ(F ), we can compute m̃Λ(x) in
a finite number of steps. In fact, Orb(x) is finite if and only x ∈ Φ(F ).
Indeed, if x ∈ Φ(F ) we can write x = X/d where X ∈ R and d ∈ Z>0, and
Orb(x) can be identified with a subset of R/dR which is finite. Conversely,
if Orb(x) is finite and if ν is a nontorsion unit of K, considering the sequence
(xνp)p≥0, we see that there exists k > l ≥ 0 such that xνk = xνl. This implies
that there exists an X = Φ(λ) ∈ R, with λ ∈ Λ, such that (νk−νl)⋆x = X
which implies x = Φ(λ/(νk − νl)) ∈ Φ(F ).
As in the number field case, this allows to establish an algorithm to compute
m̃Λ(x).
We could use the formula for Ω in the proof of Theorem 2.3 but we do not

know M̃(Λ), so we cannot compute Ω. However, we can proceed as follows.
Let us take some k′ > 0 and set Ωk′ = Ω as defined in the previous proof.
Let us put

(1) Mk′ = min
z∈Orb(x)

(
min
Z∈Ωk′

(
NR(z − Z)

))
.

Then

Mk′ ≤ k′ ⇒ m̃Λ(x) = Mk′.

Of course, m̃Λ(x) ≤ Mk′. Suppose that m̃Λ(x) < Mk′ so that there ex-
ists some X ∈ R such that NR(x − X) < Mk′. Then by Proposition 2.2
there exists a ν ∈ Z×

K and some Y ∈ R such that if y = ν ⋆ x − Y , then
NR(y) < Mk′ and nrdi(y) ≤ Γ(Mk′) ≤ Γ(k′) for every i. This contradicts
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the definition of Mk′. Finally, we have the following algorithm to compute
m̃Λ(x).

Algorithm 1: Computation of m̃Λ(x) when x ∈ Φ(F )

Input: x ∈ Φ(F ).
Output: m̃Λ(x).

1 Computation of Orb(x).

2 Computation of k′′ = Mk′ for a k′ > 0.
3 if k′′ ≤ k′ then

4 m̃Λ(x) = k′′

5 else

6 Computation of k = Mk′′.

7 m̃Λ(x) = k.

The correctness of the algorithm follows from the fact that k′ 7−→ Mk′

is a decreasing function: if k′′ > k′ then Mk′′ ≤ Mk′ = k′′ and m̃Λ(x) = Mk′′.

2.4. The case n = 2. Here we use Theorem 2.3 to show that when n = 2,

as in every other case, we have M(Λ) = M̃(Λ).

Theorem 2.4. If n = 2, then M(Λ) = M̃(Λ).

Proof. We follow the idea of the proof given by Barnes and Swinnerton-Dyer
in the real quadratic number field case [1]. Let K = Q(

√
d), where d > 1 is

a squarefree integer. Denote by σ the nontrivial embedding of K into R, i.e.
the Q-automorphism of K such that σ(

√
d) = −

√
d. Let ν be a fundamental

unit of K. We can suppose ν > 1 so that |σ(ν)| < 1. Let ǫ > 0. Keep the
notation of the proof of Theorem 2.3. The map NR being continuous, let
ǫ′ > 0 such that for every x, y ∈ F +Ω+ {z ∈ R4n; |zi| < 1 for all i}, which
is a bounded set, if |xi − yi| < ǫ′ for every i, then |NR(x) − NR(y)| < ǫ.

Choose ǫ′ < 1. Let x ∈ R8 such that m̃Λ(x) = M̃(Λ). If x ∈ Φ(F ) we are
done, so that we can suppose x 6∈ Φ(F ). The set {xνp; p ≥ 0} ⊂ F is
infinite and bounded , and there exist n2 > n1 ≥ 0 such that for every i,
|(xνn2 )i−(xνn1 )i| < ǫ′/2. Without loss of generality we can suppose νn2−n1 >
2. We have νn2−n1 ⋆ xνn1 = xνn2 +X where X ∈ R. Let us put X = Φ(λ)
with λ ∈ Λ. Set

ξ =
λ

νn2−n1 − 1
∈ F and α = Φ(ξ) ∈ Φ(F ).

Since νn2−n1 ⋆ α = α mod R, we have

Orb(α) =

n2−n1−1⋃

k=0

{ανk , α−νk} ⊂ F .

It is easy to see that

αi =





(xνn1 )i +
(xνn1 )i − (xνn2 )i

νn2−n1 − 1
for i odd,

(xνn1 )i +
(xνn1 )i − (xνn2 )i
σ(ν)n2−n1 − 1

for i even.
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Since |(xνn1 )i − (xνn2 )i| < ǫ′/2 and νn2−n1 > 2, this implies that

|αi − (xνn1 )i| <
ǫ′

νn2−n1

for i odd,

and |αi − (xνn1 )i| < ǫ′ for i even.

Consequently for every 0 ≤ k < n2 − n1, we have

(2) |(νk ⋆ α)i − (νk ⋆ xνn1 )i| < ǫ′ for all i.

Now, for every 0 ≤ k < n2 − n1, ν
k ⋆ α = ανk + Xk where Xk ∈ R. Let

X ∈ Ω. Then for every i, we have

|(ανk −X)i − (νk ⋆ xνn1 −Xk −X)i| < ǫ′.

But ανk − X ∈ F + Ω and since ǫ′ < 1, we have νk ⋆ xνn1 − Xk − X ∈
F + Ω + {z ∈ R4n; |zi| < 1 for all i}. By choice of ǫ′ this implies that for
every 0 ≤ k < n2 − n1,

(3) |NR(ανk −X)−NR(ν
k ⋆ xνn1 −Xk −X)| < ǫ.

Now inequality (2) shows that for every 0 ≤ k < n2 − n1,

|(−νk ⋆ α)i − (−νk ⋆ xνn1 )i| < ǫ′ for all i.

Putting −νk ⋆ α = α−νk + Yk where Yk ∈ R for 0 ≤ k < n2 − n1, we obtain
in the same way that for every x ∈ Ω and every 0 ≤ k < n2 − n1,

(4) |NR(α−νk −X)−NR(−νk ⋆ xνn1 − Yk −X)| < ǫ.

Thus, by (3) and (4), for every y ∈ Orb(α) and every X ∈ Ω,

NR(y −X) > NR(z − Z)− ǫ

for some z ∈ Orb(xνn1 ) and Z ∈ R. We deduce from Theorem 2.3 that

m̃Λ(α) > m̃Λ(xνn1 )− ǫ = m̃Λ(x)− ǫ = M̃(Λ)− ǫ.

Since for every ǫ > 0, there exists some α ∈ Φ(F ) such that m̃Λ(α) >

M̃(Λ)− ǫ, we have necessarily M(Λ) = M̃(Λ). �

Remark 3. The second part of our proof does not follow [1] because the
third “equation” of [1, p. 313] is incorrect.

Corollary 2.5. In all cases, we have M(Λ) = M̃(Λ).

Proof. By [2], the equality holds when n > 2, and by Subsection 2.2, it also
holds when n = 1. Of course, in both cases we have a better result since
property (P ) holds. �

3. Theoretic argumentation

3.1. Overview of the strategy. Now, it is time to set out the ideas which

are behind the algorithm used to compute M(Λ) = M̃(Λ) when n ≥ 2. The
strategy is the same as in the number field case.

To simplify things we assume that we have an idea of the exact value
of M(Λ). We shall see later how one can find a good candidate for the
Euclidean minimum. From now on, we denote by k our guess of M(Λ).
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In fact, instead of proving the equality M(Λ) = k, we shall establish the
stronger and more precise result:

M̃(Λ) ≤ k and there exists a ξ ∈ F such that mΛ(ξ) = k.

It will clearly follow that M(Λ) = M̃(Λ) = k. Moreover, we shall try to find
all the critical points which belong to F .

Since m̃Λ is R-periodic, it is sufficient to work on a fundamental domain
F of R, i.e. to prove that for all x ∈ F , m̃Λ(x) ≤ k, and to find all the
ξ ∈ F such that Φ(ξ) ∈ F and mΛ(ξ) = k (every solution to mΛ(ξ) = k will
be of this form modulo Λ).

Let k′ be a positive number smaller than k. In practice one takes k′ = k−ǫ
where ǫ is a small positive number. Let us consider a finite family of elements
of R, say X , and the regions of R4n centered in the X of X and defined
by the inequations NR(x−X) ≤ k′. Every element x of the subset H of F
covered by these regions satisfies m̃Λ(x) ≤ k′ < k, and since k′ is supposed

smaller than M̃(Λ), “holes” appear in the covering of F by these regions.
These holes contain the potentially critical points of F .

The main idea is then to analyze the action of the unit group Z×
K on

uncovered subsets of F , in the following way. Let T be a hole of F , and ε a
non-torsion unit of K (ε 6= ±1). We look at the possible intersections of ε⋆T
with holes of F modulo R. If ε ⋆T does not intersect any hole of F modulo
R, we know by Remark 1 that for every x of T , we have m̃Λ(x) ≤ k′, so
that T can be eliminated as a subset of F potentially containing a critical
point. The interesting case is when the intersection is nonempty.

Remark 4. Here we have expressed things in terms of holes. In what follows,
we consider “easy” regions larger than holes. For instance, in the algorithm,
holes are replaced by regions composed of small parallelotopes. All what
we need is to have a partition of F in a covered region and in regions
potentially containing critical points. Then we check that these regions have
an exploitable behaviour under the action of Z×

K .

3.2. Theoretic arguments. As in the previous subsection, we consider
k′ > 0 and a subset H of R4n which satisfies m̃Λ(x) ≤ k′ for all x ∈ H. We
consider also a unit ε 6= ±1.

3.2.1. The cyclic case. Let us first study the cyclic situation.

Theorem 3.1. Let T0,. . . , Tj−1 be bounded subsets of R4n (j ≥ 1). Assume
that for all l there is an Υl ∈ Λ such that

(5) (ε ⋆ Tl − Φ(Υl)) \H ⊂ Tl+1,

where the indices in Tr are to be read modulo j. Assume also that there is
an x in T0 which satisfies m̃Λ(x) > k′ and define Ω ∈ Λ by

Ω = εj−1Υ0 + εj−2Υ1 + . . . .+ εΥj−2 +Υj−1.
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Consider the sequence defined by y0 = x and yp+1 = εj ⋆ yp − Φ(Ω) for all
p ≥ 0. Then, if we put

ξ =
Ω

εj − 1
∈ F and t = Φ(ξ),

we have

i) For all i ∈ {1, . . . , n} such that |σi(ε)| > 1 and for all p ≥ 0 and all
k ∈ {0, 1, 2, 3}, (yp)i+kn = ti+kn.

ii) The sequence (yp)p≥0 converges to t.
iii) k′ < m̃Λ(x) ≤ m̃Λ(t).
iv) If x ∈ Φ(F ) then x = t.

Proof. First of all, let us prove that

(6)
(
εj ⋆ T0 − Φ(Ω)

)
\H ⊂ T0.

Put z = εj ⋆ z0 − Φ(Ω) where z0 ∈ T0 and suppose z 6∈ H. Let us define z1,
z2, . . . , zj by the induction formula zp+1 = ε ⋆ zp − Φ(Υp) for 0 ≤ p < j.
It is easy to see that we have zj = z. By Remark 1 we can write

m̃Λ(z) = m̃Λ(zj) = m̃Λ(zj−1) = . . . = m̃Λ(z0) > k′.

Thus for all p ∈ {0, . . . , j} we have zp 6∈ H, and by successive applications
of (5) we get zp ∈ Tp for all p ∈ {0, . . . , j − 1}, and finally z = zj ∈ T0, so
that we have (6).

Now, consider the sequence (yp)p≥0. By Remark 1 we see by induction
that for all p ≥ 0

(7) m̃Λ(yp) = m̃Λ(x) > k′

so that for all p ≥ 0, yp 6∈ H. Then, as y0 = x ∈ T0, using (6) we easily
establish by induction that yp ∈ T0 for all p ≥ 0. Thus, as T0 was assumed
to be bounded, the sequence (yp − t)p≥0 is bounded.

But, by the definition of t and the induction formula which defines
(yp)p≥0, we have yp − t = εjp ⋆ (x− t) for all p ≥ 0, so that
(8)
|(yp)i−ti| = |σi mod n(ε)|jp |xi−ti| for all i ∈ {1, 2, . . . , 4n} and for all p ≥ 0.

Let i ∈ {1, . . . , n}.
If |σi(ε)| > 1, since the sequence (|(yp)i+kn− ti+kn|)p≥0 is bounded for every
k ∈ {0, 1, 2, 3}, we must have xi+kn − ti+kn = 0, and then by (8) we obtain

(9) (yp)i+kn = ti+kn for all k ∈ {0, 1, 2, 3} and for all p ≥ 0.

This is i).
Moreover if |σi(ε)| < 1, then (8) shows that

(10) lim
p→+∞

(yp)i+kn = ti+kn for all k ∈ {0, 1, 2, 3}.

Since |σi(ε)| 6= 1 (otherwise ε = ±1, which is excluded by hypothesis), (9)
and (10) yield

lim
p→+∞

yp = t.



EUCLIDEAN MINIMA IN TOTALLY DEFINITE QUATERNION FIELDS 11

This is ii). Finally, since m̃Λ is upper semi-continuous, by (7), we obtain:

k′ < m̃Λ(x) = lim sup
p→+∞

m̃Λ(yp) ≤ m̃Λ(t),

which gives iii).

Now, assume that x ∈ Φ(F ). Since we cannot have |σi(ε)| ≤ 1 for every
i, there exists an i ∈ {1, . . . , n} such that |σi(ε)| > 1, and by i) (with p = 0)
we have

(11) xi+kn = ti+kn for every k ∈ {0, 1, 2, 3}.
But x and t are both in Φ(F ), and if we write x = α0 + α1i + α2j + α3k,
t = β0 + β1i + β2j + β3k with αj, βj ∈ K for every j, by (11) we have
σi(αj) = σi(βj) for every j. By injectivity of σi, this leads to αj = βj for
every j, so that x = t. �

Remark 5. Obviously the same property holds for T1, T2, . . . , Tj−1, the single
difference is the formula for Ω, in which indices must be trivially permuted.
More precisely, for r ∈ {0, . . . , j − 1}, if we put tr = Φ(ξr) with

ξr =
Ωr

εj − 1
,

and Ωr = εj−1Υr + εj−2Υr+1 + . . .+Υr+j−1,

where the indices are still to be read modulo j, we have the same property
as in Theorem 3.1 for Tr (with tr instead of t). Moreover t0 = t and we have
the cyclic law:

tr+1 = Φ(ε) · tr − Φ(Υr)

for all r ∈ {0, . . . , j − 1}. In particular, all the tr are in Orb(t).

3.2.2. Generalization. Even if Theorem 3.1 allows one to treat some situ-
ations, it is not sufficient, in the form seen above, to cover all the cases
that one meets in practice. A generalization of the previous situation is the
following one.

Let Ti (0 ≤ i ≤ s − 1) be distinct bounded sets of R4n, and T =
{T0, . . . , Ts−1}. Assume that for all Ti in T there exists an Xi ∈ R and
si integers ni,1,. . . ,ni,si (si > 0) such that

(12) (ε ⋆ Ti −Xi) \ H ⊂
⋃

1≤k≤si

Tni,k
.

To simplify notation we shall consider the Ti as the vertices of a directed
graph (from now on digraph) G and represent (12) by si directed edges
(from now on arcs) whose tail is Ti and whose respective heads are the Tni,k

(1 ≤ k ≤ si). Of course, such an arc can be a loop.
We shall write Ti → Tni,k

(Xi) or Ti → Tni,k
, if it is not necessary to precise

Xi.

Example 3.1. Theorem 3.1 corresponds to the digraph

G1 : T0 → T1 (Φ(Υ0)), . . . , Tj−1 → T0 (Φ(Υj−1)).
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To describe paths of G we shall use the notation T ′
1 → T ′

2 → . . . → T ′
k .

The digraph G has the following properties: if T and T ′ are vertices
of G, there is at most one arc whose tail is T and whose head is T ′, and
every vertex of G has a positive outvalency. Obviously the last property
implies that G contains circular paths (or circuits). Consequently, the set C
of simple circuits of G (paths of the form T ′

0 → . . . → T ′
k → T ′

0 , where k ≥ 0
and all the T ′

i are distinct) is nonempty (take a circuit of minimal length)
and is finite (their length cannot exceed s). Each element c of C of length
j is of the form of the circular path met in Theorem 3.1 (and seen above
in G1), T ′

0 → T ′
1 (X

′
0) . . . → T ′

j−1(X
′
j−2) → T ′

0 (X
′
j−1) with X ′

i = Φ(Υi). It
defines, in a unique way, j points of Φ(F ), t0, . . . , tj−1 by the formulae of
Remark 5.

In this context, we say that t0, . . . , tj−1 are associated to c (implicitly
ti corresponds to T ′

i ). The ti are in the same orbit modulo R and satisfy
m̃Λ(t0) = . . . = m̃Λ(tj−1).
Let us denote this rational number by mΛ(c) and put

mΛ(G) = max
c∈C

mΛ(c).

Moreover, let us denote by E the set of all points of Φ(F ) associated to the
elements of C. The set E is finite and we also have

mΛ(G) = max
t∈E

m̃Λ(t).

Finally let us put

E ′ = {t ∈ E such that m̃Λ(t) = mΛ(G)}.
An infinite path of G is an infinite sequence of arcs of G, (Ai)i≥0 such

that the head of Ai is the tail of Ai+1. If Ai is defined by T ′
i → T ′

i+1, we
shall denote the path by (T ′

i )i≥0. Such a path is not simple, but can have a
periodicity property. An infinite path (T ′

i )i≥0 is said to be ultimately periodic
if there exist integers r ≥ 0 and p ≥ 1 such that

(13) for all i ≥ r, T ′
i+p = T ′

i .

Let (T ′
i )i≥0 be an ultimately periodic infinite path. Let P be the set of p ≥ 1

such that there exists an r which satisfies (13). Then P is nonempty and
we can define

ρ = minP ≥ 1.

Then there exists an rρ such that ∀i ≥ rρ, T ′
i+ρ = T ′

i . The integer ρ will be
called the period length of (T ′

i )i≥0 and every circuit T ′
i → . . . → T ′

i+ρ, where
i ≥ rρ, will be called a period of (T ′

i )i≥0

Definition 3.1. We shall say that G is convenient if every infinite path of
G is ultimately periodic.

Convenient digraphs have the following properties. Assume that G is
convenient. Then every circuit is a power of a simple circuit. It can be shown
that this condition implies that G is convenient. Another characterisation of
convenient digraphs could be the following one: two distinct simple circuits
have no common vertex. Assume that G is convenient and let P = (T ′

i )i≥0
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be an infinite path of G. Then, every period of P is a simple circuit (see [4]
for more details).

Example 3.2. G1 is convenient. Figure 1 gives examples of convenient and
not convenient digraphs.

T2

T3 T4

T5 T6

T1

X2

X5

X3

X4

X6

X7

X1

(a) G1 is convenient

T2 T3 T4

T5

X1

X2 X3

X4

X5

X6

(b) G2 is not convenient (X2 6= X3)

T1

T2

T3 T4

T5 T6

X1

X1

X1

X1

X2

X3

X4 X5

X6

(c) G3 is not convenient

T1

T2 T3

T4

T5T6

T7

X1

X2

X3

X4

X5

X6

X7

X9

X10

X8

(d) G4 is convenient

Figure 1. Some digraphs.

Now, we can establish the theorem which will allow us to treat (almost)
all the situations.

Theorem 3.2. Assume that G is convenient and that there exist a T ∈ T
and an x ∈ T such that m̃Λ(x) > k′. Then

i) k′ < m̃Λ(x) ≤ mΛ(G).
ii) If x ∈ Φ(F ), there exists a t ∈ E such that x ≡ t mod R.
iii) If x ∈ Φ(F ) is critical, there exists a t ∈ E ′ such that x ≡ t mod R.

Proof. The proof is exactly the same as the proof of Theorem 4.5 of [4] with
some changes of notation. Let us rephrase it. Put x0 = x and T ′

0 = T . By
(12) we know that there exists X ′

0 ∈ R and s′0 elements of T , denoted by
Tn′

0,k
(1 ≤ k ≤ s′0) such that

(ε ⋆ T ′
0 −X ′

0) \ H ⊂
⋃

1≤k≤s′
0

Tn′

0,k
.

Set x1 = ε ⋆ x0 −X ′
0. Since m̃Λ(x1) = m̃Λ(x0) > k′, we have

x1 ∈ (ε ⋆ T ′
0 −X ′

0) \ H,
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and necessarily, there is an i ∈ {1, . . . , s′0} such that x1 ∈ Tn′

0,i
. We put

T ′
1 = T ′

n′

0,i
, and we continue with x2 = ε ⋆ x1 −X ′

1 where X ′
1 is the element

of R associated to T ′
1 by (12). We see that we can construct by induction a

sequence (xi)i≥0 and an infinite path (T ′
i )i≥0 which satisfy: x0 = x, for all

i ≥ 0, xi+1 = ε ⋆ xi −X ′
i where X ′

i ∈ R and

(14) for all i ≥ 0, xi ∈ T ′
i .

Moreover, by Remark 1, we have m̃Λ(xi) = m̃Λ(x) > k′ for all i.
G being convenient, the infinite path (T ′

i )i≥0 is ultimately periodic. We
denote its period length ρ and we consider one of its periods c, described
by T ′

r → . . . → T ′
r+ρ = T ′

r , which is a simple circuit.
Define T ′′

s = {xr+s+iρ; i ∈ N}, for 0 ≤ s ≤ ρ− 1.
By (14) we have ∀s ∈ {0, . . . , ρ − 1}, T ′′

s ⊂ T ′
r+s. This implies that the T ′′

s

are bounded. Moreover, by construction, for all s there exists Υs ∈ Λ (in
fact Φ−1(X ′

r+s)) such that

ε ⋆ T ′′
s − Φ(Υs)\H = ε ⋆ T ′′

s − Φ(Υs) ⊂ T ′′
s+1

where the indices are to be read modulo ρ. Putting y = xr ∈ T ′′
0 which

satisfies m̃Λ(y) > k′, we see that we are exactly under the hypotheses of
Theorem 3.1 (with y instead of x, T ′′

i instead of Ti and ρ instead of j). This
theorem defines ρ rational points ti associated to the simple circuit c.
By definition of mΛ(c), and by Theorem 3.1.iii), we obtain

k′ < m̃Λ(x) = m̃Λ(xr) ≤ mΛ(c),

and by definition of mΛ(G) we have i).

Assume now that x ∈ Φ(F ) so that, by induction, xr ∈ Φ(F ). By Theorem
3.1.iv) we have xr = t0, and thus xr − t0 ∈ R. By the induction formula of
the definition of (xi) and the formulae of Remark 5, we see that

for all k ∈ {0, . . . , r}, ε ⋆ (xr−k − t−k) ∈ R,

where the index in t−k is taken modulo ρ. Finally, x = x0 ≡ t−r mod R
which is an element of E by definition of E . This proves ii).

Assume now that x is critical so that we have m̃Λ(x) = M̃(Λ). From the
definitions, we can write m̃Λ(x) ≥ mΛ(G) and by i) we obtain m̃Λ(x) =
mΛ(G) so that m̃Λ(t−r) = mΛ(G). Since t−r ∈ E , we find t−r ∈ E ′. This
proves iii). �

4. The algorithm, theoretic aspect

4.1. General strategy. Let Λ be an order of F . Since Λ is a torsion-free
module over Z which is a PID, Λ admits a Z-basis whose cardinality is 4n.
Suppose that we know such a basis (e1, e2, . . . , e4n). For every 1 ≤ l ≤ 4n,
let us write el = βl,i + βl,2i+ βl,3j + βl,4k where βl,m ∈ K for every m. Now,
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consider the matrix M ∈ M4n(R) defined by

M =




σ1(β1,1) σ1(β2,1) . . . σ1(β4n,1)
σ2(β1,1) σ2(β2,1) . . . σ2(β4n,1)

...
...

...
σn(β1,1) σn(β2,1) . . . σn(β4n,1)
σ1(β1,2) σ1(β2,2) . . . σ1(β4n,2)

...
...

...
σn(β1,2) σn(β2,2) . . . σn(β4n,2)
σ1(β1,3) σ1(β2,3) . . . σ1(β4n,3)

...
...

...
σn(β1,3) σn(β2,3) . . . σn(β4n,3)
σ1(β1,4) σ1(β2,4) . . . σ1(β4n,4)

...
...

...
σn(β1,4) σn(β2,4) . . . σn(β4n,4)




.

Then it is not difficult to see that we have Φ(F ) = M ·Q4n, R = Φ(Λ) =
M · Z4n, F = M · [0, 1)4n, ∆ = M · (Q ∩ [0, 1))4n and F = ∆ = M · [0, 1]4n.
Now, as in the totally real number field case (see [4]) we consider a cutting-
covering of F = ∆ using parallelotopes whose faces are orthogonal to the
canonical axes of R4n. These parallelotopes P are of the form

(15) P = {(ul)1≤l≤4n ∈ R4n; |ul − Cl| ≤ hl},
where C = (Cl)1≤l≤4n is the center of the parallelotope and 0 < hl for
every l. The way we obtain a cutting-covering of F is similar to the way we
proceed in the totally real number field case, so we refer to [4] for details.
The structure of the algorithm is also the same. Let us recall its general
strategy and explain where differences occur.

Assume that we have an idea of M(Λ) denoted k. Suppose that we have
at our disposal a set X of elements of R, and let us take a small ǫ > 0.

Definition 4.1. A subset of R4n will be said to be absorbed by X ∈ X , if
it is contained in the region defined by the inequality NR(x−X) ≤ k − ǫ.

The computations are organized as described in Algorithm 2.

4.2. The absorption test. Let P be a parallelotope defined as in (15) and
X be some element of R. Since for t ∈ R4n we have

NR(t) =
n∏

i=1

(t2i − σi(a)t
2
i+n − σi(b)t

2
i+2n + σi(ab)t

2
i+3n),

where for every i, σ(a), σi(b) < 0, we see that P is absorbed by X if

(16)

n∏

i=1

Ai(P, X) ≤ k − ǫ.
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Algorithm 2: Computation of M(Λ)

Input: Λ, order of quaternion field F over K.
Output: M(Λ) or failure.

1 Cover F with parallelotopes as described above.
2 Choose k > 0, choose a list X of small elements of R: for instance,
X ∈ X iff X = MT where T ∈ Z4n and −B ≤ Ti ≤ B + 1 for some
bound B ≥ 0

3 Absorption test
Eliminate all the parallelotopes which are absorbed by elements of
X . Every parallelotope which cannot be eliminated is stored in a list
of so-called problematic parallelotopes. Let Pi, i = 1 . . . N be this list
at the end of this step. Every x in the union G of the parallelotopes
which have been eliminated, satisfies m̃Λ(x) ≤ k − ǫ.

4 Units test
Use the action of the unit group Z×

K . We choose a unit ε 6= ±1. First,
we eliminate every Pi such that Φ(ε) ⋆ Pi ⊂ G + R, and enlarge G
gradually. Then we repeat this elimination loop until the number N of
remaining parallelotopes stabilizes. Of course we can use successively
several units. If there remains no parallelotope, then M(Λ) < k; go
back to Step 2 with a smaller value of k.

5 Further cutting
Cut every remaining parallelotope into 24n smaller parallelotopes, and
restart the whole process from Step 3 while the number of remaining
parallelotopes decreases.

6 Analysis
We analyze the smallest collection of problematic parallelotopes that
we have obtained, thanks to Theorem 3.2. This theorem, if it can be
used, allows us to obtain a finite set E of potentially critical points
ti ∈ Φ(F ). We can compute m̃Λ(ti) for ti ∈ E by Algorithm 1. If the
value k′ is the Euclidean minimum of Λ, we shall get:

for all i, m̃Λ(ti) ≤ k′ and there exists an i such that m̃Λ(ti) = k′,

which proves M(Λ) = M̃(Λ) = k′. Moreover, under these conditions,
Theorem 3.2 proves that the ti of E ′ are the only critical points in Φ(F )
modulo R. If we cannot apply Theorem 3.2, the algorithm returns
failure, but we can start again with new parameters in Step 2.

where

Ai(P, X) =
(
|Ci −Xi|+ hi

)2 − σi(a)
(
|Ci+n −Xi+n|+ hi+n

)2

−σi(b)
(
|Ci+2n −Xi+2n|+ hi+2n

)2

+σi(ab)
(
|Ci+3n −Xi+3n|+ hi+3n

)2
.

Moreover, the upper bound used in (16) is optimal because there exists a
vertex S of P which satisfies NR(S −X) =

∏n
i=1Ai(P, X).
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4.3. The units test. Let ε 6= ±1 be the unit of ZK used for this test.
Write {P1, . . . ,PN} for the set of problematic parallelotopes remaining after
Step 3, and for every p ∈ {1, . . . , N}, let us denote by Dp the center of Pp.
Let P be one of these parallelotopes, centered in C: P = {(ul)1≤l≤4n ∈
R4n; |ul − Cl| ≤ hl}. Then ε ⋆ P is a parallelotope centered in C ′′ where
C ′′

i+kn = σi(ε)Ci+kn for 1 ≤ i ≤ n and 0 ≤ k ≤ 3 and whose faces are also
orthogonal to the canonical axes of R4n. More precisely

ε ⋆ P = {(vl)1≤l≤4n; |vl − C ′′
l | ≤ h′

l},

where h′
i+kn = |σi(ε)|hi+kn for 1 ≤ i ≤ n and 0 ≤ k ≤ 3. Let us put

(T1, . . . , T4n) = M−1C ′′, X0 = M(⌊T1⌋, . . . , ⌊T4n⌋) ∈ R and C ′ = C ′′−X0 ∈
F . Let us write M−1 = (m′

i,j)1≤i,j≤4n. We first determine a list of elements

of R containing all the X ∈ R such that ε⋆P−X meets F . Using the same
argument as in [4] we see that such an X is of the form

(17) X = X0 +M(ν1, . . . , ν4n),

where for every i, νi ∈ Z ∩ [⌊αi⌋, ⌊βi⌋], αi =
∑4n

j=1m
′
i,j(C

′j − δi,jh
′
j), βi =∑4n

j=1m
′
i,j(C

′j + δi,jh
′
j) and δi,j = 1 or −1 according to whether m′

i,j > 0 or

not. Remark that X0 satisfies (17) and denote by X0, X1, . . . , Xg (g ≥ 0) all
the elements of R satisfying (17). As in [4], if for all j (0 ≤ j ≤ g) we have

{
for all p ∈ {1, . . . , N}, there exists ip ∈ {1, . . . n} and k ∈ {0, . . . , 3}
such that |(C ′′ −Xj −Dp)ip+kn| >

(
1 + |σip(ε)|

)
hip+kn,

then P can be eliminated from the list of problematic parallelotopes.

4.4. Termination without failure. It can be shown, using arguments
similar to those that are used in [2, 8, 5] (see in particular [5, Proposition
4.25]), that the algorithm terminates as soon as n > 2 for a good choice
of k and a sufficiently thin initial cutting-covering. But, in the case n = 2,
which is the only case that we can treat with our computers, nothing can
be said a priori.

5. The algorithm, technical aspect

5.1. Symmetry and fundamental domain. For any x ∈ R4n, we have
m̃Λ(x) = m̃Λ(−x). Therefore, we can restrict our calculation to one half of
F in Step 3 of Algorithm 2. Nevertheless, the symmetry should be kept in
mind for the remainder of the algorithm (e.g. for Step 4, we should take it
into account for G).

Some problematic parallelotopes can lie on the boundary of the funda-
mental domain, which may add unnecessary vertices to the digraph, making
it non convenient. To tackle this issue, we change the fundamental domain
by translating the problematic parallelotopes or the fundamental domain
itself (which is equivalent anyway). For more details, see [4, Section 5.7.2].
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5.2. Initial value of k. Algorithm 2 requires an initial value of k in Step 2.
For the algorithm to be successful, we need k ≤ M(Λ). If every parallelo-
tope is eliminated by the absorption of integers or the action of units, then
M(Λ) < k and we can start again with smaller k.

We observe that the points x ∈ F such that M(Λ) = mΛ(x) have a
“small” orbit under the action of units. Therefore, if we denote by ε a unit
of K which is not a root of unity, then εℓx−x ∈ Λ for some “small” ℓ ∈ Z>0.
In other words, there exist some a ∈ Λ and some “small” ℓ ∈ Z>0 such that

x =
a

εℓ − 1
.

We may study such points and apply Algorithm 1 to find their minimum
mΛ(x). This can provide a lower bound on M(Λ).

This heuristic can turn out to be non applicable when NK/Q(ε
ℓ − 1) is

large. Instead, we can simply consider points

x =
a

b
,

where b is a factor of εℓ − 1 of small norm.

5.3. Analysis of the digraph. In Step 6 of Algorithm 2, we try to apply
Theorem 3.2, that is to say to obtain a convenient graph. This digraph may
be not convenient, but we can try to simplify it to make it convenient, as
in [11, Section 3.2.2]. The basic idea is to merge parallelotopes which have
the same translation vector. For example, in Figure 1c, we can merge T1,
T2, and T3 to make the digraph convenient.

5.4. Execution of Algorithm 1. Once we have a convenient digraph, it
remains to apply Algorithm 1 to a finite set of points. This algorithm is
described with elements of R4n, which would suggest using floating point
numbers, but it actually deals with elements of F . Consequently, the orbit
is computed as a subset of the quaternion field F in Step 1.

In practice, we compute the orbit of x = Φ(ξ) ∈ Φ(F ), where ξ ∈ F as
follows. Let {εi, 1 ≤ i < n} be a fundamental system of units of K. For
fixed 1 ≤ i < n and for increasing k ≥ 1, we compute the elements εki · ξ
reduced modulo Λ, which is denoted by εki · ξ

red
, until εki · ξ

red
= ξ

red
, which

happens for some finite mi ≥ 1. Then the orbit of x is the image by Φ of
the set



±

n−1∏

i=1

εkii · ξ
red

red

, 0 ≤ kj < mj for any 1 ≤ j < n



 ,

where repetitions are discarded.
As for Steps 2 and 6, to compute Mk′ or Mk, we deal with quantities

NR(z−Z) (see (1)) which are in fact rational numbers.Therefore, during the
actual execution of the algorithm we can compute exactly these numbers
and the output of Algorithm 2 is a rational number (whenever its execution
is successful).
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6. Results

6.1. An example. Let us introduce this section with an example. We know

by [2] that if K = Q(
√
2), F =

(−1,−1

K

)
and Λ is a maximal order of F ,

then M(Λ) ≤ 1
2
. Let us consider the maximal order

Λ = ZK ⊕ ZK

√
2(1 + i)

2
⊕ ZK

√
2(1 + j)

2
⊕ ZK

1 + i+ j + k

2
.

Since there exist elements λ ∈ Λ satisfying N(λ) = 2 which implies mΛ(
1
λ
) =

1
2
, we know that M(Λ) ≥ 1

2
. Consequently we have

M(Λ) =
1

2
.

Now, let us come back to our algorithm. A Z-basis of Λ is for instance
(
1,
√
2,

√
2

2
(1+ i), 1+ i,

√
2

2
(1+ j), 1+ j,

1

2
(1+ i+ j+k),

√
2

2
(1+ i+ j+k)

)

and, according to this choice of basis, the matrix of the fundamental em-
bedding is

M =




1
√
2

√
2/2 1

√
2/2 1 1/2

√
2/2

1 −
√
2 −

√
2/2 1 −

√
2/2 1 1/2 −

√
2/2

0 0
√
2/2 1 0 0 1/2

√
2/2

0 0 −
√
2/2 1 0 0 1/2 −

√
2/2

0 0 0 0
√
2/2 1 1/2

√
2/2

0 0 0 0 −
√
2/2 1 1/2 −

√
2/2

0 0 0 0 0 0 1/2
√
2/2

0 0 0 0 0 0 1/2 −
√
2/2




.

We use the following cutting-covering of F : if al = min{xl; x ∈ F} and
bl = max{xl; x ∈ F} for every 1 ≤ l ≤ 8, we put hl = (bl − al)/2nl where
n1 = n2 = 70, n3 = n4 = n5 = n6 = 30, n7 = n8 = 12 and we cover F
with parallelotopes P as in (15) where for every l, Cl = al + (2il + 1)hl

for some 0 ≤ il ≤ nl − 1. Of course, as in the number field case, we only
consider parallelotopes that intersect F . Running Algorithm 2 with k = 1/2,
X = M ·([−2, 3]∩Z)8, after four loops of Steps 3, 4, and 5, we finally obtain a
convenient digraph composed of nine disjointed simple circuits whose length
is 1. This leads to E = {ti = Φ(ξi); 1 ≤ i ≤ 9} where

• ξ1 =
2+3

√
2

4
+

√
2
4
i+ 2+

√
2

4
j +

√
2
4
k;

• ξ2 =
2+

√
2

4
+

√
2
4
i+ 2+

√
2

4
j +

√
2
4
k;

• ξ3 =
1+

√
2

2
+ 1

2
j;

• ξ4 =
2+3

√
2

4
+ 2+

√
2

4
i+

√
2
4
j +

√
2
4
k;

• ξ5 =
4+3

√
2

4
+ 2+

√
2

4
i+ 2+

√
2

4
j +

√
2
4
k;

• ξ6 =
2+

√
2

4
+ 2+

√
2

4
i+

√
2
4
j +

√
2
4
k;

• ξ7 =
4+

√
2

4
+ 2+

√
2

4
i+ 2+

√
2

4
j +

√
2
4
k;

• ξ8 =
1+

√
2

2
+ 1

2
i;
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• ξ9 =
2+

√
2

2
+ 1

2
i+ 1

2
j.

Algorithm 1 gives m̃Λ(ti) = 1/2 for every 1 ≤ i ≤ 9 so that M(Λ) =

M̃(Λ) = 1/2. In fact, we do not have to compute these minima because for
every 1 ≤ i ≤ 9 we have xi ≡ 1/Xi mod Λ where N(Xi) = 2. For instance
we can take

• X1 =
1+

√
2

2
+ 1

2
i+ 1+

√
2

2
j + 1

2
k;

• X2 =
1+

√
2

2
− 1

2
i+ 1+

√
2

2
j + 1

2
k;

• X3 =
2+

√
2

2
+

√
2
2
j;

• X4 =
1+

√
2

2
+ 1+

√
2

2
i+ 1

2
j + 1

2
k;

• X5 = −1
2
− 1+

√
2

2
i+ 1+

√
2

2
j + 1

2
k;

• X6 =
1
2
− 1

2
i+ 1+

√
2

2
j + 1+

√
2

2
k;

• X7 =
1
2
− 1+

√
2

2
i+ 1+

√
2

2
j + 1

2
k;

• X8 =
2+

√
2

2
−

√
2
2
i;

• X9 =
−2+

√
2

2
i+

√
2
2
j.

This leads to M(Λ) = 1/2 as expected.
Of course, and this is the interest of the algorithm, in general we do not

have any theoretic argument that allows to establish the value of M(Λ) as
in the previous example.

6.2. Some other results. Table 1 gives some of the results that we have
obtained. More extensive tables are available from [7]. In this table, K
is a number field, F is a quaternion field and Λ is an order of F . For
brevity, the order Λ is described by a quadruple (q1, q2, q3, q4) ∈ F 4 such
that Λ = ⊕4

i=1qiZK , which is always possible in the cases that we have
studied. The column Max indicates if Λ is maximal or not (maximal orders
were obtained with [3]), T is the number of critical points in Φ(F ) modulo
R = Φ(Λ) and M(Λ) is the Euclidean minimum of Λ.

6.3. Timings. The time required to execute Algorithm 2 obviously depends
on the choice of parameters. Indeed, if we choose k > 0 strictly larger than
M(Λ), then we will have to start again with a smaller value of k. The
timings presented here are for a choice of k smaller than M(K), typically
k = M(Λ)− ǫ, where ǫ = 10−4.

In Table 2, the orders are the maximal orders corresponding to the
quaternion field given in Table 1. It should be noted that no particular
efficiency was pursued for Step 6 because it turned out to be short enough
in the examples considered.

The times given are total computation times (cpu times). The computa-
tions were carried out on an Intel Xeon E5-2680 (2.50GHz) processor with
24 cores.
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d F Λ Max T M(Λ)

Q(
√
2)

(−1,−1

K

) (
1,

√
2(1+i)
2

,
√
2(1+j)
2

, yes 9 1/2

1+i+j+k
2

)

(−1,−1

K

)
(1, i, j, k) no 1 4

(
−3,−

√
2− 2

K

)
(
1, 1+i

2
, j, j+k

2

)
yes 36 41

16

Q(
√
3)

(−1,−1

K

) (
1, 1+i

2
(
√
3 + 1), yes 9 1

1+j
2
(
√
3 + 1), 1+i+j+k

2

)

(−1,−1

K

) (
1, i,

√
3+j
2

,
√
3i−k
2

)
yes 9 1

Q(
√
5)

(−1,−1

K

) (
1, i, 1+

√
5+(3+

√
5)i+2j

4
, yes 3 1/4

1+i+j+k
2

)

(
−1,

√
5− 7

K

) (
1, i,

√
5+3
4

(1 + i) yes 6 9/4

+ j
2
,
√
5+3
4

+ k
2

)

Q(
√
13)

(−1,−1

K

) (
1, i, 3+

√
13

4
+ (5+

√
13)i

4
yes 24 3/4

+ j
2
, 1+i+j+k

2

)

Table 1. Euclidean minima of some quaternion fields.

F time for loops of time for total time
absorption and units tests

(Steps 3 to 5) (Step 6)
(−1,−1

Q(
√
2)

)
24h16min 44min 25h2min

(
−1,−

√
5− 7

Q(
√
5)

)
7h19min 5 min 7h25min

( −1,−1

Q(
√
13)

)
9d12h36min 1d2h41min 10d15h21min

Table 2. Some timings for Algorithm 2.
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PlaFRIM development action with support from Bordeaux INP, LABRI and
IMB and other entities: Conseil Régional d’Aquitaine, Université de Bor-
deaux and CNRS, and ANR in accordance to the “programme d’investis-
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