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COMPUTATION OF EUCLIDEAN MINIMA IN TOTALLY
DEFINITE QUATERNION FIELDS

JEAN-PAUL CERRI, PIERRE LEZOWSKI

Abstract. We describe an algorithm that allows to compute the Euclidean
minimum (for the norm form) of any order of a totally definite quaternion
field over a number field K of degree strictly greater than 1. Our approach is
a generalization of previous work dealing with number fields. The algorithm
was practically implemented when K has degree 2.

1. Introduction

If K is a number field, we denote by n its degree, by ZK its ring of integers, by
Z×K its unit group, and by NK/Q : K → Q the norm form. Throughout this paper
F will be a totally definite quaternion field over a number field K. Let us recall
the relevant definitions. Let F be a quaternion algebra over a number field K, i.e.
a 4-dimensional algebra over K with basis (1, i, j, k) such that i2 = a, j2 = b and
k = ij = −ji, where a, b are non-zero elements of K. This algebra is denoted by(
a, b

K

)
. Let w = x + yi + zj + tk ∈ F , where x, y, z, t ∈ K. We denote by w the

image of w by the canonical involution of F , which is defined by w = x−yi−zj−tk,
and by nrdF/K(w) = ww its reduced norm. The algebra F is a division algebra if
and only if the quadratic form nrdF/K(x + yi + zj + tk) = x2 − ay2 − bz2 + abt2

represents zero on K only trivially. In this case, we say that F is a quaternion field.
In addition, we will suppose that F is totally definite, or equivalently that every

infinite place of K is ramified in F . This implies in particular that K is totally
real, that a and b are totally negative and that for every x ∈ F \ {0}, nrdF/K(x)
is totally positive. Let us denote by N : F −→ Q≥0 the reduced norm map defined
by N = NK/Q ◦ nrdF/K .

Definition 1.1. Let Λ be an order of F . For any ξ ∈ F , we set

mΛ(ξ) = inf
λ∈Λ

N(ξ − λ)

and we call it the local Euclidean minimum of Λ at ξ. We define the Euclidean
minimum of Λ by

M(Λ) = sup
ξ∈F

mΛ(ξ).

Set FR = F ⊗Q R and let NR : FR → R≥0 be the extended norm corresponding
to N .
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Definition 1.2. Let Λ be an order of F . For any x ∈ FR, we set

m̃Λ(x) = inf
λ∈Λ

NR(x− λ)

and we call it the local inhomogeneous minimum of Λ at x. We define the inhomo-
geneous minimum of Λ by

M̃(Λ) = sup
x∈FR

m̃Λ(x).

Let us notice that these suprema are well-defined positive real numbers, that
M(Λ) ≤ M̃(Λ) and that for every ξ ∈ F there exists a λ ∈ Λ such that mΛ(ξ) =
N(ξ−λ) (see [9] and [4]). Let us call (P ) the following property: there exists some
ξ ∈ F such that mΛ(ξ) = M̃(Λ). In particular, if (P ) holds, then M(Λ) = M̃(Λ) ∈
Q. Recall that we have the following results:

• The order Λ is right-norm-Euclidean if and only if it is left-norm-Euclidean
(so that we can speak of norm-Euclidean orders) and that in this case Λ is
necessarily a maximal order of F ;

• If M(Λ) < 1 then Λ is norm-Euclidean;
• If M(Λ) > 1 then Λ is neither right neither left-norm-Euclidean;
• If M(Λ) = 1 and if property (P ) is satisfied then Λ is neither right neither

left-norm-Euclidean;
• If Λ is norm-Euclidean, then every other maximal order Λ′ of F is also

norm-Euclidean and M(Λ) = M(Λ′)
• If K has unit rank strictly greater than 1, i.e. n > 2 if K is totally real,

then (P ) holds.

Note that these results still hold when F is not totally definite. For more details,
the reader can refer to [9], [4] and [7].

A first natural question arises: what can be said when the degree of K is 1 or
2, i.e. when K = Q or is a real quadratic field? Do we also have M(Λ) = M̃(Λ) or
does property (P ) hold? We will answer to this question in Section 2, showing that
the equality is always satisfied and that property (P ) holds when K = Q. Showing
that it also holds when K is quadratic seems out of reach, as in the number field
case, which is a famous conjecture due to Barnes and Swinnerton-Dyer.

As in the number field case (see [5] and [12]), it is also natural to ask whether
it is possible to use an algorithm allowing to compute M(Λ) = M̃(Λ) and to check
that property (P ) is satisfied, even in the conjectural case. We will see that such
an algorithm is already well known when K = Q so that we have just to study
the case where K has degree at least 2. Note also that, as in the number field
case, such an algorithm might allow to determine the upper part of the so called
inhomogeneous spectrum associated to Λ. The paper is organized as follows. In
Section 2, we recall what we know when n = 1 and we establish some preliminary
results allowing to prove M(Λ) = M̃(Λ) when n = 2, and that we will use later in
the algorithm. In Section 3, we explain the ideas that will be used in the algorithm
when n ≥ 2. In Section 4 we describe the algorithm itself (Algorithm 2), in Section
5 we give technical details of the algorithm, and finally, in Section 6 we give the
results obtained when K is quadratic, the only case that we can treat with the
computers that we used.
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2. Preliminary results

2.1. The fundamental embedding. Let
(
a, b

K

)
be a totally definite quaternion

field over a number field K and let Λ be an order of F . Let us denote by σ1, . . . , σn
the n embeddings of K into R. Now, let us embed F into R4n in the following way:
if ξ = α+ βi+ γj + δk ∈ F where α, β, γ, δ ∈ K, we put

Φ(ξ) = (σ1(α), . . . , σn(α), σ1(β), . . . , σn(β), σ1(γ), . . . , σn(γ), σ1(δ), . . . , σn(δ)).

Then Φ(Λ) is a lattice of R4n that will be denoted by R. Identifying FR with R4n,
if x ∈ R4n we put

NR(x) =

n∏
l=1

nrdl(x)

where nrdl(x) = x2
l − σl(a)x2

l+n − σl(b)x2
l+2n + σl(ab)x

2
l+3n. With this notation, if

ξ ∈ F and x ∈ R4n, we have
• nrdl(Φ(ξ)) = σl(nrdF/K(ξ)) for every l;
• N(ξ) = NR(Φ(ξ));
• m̃Λ(x) = infλ∈ΛNR(x− Φ(λ));
• mΛ(ξ) = m̃Λ(Φ(ξ)).

The multiplicative group K \ {0} acts on R4n in the following way. If α ∈ K \ {0}
and x ∈ R4n we put

α ? x = (σ1(α)x1, . . . , σn(α)xn, . . . , σ1(α)x3n+1, . . . , σn(α)x4n).

Hence, if ξ ∈ F we have α ? Φ(ξ) = Φ(αξ). Moreover, if ν ∈ Z×K , then ν ?R = R,
and if x ∈ R4n, then NR(ν ? x) = NR(x). This implies that that for every x ∈ R4n

and every ν ∈ Z×K , we have m̃Λ(ν ? x) = m̃Λ(x).

Remark 1. Since m̃Λ is R-periodic, we have m̃Λ(ν ? x + Φ(λ)) = m̃Λ(x) for every
(x, ν, λ) ∈ R4n × Z×K × Λ.

Recall that m̃Λ is not only R-periodic, but also upper semi-continuous. These
two properties imply that there exists an x ∈ R4n such that M̃(Λ) = m̃Λ(x). Such
an x will be called critical.

2.2. The case n = 1. Here K = Q, a, b ∈ Q<0 and we can write

Λ = ⊕4
l=1(al,1 + al,2i+ al,3j + al,4k)Z,

where al,i ∈ Q for every 1 ≤ l, i ≤ 4 and where the matrix M = (al,i) is invertible.
We also have F = ⊕4

l=1(al,1 +al,2i+al,3j+al,4k)Q = Q⊕Qi⊕Qj⊕Qk. With our
notation, R is the latticeM tZ4 ⊂ Q4 and Φ(F ) = M tQ4. Let x ∈ R4 and let us put
x = M ty. Then m̃Λ(x) = infX∈Z4 q(M t(y−X)) where q(z) = z2

1 −az2
2 − bz2

3 +abz2
4

which is equivalent to

m̃Λ(x) = inf
X∈Z4

‖SM t(y −X)‖2

where ‖ · ‖ is the usual Euclidean norm and S =


1 0 0 0
0
√
−a 0 0

0 0
√
−b 0

0 0 0
√
ab

. As a

consequence M̃(Λ) is the square of the covering radius of the lattice L = SM tZ4 ⊂
R4 and if x ∈ R4 is a critical point, i.e. satisfies m̃Λ(x) = M̃(Λ), then ‖OP‖,



4 JEAN-PAUL CERRI, PIERRE LEZOWSKI

where O = (0, 0, 0, 0) and P = Sx = SM ty, is the covering radius of L. Let A
and B be two points of L and let us put A = SM tα, B = SM tβ where α, β ∈ Z4.
Then the mediator hyperplane of A and B is the set of z = SM tr such that
〈SM t(r − α+β

2 ), SM t(α− β)〉 = 0, i.e. 〈r − α+β
2 ,MS2M t(α− β)〉 = 0, where 〈· , ·〉

is the usual Euclidean scalar product. Note that α+β
2 ,MS2M t(α− β) ∈ Q4. Now,

the point P = SM ty belongs to 4 independent such mediator hyperplanes and the
yi satisfy 4 independent linear equations with rational coefficients, so that y ∈ Q4.
From this we deduce that x = M ty ∈ Φ(F ). This implies that property (P ) is
satisfied and that M(Λ) = M̃(Λ) ∈ Q.
Let us conclude by noting that there exist well known algorithms to compute the
covering radius of L and then M̃(Λ) = M(Λ), so that the case n = 1 is completely
settled.

2.3. Computation of mΛ(ξ). From now on, we suppose that n ≥ 2. We are
interested in computing mΛ(ξ) where ξ ∈ F . We will rely on it for the actual
computation of M(Λ) later on.
Let (εi)1≤i≤n−1 be a system of fundamental units of K. We denote by L the
logarithmic embedding of K \ {0} in Rn defined by

L(α) = (ln |σ1(α)|, . . . , ln |σn(α)|).
We know that L(Z×K) is a lattice of the hyperplane H of Rn defined by the equation∑

1≤i≤n xi = 0, which admits (L(εi))1≤i≤n−1 as a Z-basis and that the kernel of L
is {±1}. For 1 ≤ i ≤ n we set

Γi =

n−1∏
j=1

max
{
|σi(εj)|,

1

|σi(εj)|

}
.

Lemma 2.1. Units of K have the following properties.
(i) Let l ∈ {1, . . . , n}. There exists a ν ∈ Z×K such that |σi(ν)| < 1 for every

i 6= l.
(ii) If c1, . . . , cn−1 are given positive real numbers, there exists a ν ∈ Z×K such

that ci ≤ σi(ν)2 ≤ ciΓ2
i for all i ∈ {1, . . . , n− 1}.

Proof. (i) L(Z×K) being a lattice of H, it is easy to see that H ∩ {x ∈ Rn;xl >
0 and xi < 0 for i 6= l}, which is a nonempty open cone of H, contains an element
L(ν) of L(Z×K).
(ii) This a consequence of [5, Lemma 3.1]. See also [6, Lemma 2.1] for a detailed
proof. �

Proposition 2.2. Let k > 0. Suppose that x ∈ R4n and X ∈ R satisfy NR(x−X) <
k. Then there exist an ε ∈ Z×K and some Y ∈ R such that y = ε ? x − Y satisfies
NR(y) < k and

0 ≤ nrdi(y) ≤ Γ(k),

where

Γ(k) =

(
k

n−1∏
i=1

Γ2
i

) 1
n

.

Proof. First, if NR(x − X) = 0 we have nrdl(x − X) = 0 for some index l. By
Lemma 2.1 (i), there exists a ν ∈ Z×K such that |σi(ν)| < 1 for every i 6= l.
Since nrdi(ν

p ? x − νp ? X) = σi(ν)2pnrdi(x −X), for p sufficiently large we have
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nrdi(ν
p ? x− νp ?X) ≤ Γ(k) for i 6= l and nrdl(ν

p ? x− νp ?X) = 0. Taking ε = νp

and Y = ν ? X, we obtain the result announced.

Now, if NR(x − X) 6= 0, we apply Lemma 2.1 (ii) with ci =
Γ(k)

Γ2
inrdi(x−X)

for

1 ≤ i ≤ n− 1. There exists a ν ∈ Z×K such that

Γ(k)

Γ2
inrdi(x−X)

≤ σi(ν)2 ≤ Γ(k)

nrdi(x−X)
for 1 ≤ i ≤ n− 1.

From NR(ν ?x−ν ?X) = NR(x−X) = σn(ν)2nrdn(x−X)
∏n−1
i=1 σi(ν)2nrdi(x−X)

we deduce

σn(ν)2nrdn(x−X) ≤
k
∏n−1
i=1 Γ2

i

Γ(k)n−1
= Γ(k).

Taking ε = ν and Y = ν ? X we have again the result announced. �

Now, consider the orbits of elements of R4n under the action of Z×K . Let x, y ∈
R4n and ν ∈ Z×K . As x − y ∈ R ⇒ ν ? x − ν ? y ∈ R, the group Z×K also acts on
R4n/R by (ν, x) 7→ ν ? x, where y is the class of y ∈ R4n modulo R. Let F be a
fundamental domain of R. Identifying R4n/R with F , if xν is the unique element
of F congruent to ν ? x modulo R, we set Orb(x) = {xν ; ν ∈ Z×K}. Remark that
for all x ∈ R4n, if z ∈ Orb(x) we have m̃Λ(z) = m̃Λ(x). Using this new notation,
we have the following essential result.

Theorem 2.3. There exists a finite set Ω ⊂ R such that for every x ∈ R4n, we
have

m̃Λ(x) = inf
z∈Orb(x)

(
min
Z∈Ω

NR(z − Z)
)
.

Proof. Let k′ be any positive real number satisfying k′ > M̃(Λ) and let ε > 0 such
that M̃(Λ) + ε < k′. Let

Ω′ = {t ∈ R4n; nrdi(t) ≤ Γ(k′) for every 1 ≤ i ≤ n}.

Since for every i,

nrdi(t) = t2i − σi(a)t2i+n − σi(b)t2i+2n + σi(ab)t
2
i+3n,

where σi(a), σi(b) < 0, we see that Ω′ is a bounded subset of R4n. Now, let us put

Ω = (F + Ω′) ∩R.

As Ω′ + F is also bounded, the set Ω is a finite subset of R. Let x ∈ R4n. There
exists some X ∈ R such that NR(x−X) < m̃Λ(x) + ε ≤ M̃(Λ) + ε < k′. Applying
Proposition 2.2 with k = m̃Λ(x) + ε, we see that there exists a ν ∈ Z×K and
some Y ∈ R such that, if y = ν ? x − Y , then NR(y) < m̃Λ(x) + ε < k′ and
nrdi(y) ≤ Γ(m̃Λ(x) + ε) ≤ Γ(k′) (because Γ is an increasing function). Let z ∈ F
such that z − y ∈ R. Then, z ∈ Orb(x) and y = z − Z, where Z ∈ Ω and
NR(z − Z) < m̃Λ(x) + ε. Since this is true for any ε > 0 we have

m̃Λ(x) ≥ inf
z∈Orb(x)

(
min
Z∈Ω

NR(z − Z)
)
.

On the other hand, for every z ∈ Orb(x) and any Z ∈ R, we have m̃Λ(x) = m̃Λ(z) ≤
NR(z − Z), which leads to the equality. �
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Remark 2. This result shows that if x ∈ Φ(F ), we can compute m̃Λ(x) in a finite
number of steps. In fact, Orb(x) is finite if and only x ∈ Φ(F ). Indeed, if x ∈ Φ(F )
we can write x = X/d where X ∈ R and d ∈ Z>0, and Orb(x) can be identified
with a subset of R/dR which is finite. Conversely, if Orb(x) is finite and if ν is a
nontorsion unit of K, considering the sequence (xνp)p≥0, we see that there exists
k > l ≥ 0 such that xνk = xνl . This implies that there exists an X = Φ(λ) ∈ R,
with λ ∈ Λ, such that (νk − νl) ? x = X which implies x = Φ(λ/(νk − νl)) ∈ Φ(F ).
As in the number field case, this allows to establish an algorithm to compute m̃Λ(x).
We could use formula of Theorem 2.3 but we do not know M̃(Λ), so we cannot
compute Ω. However, we can proceed as follows. Let us take some k′ > 0 and set
Ωk′ = Ω as defined in the previous proof. Let us put

(1) Mk′ = min
z∈Orb(x)

(
min
Z∈Ωk′

(
NR(z − Z)

))
.

Then
Mk′ ≤ k′ ⇒ m̃Λ(x) =Mk′ .

Of course, m̃Λ(x) ≤ Mk′ . Suppose that m̃Λ(x) < Mk′ so that there exists some
X ∈ R such that NR(x − X) < Mk′ . Then by Proposition 2.2 there exists a
ν ∈ Z×K and some Y ∈ R such that if y = ν ? x − Y , then NR(y) < Mk′ and
nrdi(y) ≤ Γ(Mk′) ≤ Γ(k′) for every i. This contradicts the definition of Mk′ .
Finally, we have the following algorithm to compute m̃Λ(x).

Algorithm 1: Computation of m̃Λ(x) when x ∈ Φ(F )

Input: x ∈ Φ(F ).
Output: m̃Λ(x).

1 Computation of Orb(x).
2 Computation of k′′ =Mk′ for a k′ > 0.
3 if k′′ ≤ k′ then
4 m̃Λ(x) = k′′

5 else
6 Computation of k =Mk′′ .
7 m̃Λ(x) = k.

The correctness of the algorithm follows from the fact that k′ 7−→ Mk′ is a
decreasing function.

2.4. The case n = 2. Here we use Theorem 2.3 to show that when n = 2, as in
every other case, we have M(Λ) = M̃(Λ).

Theorem 2.4. If n = 2, then M(Λ) = M̃(Λ).

Proof. We follow the idea of the proof given by Barnes and Swinnerton-Dyer in
the real quadratic number field case [3]. Let K = Q(

√
d), where d > 1 is a

squarefree integer. Denote by σ the nontrivial embedding of K into R, i.e. the
Q-automorphism of K such that σ(

√
d) = −

√
d. Let ν be a fundamental unit of

K. We can suppose ν > 1 so that |σ(ν)| < 1. Let ε > 0. Keep the notation of
the proof of Theorem 2.3. The map NR being continuous, let ε′ > 0 such that
for every x, y ∈ F + Ω + {z ∈ R4n; |zi| < 1 for all i}, which is a bounded set, if
|xi− yi| < ε′ for every i, then |NR(x)−NR(y)| < ε. Choose ε′ < 1. Let x ∈ R8 such
that m̃Λ(x) = M̃(Λ). If x ∈ Φ(F ) we are done, so that we can suppose x 6∈ Φ(F ).
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The set {xνp ; p ≥ 0} ⊂ F is infinite and bounded , and there exist n2 > n1 ≥ 0
such that for every i, |(xνn2 )i − (xνn1 )i| < ε′/2. Without loss of generality we can
suppose νn2−n1 > 2. We have νn2−n1 ? xνn1 = xνn2 +X where X ∈ R. Let us put
X = Φ(λ) with λ ∈ Λ. Set

ξ =
λ

νn2−n1 − 1
∈ F and α = Φ(ξ) ∈ Φ(F ).

Since νn2−n1 ? α = α mod R, we have

Orb(α) =

n2−n1−1⋃
k=0

{ανk , α−νk} ⊂ F .

It is easy to see that

αi =

{
(xνn1 )i + (xνn1 )i−(xνn2 )i

νn2−n1−1
for i odd,

(xνn1 )i + (xνn1 )i−(xνn2 )i
σ(ν)n2−n1−1

for i even.

Since |(xνn1 )i − (xνn2 )i| < ε′/2 and νn2−n1 > 2, this implies that

|αi − (xνn1 )i| <
ε′

νn2−n1
for i odd,

and |αi − (xνn1 )i| < ε′ for i even.

Consequently for every 0 ≤ k < n2 − n1, we have

(2) |(νk ? α)i − (νk ? xνn1 )i| < ε′ for all i.

Now, for every 0 ≤ k < n2 − n1, νk ? α = ανk + Xk where Xk ∈ R. Let X ∈ Ω.
Then for every i, we have

|(ανk −X)i − (νk ? xνn1 −Xk −X)i| < ε′.

But ανk −X ∈ F + Ω and since ε′ < 1, we have νk ?xνn1 −Xk−X ∈ F + Ω + {z ∈
R4n; |zi| < 1 for all i}. By choice of ε′ this implies that for every 0 ≤ k < n2 − n1,

(3) |NR(ανk −X)−NR(νk ? xνn1 −Xk −X)| < ε.

Now inequality (2) shows that for every 0 ≤ k < n2 − n1,

|(−νk ? α)i − (−νk ? xνn1 )i| < ε′ for all i.

Putting −νk ? α = α−νk + Yk where Yk ∈ R for 0 ≤ k < n2 − n1, we obtain in the
same way that for every x ∈ Ω and every 0 ≤ k < n2 − n1,

(4) |NR(α−νk −X)−NR(−νk ? xνn1 − Yk −X)| < ε.

Thus, by (3) and (4), for every y ∈ Orb(α) and every X ∈ Ω,

NR(y −X) > NR(z − Z)− ε
for some z ∈ Orb(xνn1 ) and Z ∈ R. We deduce from Theorem 2.3 that

m̃Λ(α) > m̃Λ(xνn1 )− ε = m̃Λ(x)− ε = M̃(Λ)− ε.

Since for every ε > 0, there exists some α ∈ Φ(F ) such that m̃Λ(α) > M̃(Λ) − ε,
we have necessarily M(Λ) = M̃(Λ). �

Remark 3. The second part of our proof does not follow [3] because the third
“equation” of [3, p. 313] is incorrect.

Corollary 2.5. In all cases, we have M(Λ) = M̃(Λ).
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Proof. By [4], the equality holds when n > 2, and by Subsection 2.2, it also holds
when n = 1. Of course, in both cases we have a better result since property (P )
holds. �

3. Theoretic argumentation

3.1. Overview of the strategy. Now, it is time to set out the ideas which are
behind the algorithm used to compute M(Λ) = M̃(Λ) when n ≥ 2. The strategy is
the same as in the number field case.

To simplify things we assume that we have an idea of the exact value of M(Λ).
We shall see later how one can find a good candidate for the Euclidean minimum.
From now on, we denote by k our guess of M(Λ).

In fact, instead of proving the equalityM(Λ) = k, we shall establish the stronger
and more precise result:

M̃(Λ) ≤ k and there exists a ξ ∈ F such that mΛ(ξ) = k.

It will clearly follow that M(Λ) = M̃(Λ) = k. Moreover, we shall try to find all the
critical points which belong to F .

Since m̃Λ is defined modulo R, it is sufficient to work on a fundamental domain
F of R, i.e. to prove that for all x ∈ F , m̃Λ(x) ≤ k, and to find all the ξ ∈ F such
that Φ(ξ) ∈ F and mΛ(ξ) = k (every solution to mΛ(ξ) = k will be of this form
modulo Λ).

Let k′ be a positive number smaller than k. In practice one takes k′ = k − ε
where ε is a small positive number. Let us consider a finite family of elements of R,
say X , and the regions of R4n centered in the X of X and defined by the inequations
NR(x −X) ≤ k′. Every element x of the subset H of F covered by these regions
satisfies m̃Λ(x) ≤ k′ < k, and since k′ is supposed smaller than M̃(Λ), “holes”
appear in the covering of F by these regions. These holes contain the potentially
critical points of F .

The main idea is then to analyze the action of the unit group Z×K on uncovered
subsets of F , in the following way. Let T be a hole of F , and ε a non-torsion unit of
K (ε 6= ±1). We look at the possible intersections of ε ? T with holes of F modulo
R. If ε ? T does not intersect any hole of F modulo R, we know by Remark 1 that
for every x of T , we have m̃Λ(x) ≤ k′, so that T can be eliminated as a subset of F
potentially containing a critical point. The interesting case is when the intersection
is nonempty.

Remark 4. Here we have expressed things in terms of holes. In what follows, we
consider “easy” regions larger than holes. For instance, in the algorithm, holes are
replaced by regions composed of small parallelotopes. All what we need is to have
a partition of F in a covered region and in regions potentially containing critical
points. Then we check that these regions have an exploitable behaviour under the
action of Z×K .

3.2. Theoretic arguments. As in the previous subsection, we consider k′ > 0
and a subset H of R4n which satisfies m̃Λ(x) ≤ k′ for all x ∈ H. We consider also
a unit ε 6= ±1.

3.2.1. The cyclic case. Let us first study the cyclic situation.
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Theorem 3.1. Let T0,. . . , Tj−1 be bounded subsets of R4n (j ≥ 1). Assume that
for all l there is an Υl ∈ Λ such that

(5) (ε ? Tl − Φ(Υl)) \H ⊂ Tl+1,

where the indices in Tr are to be read modulo j. Assume also that there is an x in
T0 which satisfies m̃Λ(x) > k′ and define Ω ∈ Λ by

Ω = εj−1Υ0 + εj−2Υ1 + . . . .+ εΥj−2 + Υj−1.

Consider the sequence defined by y0 = x and yp+1 = εj ? yp − Φ(Ω) for all p ≥ 0.
Then, if we put

ξ =
Ω

εj − 1
∈ F and t = Φ(ξ),

we have
i) For all i ∈ {1, . . . , n} such that |σi(ε)| > 1 and for all p ≥ 0 and all
k ∈ {0, 1, 2, 3}, (yp)i+kn = ti+kn.

ii) The sequence (yp)p≥0 converges to t.
iii) k′ < m̃Λ(x) ≤ m̃Λ(t).
iv) If x ∈ Φ(F ) then x = t.

Proof. First of all, let us prove that

(6)
(
εj ? T0 − Φ(Ω)

)
\H ⊂ T0.

Put z = εj ?z0−Φ(Ω) where z0 ∈ T0 and suppose z 6∈ H. Let us define z1, z2, . . . , zj
by the induction formula zp+1 = ε ? zp − Φ(Υp) for 0 ≤ p < j.
It is easy to see that we have zj = z. By Remark 1 we can write

m̃Λ(z) = m̃Λ(zj) = m̃Λ(zj−1) = . . . = m̃Λ(z0) > k′.

Thus for all p ∈ {0, . . . , j} we have zp 6∈ H, and by successive applications of (5) we
get zp ∈ Tp for all p ∈ {0, . . . , j − 1}, and finally z = zj ∈ T0, so that we have (6).

Now, consider the sequence (yp)p≥0. By Remark 1 we see by induction that for
all p ≥ 0

(7) m̃Λ(yp) = m̃Λ(x) > k′

so that for all p ≥ 0, yp 6∈ H. Then, as y0 = x ∈ T0, using (6) we easily establish
by induction that yp ∈ T0 for all p ≥ 0. Thus, as T0 was assumed to be bounded,
the sequence (yp − t)p≥0 is bounded.

But, by the definition of t and the induction formula which defines (yp)p≥0, we
have yp − t = εjp ? (x− t) for all p ≥ 0, so that

(8) |(yp)i− ti| = |σi mod n(ε)|jp |xi− ti| for all i ∈ {1, 2, . . . , 4n} and for all p ≥ 0.

Let i ∈ {1, . . . , n}.
If |σi(ε)| > 1, since the sequence (|(yp)i+kn − ti+kn|)p≥0 is bounded for every k ∈
{0, 1, 2, 3}, we must have xi+kn − ti+kn = 0, and then by (8) we obtain

(9) (yp)i+kn = ti+kn for all k ∈ {0, 1, 2, 3} and for all p ≥ 0.

This is i).
Moreover if |σi(ε)| < 1, then (8) shows that

(10) lim
p→+∞

(yp)i+kn = ti+kn for all k ∈ {0, 1, 2, 3}.



10 JEAN-PAUL CERRI, PIERRE LEZOWSKI

Since |σi(ε)| 6= 1 (otherwise ε = ±1, which is excluded by hypothesis), (9) and (10)
yield

lim
p→+∞

yp = t.

This is ii). Finally, since m̃Λ is upper semi-continuous, by (7), we obtain:

k′ < m̃Λ(x) = lim sup
p→+∞

m̃Λ(yp) ≤ m̃Λ(t),

which gives iii).
Now, assume that x ∈ Φ(F ). Since we cannot have |σi(ε)| ≤ 1 for every i, there

exists an i ∈ {1, . . . , n} such that |σi(ε)| > 1, and by i) (with p = 0) we have

(11) xi+kn = ti+kn for every k ∈ {0, 1, 2, 3}.
But x and t are both in Φ(F ), and if we write x = α0 + α1i + α2j + α3k, t =
β0 + β1i+ β2j + β3k with αj , βj ∈ K for every j, by (11) we have σi(αj) = σi(βj)
for every j. By injectivity of σi, this leads to αj = βj for every j, so that x = t. �

Remark 5. Obviously the same property holds for T1, T2, . . . , Tj−1, the single dif-
ference is the formula for Ω, in which indices must be trivially permuted. More
precisely, for r ∈ {0, . . . , j − 1}, if we put tr = Φ(ξr) with

ξr =
Ωr

εj − 1
,

and Ωr = εj−1Υr + εj−2Υr+1 + . . .+ Υr+j−1,

where the indices are still to be read modulo j, we have the same property as in
Theorem 3.1 for Tr (with tr instead of t). Moreover t0 = t and we have the cyclic
law:

tr+1 = Φ(ε) · tr − Φ(Υr)

for all r ∈ {0, . . . , j − 1}. In particular, all the tr are in Orb(t).

3.2.2. Generalization. Even if Theorem 3.1 allows one to treat some situations, it
is not sufficient, in the form seen above, to cover all the cases that one meets in
practice. A generalization of the previous situation is the following one.

Let Ti (0 ≤ i ≤ s− 1) be distinct bounded sets of R4n, and T = {T0, . . . , Ts−1}.
Assume that for all Ti in T there exists an Xi ∈ R and si integers ni,1,. . . ,ni,si
(si > 0) such that

(12) (ε ? Ti −Xi) \ H ⊂
⋃

1≤k≤si

Tni,k .

To simplify notation we shall consider the Ti as the vertices of a directed graph
(from now on digraph) G and represent (12) by si directed edges (from now on
arcs) whose tail is Ti and whose respective heads are the Tni,k (1 ≤ k ≤ si). Of
course, such an arc can be a loop.
We shall write Ti → Tni,k (Xi) or Ti → Tni,k , if it is not necessary to precise Xi.

Example 3.1. Theorem 3.1 corresponds to the digraph

G1 : T0 → T1 (Φ(Υ0)), . . . , Tj−1 → T0 (Φ(Υj−1)).

To describe paths of G we shall use the notation T ′1 → T ′2 → . . .→ T ′k .
The digraph G has the following properties: if T and T ′ are vertices of G, there

is at most one arc whose tail is T and whose head is T ′, and every vertex of G has
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a positive outvalency. Obviously the last property implies that G contains circular
paths (or circuits). Consequently, the set of simple circuits of G (paths of the
form T ′0 → . . . → T ′k → T ′0 , where k ≥ 0 and all the T ′i are distinct) is nonempty
(take a circuit of minimal length) and is finite (their length cannot exceed s). Let
us denote the latter by C. Each element c of C of length j is of the form of the
circular path met in Theorem 3.1 (and seen above in G1), T ′0 → T ′1 (X ′0) . . . →
T ′j−1(X ′j−2)→ T ′0 (X ′j−1) with X ′i = Φ(Υi). It defines, in a unique way, j points of
Φ(F ), t0, . . . , tj−1 by the formulae of Remark 5.

In this context, we say that t0, . . . , tj−1 are associated to c (implicitly ti corre-
sponds to T ′i ). The ti are in the same orbit modulo R and satisfy m̃Λ(t0) = . . . =
m̃Λ(tj−1).
Let us denote this rational number by mΛ(c) and put

mΛ(G) = max
c∈C

mΛ(c).

Moreover, let us denote by E the set of all points of Φ(F ) associated to the elements
of C. The set E is finite and we also have

mΛ(G) = max
t∈E

m̃Λ(t).

Finally let us put

E ′ = {t ∈ E such that m̃Λ(t) = mΛ(G)}.
An infinite path of G is an infinite sequence of arcs of G, (Ai)i≥0 such that the

head of Ai is the tail of Ai+1. If Ai is defined by T ′i → T ′i+1, we shall denote the
path by (T ′i )i≥0. Such a path is not simple, but can have a periodicity property.
An infinite path (T ′i )i≥0 is said to be ultimately periodic if there exist integers r ≥ 0
and p ≥ 1 such that

(13) for all i ≥ r, T ′i+p = T ′i .
Let (T ′i )i≥0 be an ultimately periodic infinite path. Let P be the set of p ≥ 1 such
that there exists an r with (13) true. Then P is nonempty and we can define

ρ = minP ≥ 1.

Then there exists an rρ such that ∀i ≥ rρ, T ′i+ρ = T ′i . The integer ρ will be called
the period length of (T ′i )i≥0 and every circuit T ′i → . . . → T ′i+ρ, where i ≥ rρ, will
be called a period of (T ′i )i≥0

Definition 3.1. We shall say that G is convenient if every infinite path of G is
ultimately periodic.

Convenient digraphs have the following properties. Assume that G is convenient.
Then every circuit is a power of a simple circuit. It can be shown that this condition
implies that G is convenient. Another characterisation of convenient digraphs could
be the following one: two distinct simple circuits have no common vertex. Assume
that G is convenient and let P = (T ′i )i≥0 be an infinite path of G. Then, every
period of P is a simple circuit (see [5] for more details).

Example 3.2. G1 is convenient. Figure 1 gives examples of convenient and not
convenient digraphs.

Now, we can establish the theorem which will allow us to treat (almost) all the
situations.
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X10

X8

(d) G4 is convenient

Figure 1. Some digraphs.

Theorem 3.2. Assume that G is convenient and that there exist a T ∈ T and an
x ∈ T such that m̃Λ(x) > k′. Then

i) k′ < m̃Λ(x) ≤ mΛ(G).
ii) If x ∈ Φ(F ), there exists a t ∈ E such that x ≡ t mod R.
iii) If x ∈ Φ(F ) is critical, there exists a t ∈ E ′ such that x ≡ t mod R.

Proof. The proof is exactly the same as the proof of Theorem 4.5 of [5] with some
changes of notation. Let us rephrase it. Put x0 = x and T ′0 = T . By (12) we know
that there exists X ′0 ∈ R and s′0 elements of T , denoted by Tn′0,k (1 ≤ k ≤ s′0) such
that

(ε ? T ′0 −X ′0) \ H ⊂
⋃

1≤k≤s′0

Tn′0,k .

Set x1 = ε ? x0 −X ′0. Since m̃Λ(x1) = m̃Λ(x0) > k′, we have

x1 ∈ (ε ? T ′0 −X ′0) \ H,

and necessarily, there is an i ∈ {1, . . . , s′0} such that x1 ∈ Tn′0,i . We put T ′1 = T ′n′0,i ,
and we continue with x2 = ε ? x1 −X ′1 where X ′1 is the element of R associated to
T ′1 by (12). We see that we can construct by induction a sequence (xi)i≥0 and an
infinite path (T ′i )i≥0 which satisfy: x0 = x, for all i ≥ 0, xi+1 = ε ? xi −X ′i where
X ′i ∈ R and

(14) for all i ≥ 0, xi ∈ T ′i .
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Moreover, by Remark 1, we have m̃Λ(xi) = m̃Λ(x) > k′ for all i.
G being convenient, the infinite path (T ′i )i≥0 is ultimately periodic. We denote
its period length ρ and we consider one of its periods c, described by T ′r → . . . →
T ′r+ρ = T ′r , which is a simple circuit.
Define T ′′s = {xr+s+iρ; i ∈ N}, for 0 ≤ s ≤ ρ− 1.
By (14) we have ∀s ∈ {0, . . . , ρ − 1}, T ′′s ⊂ T ′r+s. This implies that the T ′′s
are bounded. Moreover, by construction, for all s there exists Υs ∈ Λ (in fact
Φ−1(X ′r+s)) such that

ε ? T ′′s − Φ(Υs)\H = ε ? T ′′s − Φ(Υs) ⊂ T ′′s+1

where the indices are to be read modulo ρ. Putting y = xr ∈ T ′′0 which satisfies
m̃Λ(y) > k′, we see that we are exactly under the hypotheses of Theorem 3.1 (with
y instead of x, T ′′i instead of Ti and ρ instead of j). This theorem defines ρ rational
points ti associated to the simple circuit c.
By definition of mΛ(c), and by Theorem 3.1.iii), we obtain

k′ < m̃Λ(x) = m̃Λ(xr) ≤ mΛ(c),

and by definition of mΛ(G) we have i).

Assume now that x ∈ Φ(F ) so that, by induction, xr ∈ Φ(F ). By Theorem 3.1.iv)
we have xr = t0, and thus xr − t0 ∈ R. By the induction formula of the definition
of (xi) and the formulae of Remark 5, we see that

for all k ∈ {0, . . . , r}, ε ? (xr−k − t−k) ∈ R,
where the index in t−k is taken modulo ρ. Finally, x = x0 ≡ t−r mod R which is
an element of E by definition of E . This proves ii).

Assume now that x is critical so that we have m̃Λ(x) = M̃(Λ). From the defini-
tions, we can write m̃Λ(x) ≥ mΛ(G) and by i) we obtain m̃Λ(x) = mΛ(G) so that
m̃Λ(t−r) = mΛ(G). Since t−r ∈ E , we find t−r ∈ E ′. This proves iii). �

4. The algorithm, theoretic aspect

4.1. General strategy. Let Λ be an order of F . Suppose that we have a descrip-
tion of Λ:

Λ =
4
⊕
l=1

(al,1 + al,2i+ al,3j + al,4k)ZK ,

where al,m ∈ K for 1 ≤ l, m ≤ 4. Then F can be written

F =
4
⊕
l=1

(al,1 + al,2i+ al,3j + al,4k)K

= Λ⊕∆,

where
∆ =

4
⊕
l=1

(al,1 + al,2i+ al,3j + al,4k)D,

and where D is a fundamental domain of K. Now, let (θ1, . . . , θn) be a Z-basis of
ZK and let us define the matrix M ∈M4n×4n(R) by

M =


M1,1 M2,1 M3,1 M4,1

M1,2 M2,2 M3,2 M4,2

M1,3 M2,3 M3,3 M4,3

M1,4 M2,4 M3,4 M4,4
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where for every i and j in {1, 2, 3, 4}

Mi,j =


σ1(ai,jθ1) σ1(ai,jθ2) · · · σ1(ai,jθn)
σ2(ai,jθ1) σ2(ai,jθ2) · · · σ2(ai,jθn)

...
...

...
σn(ai,jθ1) σn(ai,jθ2) · · · σn(ai,jθn)

 ∈Mn×n(R).

Then it is not difficult to see that we have Φ(F ) = M ·Q4n, R = Φ(Λ) = M · Z4n,
F = M · [0, 1)4n, ∆ = M · (Q ∩ [0, 1))4n and F = ∆ = M · [0, 1]4n. Now, as in
the totally real number field case (see [5]) we consider a cutting-covering of F = ∆
using parallelotopes whose faces are orthogonal to the canonical axes of R4n. These
parallelotopes P are of the form

(15) P = {(ul)1≤l≤4n ∈ R4n; |ul − Cl| ≤ hl},

where C = (Cl)1≤l≤4n is the center of the parallelotope and 0 < hl for every l.
The way we obtain a cutting-covering of F is similar to the way we proceed in the
totally real number field case, so we refer to [5] for details. The structure of the
algorithm is also the same. Let us recall its general strategy and explain where
differences occur.

Assume that we have an idea of M(Λ) denoted k. Suppose that we have at our
disposal a set X of elements of R, and let us take a small ε > 0.

Definition 4.1. A subset of R4n will be said to be absorbed by X ∈ X , if it is
contained in the region defined by the inequality NR(x−X) ≤ k − ε.

The computations are organized as described in Algorithm 2.

4.2. The absorption test. Let P be a parallelotope defined as in (15) and X be
some element of R. Since for t ∈ R4n we have

NR(t) =

n∏
i=1

(t2i − σi(a)t2i+n − σi(b)t2i+2n + σi(ab)t
2
i+3n),

where for every i, σ(a), σi(b) < 0, we see that P is absorbed by X if

(16)
n∏
i=1

Ai(P, X) ≤ k − ε.

where

Ai(P, X) =
(
|Ci −Xi|+ hi

)2 − σi(a)
(
|Ci+n −Xi+n|+ hi+n

)2
−σi(b)

(
|Ci+2n −Xi+2n|+ hi+2n

)2
+σi(ab)

(
|Ci+3n −Xi+3n|+ hi+3n

)2
.

Moreover, the majorization used in (16) is optimal because there exists a vertex S
of P which satisfies NR(S −X) =

∏n
i=1Ai(P, X).
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Algorithm 2: Computation of M(Λ)

Input: Λ, order of quaternion field F over K.
Output: M(Λ) or failure.

1 Cover F with small parallelotopes as described above.
2 Choose k > 0, choose the list of integers X .
3 Absorption test

Eliminate all the parallelotopes which are absorbed by integers of X . Every
parallelotope which cannot be eliminated is stored in a list of so-called prob-
lematic parallelotopes. Let Pi, i = 1 . . . N be this list at the end of this step.
Every x in the union G of the parallelotopes which have been eliminated,
satisfies m̃Λ(x) ≤ k − ε.

4 Units test
Use the action of the unit group Z×K . We choose a unit ε 6= ±1, in practice
one of the fundamental units of K. First, we eliminate every Pi such that
Φ(ε)?Pi ⊂ G+R, and enlarge G gradually. Then we repeat this elimination
loop until the number N of remaining parallelotopes stabilizes. Of course
we can use successively several units. If there remains no parallelotope, then
M(Λ) < k; go back to Step 2 with a smaller value of k.

5 Further cutting
Cut every remaining parallelotope into 24n smaller parallelotopes, and restart
the whole process from Step 3 while the number of remaining parallelotopes
decreases.

6 Analysis
We analyze the smallest collection of problematic parallelotopes that we have
obtained, thanks to Theorem 3.2. This theorem, if it can be used, allows us
to obtain a finite set E of potentially critical points ti ∈ Φ(F ). We can
compute m̃Λ(ti) for ti ∈ E by Algorithm 1. If the value k′ is the Euclidean
minimum of Λ, we shall get:

for all i, m̃Λ(ti) ≤ k′ and there exists an i such that m̃Λ(ti) = k′,

which proves M(Λ) = M̃(Λ) = k′. Moreover, under these conditions, Theo-
rem 3.2 proves that the ti of E ′ are the only critical points in Φ(F ) moduloR.
If we cannot apply Theorem 3.2, we can start again with a new paramaters
in Step 2.

4.3. The units test. Let ε 6= ±1 be the unit of ZK used for this test. Write
{P1, . . . ,PN} for the set of problematic parallelotopes remaining after Step 3, and
for every p ∈ {1, . . . , N}, let us denote by Dp the center of Pp. Let P be one of
these parallelotopes, centered in C: P = {(ul)1≤l≤4n ∈ R4n; |ul − Cl| ≤ hl}. Then
ε?P is a parallelotope centered in C ′′ where C ′′i+kn = σi(ε)Ci+kn for 1 ≤ i ≤ n and
0 ≤ k ≤ 3 and whose faces are also orthogonal to the canonical axes of R4n. More
precisely

ε ? P = {(vl)1≤l≤4n; |vl − C ′′l | ≤ h′l},
where h′i+kn = |σi(ε)|hi+kn for 1 ≤ i ≤ n and 0 ≤ k ≤ 3. Let us put (T1, . . . , T4n) =

M−1C ′′, X0 = M(bT1c, . . . , bT4nc) ∈ R and C ′ = C ′′ − X0 ∈ F . Let us write
M−1 = (m′i,j)1≤i,j≤4n. We first determine a list of elements of R containing all the
X ∈ R such that ε ? P meets F . Using the same argument as in [5] we see that
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such an X is of the form

(17) X = X0 +M(ν1, . . . , ν4n),

where for every i, νi ∈ Z ∩ [bαic, bβic], αi =
∑4n
j=1m

′
i,j(C

′j − δi,jh
′
j), βi =∑4n

j=1m
′
i,j(C

′j + δi,jh
′
j) and δi,j = 1 or −1 according to whether m′i,j > 0 or

not. Remark that X0 satisfies (17) and denote by X0, X1, . . . , Xg (g ≤ 0) all the
elements of R satisfying (17). As in [5], if for all j (0 ≤ j ≤ g) we have{

for all p ∈ {1, . . . , N}, there exists ip ∈ {1, . . . n} and k ∈ {0, . . . , 3}
such that |(C ′′ −Xj −Dp)ip+kn| >

(
1 + |σip(ε)|

)
hip+kn,

then P can be eliminated from the list of problematic parallelotopes.

5. The algorithm, technical aspect

5.1. Symmetry and fundamental domain. For any x ∈ R4n, we have m̃Λ(x) =
m̃Λ(−x). Therefore, we can restrict our calculation to one half of F in Step 3 of
Algorithm 2. Nevertheless, the symmetry should be kept in mind for the remainder
of the algorithm (e.g. for Step 4, we should take it into account for G).

Some problematic parallelotopes can lie on the boundary of the fundamental
domain, which may add unnecessary vertices to the digraph, making it non conve-
nient. To tackle this issue, we change the fundamental domain by translating the
problematic parallelotopes or the fundamental domain itself (which is equivalent
anyway). For more details, see [5, Section 5.7.2].

5.2. Initial value of k. Algorithm 2 requires an initial value of k in Step 2. For the
algorithm to be successful, we need k ≤M(Λ). If every parallelotope is eliminated
by the absorption of integers or the action of units, then M(Λ) < k and we can
start again with smaller k.

We observe that the points x ∈ F such that M(Λ) = mΛ(x) have a “small” orbit
under the action of units. Therefore, if we denote by ε the fundamental unit of K,
then ε`x− x ∈ Λ for some “small” ` ∈ Z>0. In other words, there exist some a ∈ Λ
and some “small” ` ∈ Z>0 such that

x =
a

ε` − 1
.

We may study these points and apply Algorithm 1 to find their minimum mΛ(x).
This can provide a lower bound on M(Λ).

This heuristic can turn out to be non applicable when NK/Q(ε` − 1) is large. In
this case, we can simply consider points

x =
a

b
,

where b is a factor of ε` − 1 of small norm.

5.3. Analysis of the digraph. In Step 6 of Algorithm 2, we try to apply The-
orem 3.2, that is to say to obtain a convenient graph. This digraph may be not
convenient, but we can try to simplify it to make it convenient, as in [12, Sec-
tion 3.2.2]. The basic idea is to merge parallelotopes which have the same transla-
tion vector. For example, in Figure 1c, we can merge T1, T2, and T2 to make the
digraph convenient.
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5.4. Execution of Algorithm 1. Once we have a convenient digraph, it remains
to apply Algorithm 1 to a finite set of points. This algorithm is described with
elements of R4n, which would suggest using floating point numbers, but it actually
deals with elements of F . Consequently, the orbit is computed as a subset of the
quaternion field F in Step 1.

In practice, we compute the orbit of x = Φ(ξ) ∈ Φ(F ), where ξ ∈ F as follows.
Given the fundamental unit ε of K, for increasing k ≥ 1, we compute the elements
εk · ξ reduced modulo Λ, which is denoted by εk · ξ

red
, until εk · ξ

red
= ξ

red
, which

happens for some finite k0 ≥ 1. Then the orbit of x is the image by Φ of the set{
±εk · ξ

red
red

, 0 ≤ k < k0

}
,

where repetitions are discarded.
As for Steps 2 and 6, to computeMk′ orMk, we deal with quantities NR(z−Z)

(see (1)) which are in fact rational numbers.Therefore, during the actual execu-
tion of the algorithm we can compute exactly these numbers and the output of
Algorithm 2 is a rational number (whenever its execution is successful).

6. Results

6.1. An example. Let us introduce this section with an example. We know by

[4] that if K = Q(
√

2), F =

(
−1,−1

K

)
and Λ is a maximal order of F , then

M(Λ) ≤ 1
2 . Let us consider the maximal order

Λ = ZK ⊕ ZK
√

2(1 + i)

2
⊕ ZK

√
2(1 + j)

2
⊕ ZK

1 + i+ j + k

2
.

Since there exist elements λ ∈ Λ satisfying N(λ) = 2 which implies mΛ( 1
λ ) = 1

2 , we
know that M(Λ) ≥ 1

2 . Consequently we have

M(Λ) =
1

2
.

Now, let us come back to our algorithm. The matrix of the fundamental embedding
is

M =



1
√

2
√

2/2 1
√

2 1 1/2
√

2/2

1 −
√

2 −
√

2/2 1 −
√

2 1 1/2 −
√

2/2

0 0
√

2/2 1 0 0 1/2
√

2/2

0 0 −
√

2/2 1 0 0 1/2 −
√

2/2

0 0 0 0
√

2/2 1 1/2
√

2/2

0 0 0 0 −
√

2/2 1 1/2 −
√

2/2

0 0 0 0 0 0 1/2
√

2/2

0 0 0 0 0 0 1/2 −
√

2/2


.

We use the following cutting-covering of F : if al = min{xl; x ∈ F} and bl =
max{xl; x ∈ F} for every 1 ≤ l ≤ 8, we put hl = (bl− al)/2nl where n1 = n2 = 70,
n3 = n4 = n5 = n6 = 30, n7 = n8 = 12 and we cover F with parallelotopes P as in
(15) where for every l, Cl = al + (2il + 1)hl for some 0 ≤ il ≤ nl − 1. Of course, as
in the number field case, we only consider parallelotopes that intersect F . Running
Algorithm 2 with k = 1/2, X = M · ([−2, 3] ∩ Z)8, after four loops of Steps 3, 4,
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and 5, we finally obtain a convenient digraph composed of nine disjointed simple
circuits whose length is 1. This leads to E = {ti = Φ(ξi); 1 ≤ i ≤ 9} where

• ξ1 = 2+3
√

2
4 +

√
2

4 i+ 2+
√

2
4 j +

√
2

4 k;
• ξ2 = 2+

√
2

4 +
√

2
4 i+ 2+

√
2

4 j +
√

2
4 k;

• ξ3 = 1+
√

2
2 + 1

2j;
• ξ4 = 2+3

√
2

4 + 2+
√

2
4 i+

√
2

4 j +
√

2
4 k;

• ξ5 = 4+3
√

2
4 + 2+

√
2

4 i+ 2+
√

2
4 j +

√
2

4 k;
• ξ6 = 2+

√
2

4 + 2+
√

2
4 i+

√
2

4 j +
√

2
4 k;

• ξ7 = 4+
√

2
4 + 2+

√
2

4 i+ 2+
√

2
4 j +

√
2

4 k;
• ξ8 = 1+

√
2

2 + 1
2 i;

• ξ9 = 2+
√

2
2 + 1

2 i+ 1
2j.

Algorithm 1 gives m̃Λ(ti) = 1/2 for every 1 ≤ i ≤ 9 so that M(Λ) = M̃(Λ) = 1/2.
In fact, we do not have to compute these minima because for every 1 ≤ i ≤ 9 we
have xi ≡ 1/Xi mod Λ where N(Xi) = 2. For instance we can take

• X1 = 1+
√

2
2 + 1

2 i+ 1+
√

2
2 j + 1

2k;
• X2 = 1+

√
2

2 − 1
2 i+ 1+

√
2

2 j + 1
2k;

• X3 = 2+
√

2
2 +

√
2

2 j;
• X4 = 1+

√
2

2 + 1+
√

2
2 i+ 1

2j + 1
2k;

• X5 = − 1
2 −

1+
√

2
2 i+ 1+

√
2

2 j + 1
2k;

• X6 = 1
2 −

1
2 i+ 1+

√
2

2 j + 1+
√

2
2 k;

• X7 = 1
2 −

1+
√

2
2 i+ 1+

√
2

2 j + 1
2k;

• X8 = 2+
√

2
2 −

√
2

2 i;
• X9 = −2+

√
2

2 i+
√

2
2 j.

This leads to M(Λ) = 1/2 as expected.
Of course, and this is the interest of the algorithm, in general we do not have any

theoretic argument that allows to establish the value of M(Λ) as in the previous
example.

6.2. Some other results. Table 1 gives some of the results that we have obtained.
More extensive tables are available from [8]. In this table, K is a number field, F is
a quaternion field and Λ is an order of F . The order Λ is described by a quadruple
(q1, q2, q3, q4) ∈ F 4 such that Λ = ⊕4

i=1qiZK . The column Max indicates if Λ is
maximal or not, T is the number of critical points in Φ(F ) modulo R = Φ(Λ) and
M(Λ) is the Euclidean minimum of Λ.

6.3. Timings. The time required to execute Algorithm 2 obviously depends on the
choice of parameters. Indeed, if we choose k > 0 strictly larger than M(Λ), then
we will have to start again with a smaller value of k. The timings presented here
are for a choice of k smaller than M(K), typically k = M(Λ)− ε, where ε = 10−4.

In Table 2, the orders are the maximal orders corresponding to the quaternion
field given in Table 1. It should be noted that no particular efficiency was pursued
for Step 6 because it turned out to be short enough in the examples considered.

The times given are total computation times (cpu times). The computations
were carried out on an Intel Xeon E5-2680 (2.50GHz) processor with 24 cores.
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K F Λ Max T M(Λ)

Q(
√

2)

(
−1,−1

K

) (
1,
√

2(1+i)
2 ,

√
2(1+j)

2 , yes 9 1/2

1+i+j+k
2

)
(
−1,−1

K

)
(1, i, j, k) no 1 4(

−3,−
√

2− 2

K

) (
1, 1+i

2 , j, j+k2

)
yes 36 41

16

Q(
√

3)

(
−1,−1

K

) (
1, 1+i

2 (
√

3 + 1), yes 9 1

1+j
2 (
√

3 + 1), 1+i+j+k
2

)
(
−1,−1

K

) (
1, i,

√
3+j
2 ,

√
3i−k
2

)
yes 9 1

Q(
√

5)

(
−1,−1

K

) (
1, i, 1+

√
5+(3+

√
5)i+2j

4 , yes 3 1/4

1+i+j+k
2

)
(
−1,
√

5− 7

K

) (
1, i,

√
5+3
4 (1 + i) + j

2 , yes 6 9/4

√
5+3
4 + k

2

)
Q(
√

13)

(
−1,−1

K

) (
1, i, 3+

√
13+(5+

√
13)i+2j

4 , yes 24 3/4

1+i+j+k
2

)
Table 1. Euclidean minima of some quaternion fields.

F time for loops of absorption time for total time
and units tests (Steps 3 to 5) Step 6(

−1,−1

Q(
√

2)

)
24h16min 44min 25h2min(

−1,−
√

5− 7

Q(
√

5)

)
7h19min 5 min 7h25min(

−1,−1

Q(
√

13)

)
9d12h36min 1d2h41min 10d15h21min

Table 2. Some timings for Algorithm 2.



20 JEAN-PAUL CERRI, PIERRE LEZOWSKI

Acknowledgments

The research of the second author was funded by a “nouveau chercheur” grant by
région Auvergne. Parts of this research were conducted during a visit of the second
author to Bordeaux, funded by ERC Starting Grant ANTICS 278537. Experiments
presented in this paper were carried out using the PLAFRIM experimental testbed,
being developed under the Inria PlaFRIM development action with support from
Bordeaux INP, LABRI and IMB and other entities: Conseil Régional d’Aquitaine,
Université de Bordeaux and CNRS, and ANR in accordance to the programme
d’investissements d’Avenir (see http://www.plafrim.fr).

References

[1] Magma, v2.20-5, Sydney, 2016, http://magma.maths.usyd.edu.au/magma/
[2] Pari/GP, version 2.8.0, Bordeaux, 2016, http://pari.math.u-bordeaux.fr
[3] E.S. Barnes, H.P.F. Swinnerton-Dyer, The inhomogeneous minima of binary quadratic

forms (II), Acta Mathematica 88 (1952), 279–315
[4] E. Bayer, J.-P. Cerri, J. Chaubert, Euclidean minima and central division algebras,

International Journal of Number Theory 5 (2009), 1155–1168
[5] J.-P. Cerri, Euclidean minima of totally real number fields: Algorithmic determination,

Mathematics of Computation 76 (2007), 1547–1575
[6] J.-P. Cerri, Spectres euclidiens et inhomogènes des corps de nombres, Thèse de Doc-

torat, Université Henri Poincaré, Nancy (2005) available from http://tel.ccsd.cnrs.fr/
tel-00011151

[7] J.-P. Cerri, J. Chaubert, P. Lezowski, Euclidean totally definite quaternion fields over
the rational field and over quadratic number fields, International Journal of Number Theory,
9, 3 (2013), 653–673

[8] J.-P. Cerri, P. Lezowski, Tables of Euclidean minima of orders in totally definite quater-
nion fields over quadratic fields, http://www.math.u-bordeaux.fr/~jcerri/articles/table_
quaternions.php

[9] J. Chaubert, Minimum euclidien des ordres maximaux dans les algèbres centrales à division,
PhD Thesis, EPFL (2006)

[10] M. Deuring, Algebren, Springer Verlag, New-York (1968)
[11] M. Kirschmer, J. Voight, Algorithmic enumeration of ideal classes for quaternion orders,

SIAM J. Comput. 39 (2010), No 5, 1714–1747
[12] P. Lezowski, Computation of the Euclidean Minimum of Algebraic Number Fields, Mathe-

matics of Computation 83 (2014), 1397–1426
[13] I. Reiner, Maximal orders, Clarendon Press, Oxford, 2003
[14] M.-F. Vignéras, Arithmétique des algèbres de quaternions, Lecture Notes in Math. 800,

Springer, Berlin, 1980

Jean-Paul Cerri, IMB, 351, cours de la Libération, 33400 Talence, France, e-mail:
jean-paul.cerri@math.u-bordeaux.fr

Pierre Lezowski, Université Clermont Auvergne, Laboratoire de Mathématiques
Blaise Pascal, F-63000 Clermont-Ferrand, France, e-mail: pierre.lezowski@math.
univ-bpclermont.fr

http://www.plafrim.fr
http://magma.maths.usyd.edu.au/magma/
 http://pari.math.u-bordeaux.fr
http://tel.ccsd.cnrs.fr/tel-00011151
http://tel.ccsd.cnrs.fr/tel-00011151
http://www.math.u-bordeaux.fr/~jcerri/articles/table_quaternions.php
http://www.math.u-bordeaux.fr/~jcerri/articles/table_quaternions.php
jean-paul.cerri@math.u-bordeaux.fr
pierre.lezowski@math.univ-bpclermont.fr
pierre.lezowski@math.univ-bpclermont.fr

	1. Introduction
	2. Preliminary results
	2.1. The fundamental embedding
	2.2. The case n=1
	2.3. Computation of the local minimum
	2.4. The case n=2

	3. Theoretic argumentation
	3.1. Overview of the strategy
	3.2. Theoretic arguments

	4. The algorithm, theoretic aspect
	4.1. General strategy
	4.2. The absorption test
	4.3. The units test

	5. The algorithm, technical aspect
	5.1. Symmetry and fundamental domain
	5.2. Initial value of k
	5.3. Analysis of the digraph
	5.4. Execution of Algorithm 1

	6. Results
	6.1. An example
	6.2. Some other results
	6.3. Timings

	Acknowledgments
	References

