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Thermal transport is a key feature for the operation of phase change memory devices which rest on a fast
and reversible transformation between the crystalline and amorphous phases of chalcogenide alloys upon Joule
heating. In this paper we report on the ab initio calculations of bulk thermal conductivity of the prototypical
phase change compounds Ge2Sb2Te5 and GeTe in their crystalline form. The related Sb2Te3 compound is also
investigated for the sake of comparison. Thermal conductivity is obtained from the solution of the Boltzmann
transport equation with phonon scattering rates computed within density functional perturbation theory. The
calculations show that the large spread in the experimental data on the lattice thermal conductivity of GeTe is due
to a variable content of Ge vacancies which at concentrations realized experimentally can halve the bulk thermal
conductivity with respect to the ideal crystal. We show that the very low thermal conductivity of hexagonal
Ge2Sb2Te5 of about 0.45 W m−1 K−1 measured experimentally is also resulting from disorder in the form of a
random distribution of Ge/Sb atoms in one sublattice.

DOI: 10.1103/PhysRevB.95.024311

I. INTRODUCTION

Chalcogenide alloys are attracting an increasing interest for
their use in optical data storage [digital versatile disk (DVD)]
and, more recently, in electronic nonvolatile memories [phase
change memories (PCMs)] [1–5]. These applications rest on
a fast and reversible transformation between the amorphous
and crystalline phases upon heating. The two phases can be
discriminated thanks to a large contrast in their electrical
conductivity (in PCMs) and optical reflectivity (in DVDs). In
PCM operation, readout of the cell resistance is performed
at low bias. Programming the memory requires instead a
relatively large current to heat up the active layer and to induce
the phase change which can be either the melting of the crystal
and subsequent amorphization or the recrystallization of the
amorphous phase.

Thermal conductivity (κ) is a key property for PCM
operation, as the set/reset processes strongly depend upon
heat dissipation and transport [6]. Several experimental works
reported on the measurements of the bulk thermal conductivity
of the prototypical GeSbTe phase change alloys [6–9] and the
related binary compounds GeTe [10–15] and Sb2Te3 [11,16].
These compounds have a relatively low lattice thermal con-
ductivity in the crystalline phase which has been ascribed to a
strong phonon scattering by disordered point defects.

In the case of cubic Ge2Sb2Te5, which is the metastable
structure the amorphous phase crystallizes into in PCM
devices, disorder is present in the form of a random distribution
of Ge/Sb atoms and 20% of vacancies in one sublattice of

*Corresponding author: davide.campi@epfl.ch

the rocksalt structure, the other being fully occupied by Te
atoms. Disorder leads to a lattice thermal conductivity of κ =
0.40 W m−1 K−1 which is close to the value of 0.27 W m−1 K−1

measured for the amorphous phase [9].
In trigonal GeTe, vacancies in the Ge sublattice are respon-

sible for the large spread of the measured thermal conductivity
over the wide range of values 0.1–4.1 W m−1 K−1 [10–15].

The lattice thermal conductivity is very low
(0.45 W m−1 K−1) [9] also in the hexagonal phase of
Ge2Sb2Te5 (GST), the crystalline phase stable at normal
conditions, in which the vacancy concentration is much lower
than that of the cubic phase. In this latter case, disorder
may arise from a partial random distribution of Sb/Ge
atoms. Actually, the hexagonal phase of Ge2Sb2Te5 has
P 3̄m1 symmetry and nine atoms per unit cell in nine layers
stacked along the c axis, but the distribution of atoms in the
different layers is still a matter of debate in literature. Two
different ordered sequences have been proposed, namely, the
ordered stacking Te-Sb-Te-Ge-Te-Ge-Te-Sb-Te-Te-Sb-
(Kooi structure) [17] and the ordered stacking
Te-Ge-Te-Sb-Te-Sb-Te-Ge-Te-Te-Ge- (Petrov structure) [18].
Most recent diffraction measurements suggested, however,
a disordered phase with Sb and Ge randomly occupying the
same layer [19] which is also confirmed by transmission
electron microscopy imaging of Ge2Sb2Te5 nanowires [20].

In this paper, we quantify the effect of the different types
of disorder (vacancies and Ge/Sb distribution) on the lattice
conductivity of hexagonal Ge2Sb2Te5 and trigonal GeTe by
means of density functional calculations. Phonon dispersion
relations and anharmonic force constants are computed within
density functional perturbation theory (DFPT) [21,22]. Lattice
thermal conductivity is then obtained from the variational
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solution of the Boltzmann transport equation introduced in
Ref. [23]. For the sake of comparison we have also investigated
thermal transport in crystalline Sb2Te3 which is structurally
similar to Ge2Sb2Te5 and for which the effect of disorder is
marginal.

II. COMPUTATIONAL METHODS

Phonon dispersion relations were calculated by means of
DFPT [21] as implemented in the QUANTUM-ESPRESSO suite of
programs [24]. We used either the local density approximation
(LDA) or the Perdew-Burke-Ernzerhof (PBE) [25] generalized
gradient corrected approximation (GGA) to the exchange and
correlation functional. Van der Waals (vdW) interactions, not
accounted for in the GGA schemes, were also included within
the scheme proposed by Grimme [26]. Norm conserving
pseudopotentials with only the outermost s and p valence
electrons were used. The spin-orbit interaction was neglected
since it has been shown to have negligible effects on the
structural and vibrational properties of GeTe [27]. The Kohn-
Sham (KS) orbitals were expanded in a plane-wave basis up to
a kinetic cutoff of 30 Ry. The Brillouin-zone (BZ) integration
for the self-consistent electron density was performed over
Monkhorst-Pack (MP) meshes [28].

Third-order anharmonic force constants have been com-
puted within DFPT as described in Ref. [22]. In this approach
the three-phonons anharmonic coefficients for three arbitrary
wave vectors (q,q’,q”) are computed by using the so-called
2n + 1 theorem as formulated in Ref. [29]. This scheme is
presently implemented only for the LDA functional in the
QUANTUM-ESPRESSO package. The anharmonic force constants
are thus always computed at the LDA level. The choice
of the other functionals affects the harmonic phonons and
the equilibrium lattice parameters at which anharmonic force
constants have been computed. As discussed later in Sec. III,
the harmonic phonons mostly depend on the choice of the
lattice parameters and little on the choice of the functional
once the lattice parameters are fixed. We could expect that the
anharmonic force constants behave similarly. The calculation
of the LDA anharmonic force constant at the lattice parameters
either experimental or optimized with the other functionals
(PBE or PBE+vdW) thus provides the dependence of the
LDA anharmonic force constants on the lattice parameters.
Moreover, to obtain consistent anharmonic force constants at
the LDA level, the internal positions have been relaxed with the
LDA functional at the equilibrium lattice parameters optimized
with the other different functionals. We have also checked
that by computing the LDA anharmonic force constants with
the atomic positions optimized with the other functionals the
thermal conductivity changes by less than 5%.

Phonons and anharmonic force constants are then used
to solve exactly the linearized Boltzmann transport equation
(BTE) by means of the variational technique introduced
in Ref. [23] which we refer to for all the details. This
new scheme provides a full solution of the BTE beyond
the most commonly used single mode phonon relaxation
time approximation (SMA) which describes rigorously the
depopulation of the phonon states but not the corresponding
repopulation. The momentum-conserving character of the
normal (N) processes gives rise to a conceptual inadequacy of

the SMA description and its use becomes questionable in the
range of low temperatures where the umklapp (U) processes
are frozen out and N processes dominate the phonon relaxation.
The exact solution of the BTE allowed us to conclude that
the SMA actually provides a good approximation at room
temperature for the lattice thermal conductivity of the phase
change compounds we are interested in for which the Debye
temperature is actually below 300 K.

The effect of disorder in the distribution of Sb/Ge atoms in
Ge2Sb2Te5 was included in the calculation of the lattice ther-
mal conductivity by considering only the effect of the different
mass. The disorder in either the Petrov or Kooi structures is
thus accounted for by adding a rate of elastic phonon scattering
from isotopic impurities according to Ref. [30] (Eqs. (9) and
(10) in Ref. [23]). The presence of vacancies in the Ge/Sb
sublattice was also included as an isotope impurity scattering
with a mass change �M = 3 M where M is the mass of the
atom removed according to Ratsifaritana and Klemens [31].
The reliability of this approximation was validated for GeTe by
means of nonequilibrium molecular dynamics simulations [32]
as discussed later on.

III. RESULTS

A. GeTe

At normal conditions, GeTe crystallizes in the trigonal
ferroelectric phase (space group R3m) [33,34]. This structure,
with two atoms per unit cell, can be viewed as a distorted
rocksalt geometry with an elongation of the cube diagonal
along the [111] direction and an off-center displacement of
the inner Te atom along the [111] direction giving rise to
a 3+3 coordination of Ge with three short stronger bonds
(2.84 Å) and three long weaker bonds (3.17 Å). In the
conventional hexagonal unit cell of the trigonal phase, the
structure can be also seen as an arrangement of GeTe bilayers
along the c direction with shorter intrabilayer bonds and longer
interbilayers bonds (see Fig. 1). The trigonal phase transforms
experimentally into the cubic paraelectric phase (space group
Fm3̄m) above the Curie temperature of 705 K [36].

The structural parameters of the trigonal phase consist of
the lattice parameter a, the trigonal angle α, and the internal

FIG. 1. Geometry of the GeTe crystal seen as a stacking of
bilayers along the c axis of the conventional hexagonal unit cell
with the three short intrabilayers bonds and three long interbilayers
bonds. Green spheres denote Ge atoms and blue spheres denote Te
atoms.
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TABLE I. Structural parameters of the trigonal phase of crys-
talline GeTe computed within DFT with the LDA functional, the
PBE functional with and without vdW interactions according to
Grimme [26], and experimental data from Refs. [33,34]. The lengths
of short and long bonds are also given.

Structural PBE
parameters PBE +vdW LDA Exp.

a (Å) 4.33 4.22 4.23 4.31a–4.293b

α 58.14◦ 58.18◦ 58.79◦ 57.9◦a–58.03◦b

Unit-cell volume 54.98 51.75 52.00 53.88a–53.42b

(Å
3
)

x 0.2358 0.2380 0.2384 0.2366a–0.2357b

Short bond (Å) 2.85 2.82 2.83 2.84a–2.82b

Long bond (Å) 3.21 3.11 3.11 3.17a-3.18b

aRef. [33].
bRef. [34].

parameter x that assigns the positions of the two atoms in
the unit cell, namely, Ge at (x,x,x) and Te at (−x,−x,−x)
[33]. The weaker interbilayer bonds may be seen as resulting
from a partial resonant bonding between the short and long
bond in a sort of three-centers-two-electrons bond. This idea,
first proposed for GeTe by Lucovsky and White [35], was
elaborated further in Ref. [37] to explain the optical contrast
between the amorphous and crystalline states of phase change
materials at large.

The theoretical structural parameters optimized at zero
temperature with the PBE functional with or without vdW cor-
rections are compared in Table I with the LDA results and the
experimental data. The BZ integration for the self-consistent
electron density was performed over a 12 × 12 × 12 MP mesh.
The equilibrium volume obtained with the PBE functional is
very close to experiments while it is somehow underestimated
with the LDA functional and the PBE functional plus vdW
corrections.

Note that the addition of semiempirical vdW interaction
according to Grimme to the PBE functional leads to a worse
agreement with the experimental lattice parameters. This
might be due to inaccuracies in the description of the damping
of the vdW interaction at short distances and to the fact that the
interbilayer bonding is not vdW-like but it is due to a partial
resonant bonding as discussed above.

We remark that the theoretical equilibrium volume is com-
puted at 0 K while the structural experimental data in Table I
correspond to 300 K. An upper estimate of the total thermal
expansion of the rhombohedral GeTe from 0 to 300 K can
be obtained from the experimental volume thermal expansion
coefficient at 300 K which equals 4.59 10−5 K−1 as obtained
from neutron powder diffraction in Ref. [34]. This estimate
yields �V/V of 4.59 × 10−5× 300 = 1.38 ×10−2, i.e., 1.38%,
which is smaller than the difference between the experimental
and theoretical volumes with all functionals in Table I.

The ideal GeTe crystal is a narrow gap semiconductor with a
DFT-PBE band gap of 0.45 eV. It turns into a p-type degenerate
semiconductor because of defects in stoichiometry, in the form
of Ge vacancies, which induce the formation of holes in the
valence band [38]. Hole concentrations are typically higher
than 1019 holes/cm3 in native p-type doped GeTe [39]. Higher
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FIG. 2. Phonon dispersion relations of hole-doped GeTe (see
text) from PBE calculations at the theoretical equilibrium lattice
parameters and from LDA calculations at the experimental lattice
parameters [33] (see Table I).

hole concentration of 1.6 × 1021 holes/cm3 which corresponds
to a vacancy content of about 4.3 at. % in the Ge sublattice
(two holes per Ge vacancy) was also reported [27].

In the calculation of phonon dispersion relations we
considered the presence of holes at the lower content of
8 × 1019 holes/cm3 measured in Ref. [39], but at first we did
not consider the presence of the companion Ge vacancies. We
relaxed the atom positions by keeping the lattice parameters
fixed at the values of the ideal crystal, which leads to a very
small shift of the internal coordinate x to 0.2359 (for the PBE
functional, see Table I). The Ge vacancies, present in the real
crystal but lacking in our models of the p-type compound, are
actually expected to affect the lattice parameters, as much as
the holes in the valence bands do.

Phonons have been computed for the different functionals
at the theoretical lattice parameters and for the LDA functional
at the experimental lattice parameter [22] as well.

The results for the PBE functional at the theoretical lattice
parameter and, for the LDA functional, at the experimental
lattice parameters (close to the PBE ones) are compared
in Fig. 2. The effect of holes on the phonon dispersions
has been discussed in our previous work (with the PBE
functional) [32] and in Ref. [27] (with the LDA functional),
to which we refer to for further details. Different functionals
yield very similar results once the calculations are performed
with similar lattice parameters as it is the case for PBE and
LDA phonons at the experimental lattice parameters. The
same is true for PBE+vdW and LDA results at the theoretical
lattice parameters. Conversely sizable differences are observed
between the phonon dispersions computed with LDA at the
theoretical and experimental lattice parameters and between
the PBE and PBE+vdW phonons again due to a large change in
the corresponding equilibrium volumes. All phonon dispersion
relations have been obtained by Fourier interpolating the
dynamical matrix computed in a 6 × 6 × 6 MP grid in the BZ.

We then computed the lattice thermal conductivity for
the ideal crystal at first without the effects of vacancies.

024311-3



CAMPI, PAULATTO, FUGALLO, MAURI, AND BERNASCONI PHYSICAL REVIEW B 95, 024311 (2017)

Anharmonic forces have been computed on a 4 × 4 × 4
q-point phonon grid on the BZ, Fourier interpolated with a
finer 15 × 15 × 15 mesh for the BTE solution. Convergence
was checked with a 25 × 25 × 25 grid. Phonon energies have
been broadened with a Gaussian function with smearing [40]
of 2 cm−1 for energy conservation in three-phonon scattering
processes. The anharmonic force constants were computed
only with the LDA functional by optimizing the internal
geometry with the lattice parameters fixed to the values used
in the corresponding calculations of harmonic phonons (see
Sec. II). This procedure leads to a small change in the short
and long bonds below 0.3% (see Table I).

The resulting lattice thermal conductivity at 300 K com-
puted with the exact variational solution of the BTE and
PBE phonons along the z direction, parallel to the c axis in
the hexagonal notation (see Fig. 1), is κz = 2.00 Wm−1 K−1

while the lattice thermal conductivity in the xy plane parallel
to the GeTe bilayers (see Fig. 1) is κx = 2.90 W m−1 K−1.
For a polycrystalline sample the calculated average thermal
conductivity is κav = 2

3κx + 1
3κz = 2.6 W m−1 K−1, which is

an upper limit, as it neglects the effects of defects (vacancies
in particular) and grain boundary scattering. κav is comparable
to, although slightly larger than, the experimental value of
2.35 ± 0.53 W m−1 K−1 of Ref. [10]. Including Grimme’s van
der Waals interaction in the phonons calculation at the theo-
retical lattice parameters leads to slightly higher thermal con-
ductivities of κz = 2.30 W m−1 K−1, κx = 3.38 W m−1 K−1,
and κav = 3.02 W m−1 K−1. By using the LDA functional
for both the harmonic and anharmonic force constants at
the experimental lattice parameters one obtains even larger
lattice thermal conductivities of κz = 2.37 W m−1 K−1, κx =
3.62 W m−1 K−1, and κav = 3.20 W m−1 K−1.

Using the equilibrium Boltzmann distribution of phonons
instead of the quantum Bose-Einstein distribution has no effect
on the lattice thermal conductivity at 300 K (within the figures
given here) due to the low Debye temperature (180 K). For the
same reason the lattice thermal conductivities computed within
the SMA are only slightly lower than the values obtained from
the full solution of the BTE.

The lattice thermal conductivity within SMA is given
by [23]

κx = 1

NqVo

∑
q,j

Cq,j v
2
q,j τq,j (1)

where the sum runs over the band index j and the Nq points in
the BZ, vq,j is the group velocity along a generic coordinate
x for band j at point q, Cq,j is the contribution to the specific
heat of the (q,j ) phonon with frequency ωq,j obtained from
the derivative of the Bose-Einstein function fBE with respect
to temperature as �ωq,j ∂fBE(ωq,j )/∂T , Vo is the unit-cell
volume, and τq,j is the phonon lifetime obtained in turn from
anharmonic force constants as discussed in Ref. [23] [see Eq.
(B1) therein]. This approximation, when applicable, provides
a more straightforward physical insight into the system,
allowing one to account separately for each contributing factor
to the thermal conductivity that appears in Eq. (1), and will
be used with this purpose in the present paper after checking
its validity by comparison with the exact BTE solution.

TABLE II. Lattice thermal conductivity (W m−1 K−1) of ideal
trigonal GeTe at 300 K along the c axis in the hexagonal notation
(κz, see Fig. 1) in the perpendicular plane (κx) and their average
for a polycrystalline sample (κav, see text), computed with the exact
variational solution of the BTE and within the SMA. The PBE and
PBE+vdW data refer to calculations at the theoretical equilibrium
volumes. The LDA data refer to calculations at the experimental
lattice parameters (see text).

Exact SMA

κz κx κav κz κx κav

PBE 2.00 2.90 2.60 1.80 2.61 2.34
PBE+vdW 2.30 3.38 3.02 1.92 2.91 2.58
LDA 2.37 3.62 3.20 2.00 3.10 2.70

A summary of the resulting thermal conductivity computed
with the different functionals and the comparison between the
exact solution of the BTE and the SMA approximation are
reported in in Table II.

The cumulative lattice thermal conductivity within the
SMA of ideal trigonal GeTe as a function of phonons
frequency is shown in Fig. 3 along with group velocities,
phonon lifetimes, and mean free paths averaged over a small
energy window of 2 cm−1. The anharmonic broadening
of the phonon branches computed as the inverse lifetime
(Eq. (6) in Ref. [22]) within the SMA are also reported in
Fig. 4. Another visualization of the anharmonic broadening
is obtained by plotting the spectral function multiplied by the
phonon frequency ω · σ (ω,q) shown in Fig. 5 where σ (ω,q)
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FIG. 3. (a) Cumulative lattice thermal conductivities within the
SMA (see text) along the c axis in the hexagonal notation (κz,
see Fig. 1) in the perpendicular plane (κx) and their average for a
polycrystalline sample (κav, see text), (b) group velocities, (c) phonon
lifetimes, and (d) mean free paths averaged over a small energy
window of 2 cm−1 shown as a function of phonon frequencies in
the ideal GeTe crystal (no vacancies) at 300 K. The data refer to LDA
calculations at the experimental lattice parameters.
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FIG. 4. Phonon dispersion relations of GeTe from LDA calcula-
tions at the experimental lattice parameters [33] (see Table I). The
thickness of the curves corresponds to the anharmonic broadening
computed as the inverse lifetime within the SMA.

is defined by [41]

σ (q,ω) =
∑

j

2ωq,j τ
−1
q,j[

�2
(
ω2 − ω2

q,j

)]2 + 4�2ω2
q,j τ

−2
q,j

. (2)

Comparison of Figs. 3(a) and 4 shows that the thermal
conductivity is mostly due to acoustic phonons even at 300 K
because of both low group velocities and lifetimes of optical
phonons. All the data in Figs. 3–7 refer to LDA calculations
at the experimental lattice parameters.

We then included the effects of vacancies in the Ge
sublattice on the thermal conductivity by adding a rate of
elastic scattering as due to isotopic defects in the BTE (see
Sec. II). We considered two limiting vacancy contents of
0.2 at. % on the Ge sublattice corresponding to the hole
concentration of 8 × 1019 holes/cm3 studied experimentally
in Ref. [39], and of 3 at. % that corresponds to a hole

FIG. 5. Spectral function ω · σ (q,ω) [see Eq. (2)] of GeTe from
LDA calculations at the experimental lattice parameters and only
anharmonic broadening.

concentration of 1.1 × 1021 holes/cm3 close to that studied
experimentally in Ref. [27]. The lattice thermal conductivity
(LDA phonons at the experimental lattice parameters and
exact solution of the BTE) turns into κz = 2.0 W m−1 K−1,
κx = 3.0 W m−1 K−1, and κav = 2.7 W m−1 K−1 for the
low vacancy content or κz = 0.9 W m−1 K−1, κx =
1.4 W m−1 K−1, and κav = 1.2 W m−1 K−1 for the higher
vacancy concentration to be compared with the values for the
ideal GeTe of κz = 2.37 W m−1 K−1, κx = 3.62 W m−1 K−1,
and κav = 3.20 W m−1 K−1 as given above. Even a small
amount of Ge vacancies has thus a dramatic effect on the
lattice thermal conductivity of GeTe which can be more than
halved for 3 at. % in agreement with the experimental data in
Ref. [15].

We remark that the effect of vacancies on the thermal
conductivity has been actually introduced perturbatively as
isotopic defects according to Ref. [31]. To assess the reliability
of this approximation, we have performed nonequilibrium
molecular dynamics (NEMD) simulations by using a highly
transferable interatomic potential for GeTe obtained by fitting
a large database of DFT-PBE energies with a neural network
method [44]. The reliability of the classical approximation for
phonons population at 300 K in GeTe, implicit in NEMD, has
been demonstrated above. The NEMD simulations reported in
Ref. [32] yield an average lattice thermal conductivity κav of
3.2 or 1.4 W m−1 K−1 for the ideal crystal or with 3 at. % of
Ge vacancies. The reduction of the thermal conductivity due
to vacancies is quantitatively similar to the results obtained
from BTE, which yields 3.2 or 1.2 W m−1 K−1 for the ideal
and defective (3% of vacancies) crystal (LDA phonons at the
experimental lattice parameters). The good agreement between
the NEMD and BTE results assesses the reliability of the
approximation used to deal with Ge vacancies in the solution
of the BTE. The cumulative lattice thermal conductivity and
average phonon mean free path within the SMA is shown
in Fig. 6 as a function of phonons frequency for trigonal
GeTe with 3 at. % of Ge vacancies. These results have to
be compared with the corresponding data for ideal GeTe in
Fig. 3.

We further remark that in the presence of holes in the
valence bands the phonon lifetimes can be reduced also
by electron-phonon scattering processes. These effects are,
however, negligible in GeTe at the doping levels discussed
above. To estimate the reduction of thermal conductivity due
to electron-phonon scattering we removed from the calculation
of κ the contribution of all phonons with wave vector q smaller
than twice the larger wave vector on the Fermi surface. This
corresponds to a large overestimation of the effects of the
electron-phonon coupling that, nevertheless, leads to a slight
reduction of the thermal conductivities to κz = 2.2 W m−1 K−1

and κx = 3.1 W m−1 K−1.
Finally, we calculated the temperature dependence of the

thermal conductivity in GeTe with 3% vacancies as reported
in Fig. 7.

B. Sb2Te3

Crystalline Sb2Te3 has a rhombohedral geometry [R3̄m

space group (D5
3d )] with five atoms per unit cell [42,43]. The

crystal structure can be better visualized in the conventional
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FIG. 6. (a) Cumulative lattice thermal conductivities within the
SMA (see text) along the c axis in the hexagonal notation (κz,
see Fig. 1) in the perpendicular plane (κx) and their average for
a polycrystalline sample (κav, see text), and (b) mean free paths
averaged over a small window of 2 cm−1 as a function of phonon
frequencies for GeTe with 3 at. % of Ge vacancies at 300 K. The data
refer to LDA calculations at the experimental lattice parameters.

hexagonal supercell with three formula units (Fig. 8). In the
hexagonal cell we recognize three slabs, each formed by five
hexagonal layers stacked along c in the sequence Te-Sb-Te-
Sb-Te, each layer containing a single atom in the unit cell. The
weak Te-Te bonds, 3.736 Å long [42], connecting adjacent
slabs are not shown in Fig. 8 to emphasize the presence
of Sb2Te3 structural units. The three atoms independent by
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FIG. 7. Temperature dependence of thermal conductivity of
polycrystalline GeTe with 3% of Ge vacancies. The data refer to
LDA phonons at the experimental lattice parameters.

FIG. 8. Structure of Sb2Te3 in the unit rhombohedral cell and
conventional hexagonal supercell (three formula units). Blue and red
spheres denote Te and Sb atoms.

symmetry are at crystallographic positions Te1 = (0, 0, 0),
Te2 = (0, 0, x), and Sb = (0, 0, y).

We computed the phonon dispersion relation of Sb2Te3

with the PBE functional in our previous work [45]. Here,
we consider the PBE functional supplemented by the vdW
corrections [26] to better reproduce the weak Te-Te interaction.
The equilibrium structural parameters obtained with PBE and
PBE+vdW functionals are compared in Table III with the
experimental data [42]. Integration of the BZ for the self-
consistent solution of the Kohn-Sham equation is performed
over a 6 × 6 × 6 MP mesh.

TABLE III. Structural parameters of crystalline Sb2Te3 from
DFT calculations with the PBE or PBE+vdW functionals (see text)
compared with the experimental data from Refs. [42,43].

Structural parameters PBE PBE+vdW Exp.

a (Å) 4.316 4.219 4.264a–4.271b

c (Å) 31.037 30.692 30.458a–29.877b

x 0.785 0.786 0.787a

y 0.397 0.397 0.399a

aRef. [42].
bRef. [43].
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FIG. 9. Phonon dispersion relations of Sb2Te3 from PBE+vdW
calculations. The dots are experimental data from neutron inelastic-
scattering measurements at room temperature [46].

Experimentally this compound is a degenerate p-type
semiconductor with a hole concentration of about 1.0 ×
1020 holes/cm3 possibly due to an Sb excess substituting
Te [11]. As for the case of GeTe, we introduced holes in the
valence bands compensated by a uniform negative background
to ensure charge neutrality. The internal structure has been
optimized by fixing the lattice parameters to those obtained
without holes. Phonon dispersion relations have been obtained
by Fourier transforming the dynamical matrix computed on a
6 × 6 × 6 MP grid in the BZ.

The dispersion curves computed with PBE+vdW func-
tionals at the theoretical equilibrium parameters are reported
in Fig. 9 together with the available experimental data from
neutron inelastic scattering [46].

Anharmonic force constants have been computed following
the same scheme used for GeTe and discussed in the previous
section. A 4 × 4 × 4 q-point grid has been used. Fourier
interpolation has been made over a 15 × 15 × 15 grid with
a smearing of 2 cm−1 for energy conservation.

The resulting lattice thermal conductivities at 300 K com-
puted with PBE+vdW phonons and solving exactly the BTE
are κz = 0.8 W m−1 K−1, κx = 2.0 W m−1 K−1, and κav =
1.6 W m−1 K−1, which compares well with the experimental
value of κav = 1.3 W m−1 K−1 of Ref. [11] or 1.8 W m−1 K−1

of Ref. [16]. Also in this case the difference between the exact
BTE solution and the SMA is rather small with a SMA thermal
conductivity of κz = 0.78 W m−1 K−1, κx = 1.9 W m−1 K−1.

In our model of Sb2Te3 the sublattice is ordered, but we
expect a fraction of about 0.76% of Te sites occupied by
Sb atoms due to a hole concentration of 1020/cm2 [11].
This defects content could bring the slightly overestimated
theoretical thermal conductivity to a better agreement with
experiments (see Sec. III C). We remark that the experimental
lattice thermal conductivities are always obtained from the
total thermal conductivity and the subtraction of the electronic
contribution by applying the Wiedemann-Franz law.

The thermal conductivity is strongly anisotropic due to the
presence of weak Te-Te bonds between adjacent quintuple
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FIG. 10. (a) Cumulative lattice thermal conductivities within the
SMA (see text) along the c axis in the hexagonal notation (κz,
see Fig. 8) in the perpendicular plane (κx) and their average for a
polycrystalline sample (κav, see text), (b) group velocities, (c) phonon
lifetimes, and (d) mean free paths averaged over a small window of
2 cm−1 as a function of phonon frequencies in Sb2Te3 crystal at 300 K.

layers. The cumulative lattice thermal conductivity within the
SMA of Sb2Te3 as a function of phonons frequency is shown in
Fig. 10 along with average group velocities, phonon lifetimes,
and mean free paths. The contribution of optical modes to the
thermal conductivity is marginally more important for Sb2Te3

than for the GeTe, reaching here a contribution of 35%.

C. Ge2Sb2Te5

The hexagonal phase of Ge2Sb2Te5 has P 3̄m1 symmetry
and nine atoms per unit cell in nine layers stacked along the c

axis. Two different sequences have been proposed, namely, the
ordered stacking Te-Sb-Te-Ge-Te-Ge-Te-Sb-Te-Te-Sb- [17]
shown in Fig. 11 (Kooi structure, named stacking A in Ref. [47]
and hereafter) and the ordered stacking Te-Ge-Te-Sb-Te-Sb-
Te-Ge-Te-Te-Ge- [18] (Petrov structure, named stacking B
in Ref. [47] and hereafter). As already mentioned, recent
diffraction measurements suggested, however, a disordered
phase with Sb and Ge randomly occupying the same layers [19]
(Matsunaga structure, named stacking C in Ref. [47] and
hereafter) which is also confirmed by transmission electron
microscopy imaging of GST nanowires [20]. The structure
can be seen as a stacking of Ge2Sb2Te5 quintuple layers with
weak Te-Te bonds between adjacent layers.

In a previous work [47] we optimized the geometry of
Ge2Sb2Te5 in stackings A and B within DFT-PBE. We also
modeled the disordered phase C by doubling the unit cell along
the b axis and putting one Ge and one Sb atom on each Ge/Sb
layer (18-atom supercell). The geometry chosen for stacking C
corresponds to the best quasirandom structure compatible with
an 18-atom supercell [48]. Stacking A is lower in energy than
stacking B (by 19 meV/atom). Stacking C is only marginally
higher in energy than stacking A, actually within the
free-energy contribution expected for configurational disorder,
and it is even marginally lower in energy than stacking A if
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FIG. 11. Structure of Ge2Sb2Te5 in the hexagonal cell in stacking
A (Kooi) and B (Petrov). Two formula units along the c axis and period
replica of atoms at the edges of the hexagonal cell in the ab plane are
shown. Atoms independent by symmetry are labeled. In stacking A
and B, the positions of Ge and Sb atoms are interchanged. The weak
Te-Te bonds (3.7 Å long) connecting adjacent slabs are not shown
to emphasize the presence of Ge2Sb2Te5 stacks. Blue, green, and red
spheres denote Te, Ge, and Sb atoms.

the hybrid B3PW functional [49] is used. The crystal structure
of Ge2Sb2Te5 in stacking A was optimized in Ref. [47] by
constraining the P 3̄m1 crystal symmetry. This procedure was
chosen because of the presence of an unstable optical phonon at
the 	 point [47]. This instability is actually removed by adding
a vdW interaction according to Grimme [26] as discussed
in Ref. [50]. Therefore, the thermal conductivity has been
computed here using the PBE functional supplemented by
the vdW interaction of Ref. [26]. The equilibrium theoretical
lattice parameters of Ge2Sb2Te5 in stacking A and B obtained
with the PBE functional with and without vdW corrections
are compared with experimental data in Table IV. The BZ
was sampled over a 8 × 8 × 8 MP mesh for the self-consistent
electron density.

GST is a degenerate p-type semiconductor as well with
a hole density of about 2.73 × 1020 holes/cm3 [51]. We
consistently introduced holes (3 × 1020 holes/cm3) compen-
sated by a uniform background. The internal structure has been
relaxed by fixing the lattice parameters to the values obtained
without holes with negligible changes.

Phonon dispersion relations have been obtained by Fourier
transforming the dynamical matrix computed on a 4 × 4 × 4

TABLE IV. Relative energies (meV/atom) and theoretical equi-
librium lattice parameters (Å) for stacking A (Kooi) and B (Petrov)
optimized with the PBE+vdW functional. Data without vdW cor-
rections are reported in parentheses. The experimental data are from
Refs. [17,19].

Stacking

Kooi Petrov Exp.

Energy 0 (0) 16 (19)
(meV/atom)

Cell parameters (Å)
a 4.191 (4.28) 4.178 (4.25) 4.225a–4.25b

c 17.062 (17.31) 17.41 (17.74) 17.239a–17.27b

aRef. [19].
bRef. [17].

MP grid in the BZ. Phonon dispersion relations are shown in
Fig. 12 for the two stackings with and without vdW correction.

Anharmonic force constants have been computed following
the same scheme used for GeTe and discussed in the previous
sections. A 4 × 4 × 1 q-point grid has been used. Fourier
interpolation has been made over a 20 × 20 × 7 grid with a
smearing of 2 cm−1 for energy conservation.

The thermal conductivities at 300 K for the ordered
Ge2Sb2Te5 crystal in stacking A and B obtained from the
full solution of the BTE with the PBE+vdW functional are
reported in Table V compared with the SMA result, which
is lower by less than 5% with respect to the value obtained
from the full solution of the BTE. The average thermal
conductivity of about 1.6–1.2 W m−1 K−1 is sizably larger
than the experimental value of 0.45 W m−1 K−1 reported in
Ref. [9].

The spectral functions [Eq. (2)] of GST in stacking A and B
and including only anharmonic lifetimes are shown in Fig. 13.
The cumulative lattice thermal conductivity within the SMA
of Ge2Sb2Te5 as a function of phonons frequency is shown
for stacking A and B in the side columns of Fig. 14, along
with group velocities, phonon lifetimes, and mean free paths
averaged over a small energy window of 2 cm−1.

We then introduced in the BTE the scattering due to
vacancies in either the Sb or Ge sublattice with a concentration
assigned by the holes density of 3 × 1020 holes/cm3 close
to the value measured by the Hall effect [51]. This holes
density corresponds to either 1.8 at. % vacancies in the Ge
sublattice (two holes per vacancy involving only electrons
from p orbitals) or to 1.25 at. % vacancies in the Sb sublattice
(three holes per vacancy). The average thermal conductivity
is reduced to about 0.8–1.1 W m−1 K−1(Table VI), which is
still much higher than the experimental value. By increasing
the vacancy concentration up to 3 at. % in the Ge sublattice,
the average thermal conductivity is further reduced to 0.64–
0.86 W m−1 K−1.

To better model the experimental conditions, we have
then introduced disorder in the Ge/Sb sublattice by adding
an isotopic phonon scattering rate in the BTE (see Sec. II).
By considering a full Ge/Sb mass mixing and neglecting Ge/Sb
vacancies the average thermal conductivity is sizably reduced
to 0.61–0.76 W m−1 K−1 (see Table VI). By further adding
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FIG. 12. Phonon dispersion relations of Ge2Sb2Te5 for stacking
A (Kooi) and B (Petrov) stackings from PBE and PBE+vdW
calculations.

on top of Ge/Sb disorder the scattering due to 1.8 at. % Ge
vacancies or 1.25 at. % Sb vacancies, the average thermal

TABLE V. Lattice thermal conductivity (W m−1 K−1) of hexag-
onal Ge2Sb2Te5 at 300 K along the c axis in the hexagonal notation
(κz, see Fig. 11) in the perpendicular plane (κx) and their average for
a polycrystalline sample (κav, see text). Both stacking A (Kooi) and
B (Petrov) are considered. The thermal conductivity is computed for
the perfect crystals using the exact variational solution of the BTE
and within the SMA.

Exact SMA

κz κx κav κz κx κav

Kooi 0.34 1.59 1.20 0.34 1.51 1.12
Petrov 0.59 2.10 1.60 0.58 2.00 1.53

FIG. 13. Spectral function ω · σ (q,ω) [see Eq. (2)] of GST in the
stacking A (Kooi) and B (Petrov) with anharmonic broadening only.

conductivity is further reduced to 0.43–0.58 W m−1 K−1 or
0.28–0.42 W m−1 K−1 (see Table VI).

The cumulative lattice thermal conductivity within the
SMA of Ge2Sb2Te5 as a function of phonons frequency is
shown in the central column of Fig. 14 for stacking B by
including Sb/Ge disorder (Matsunaga model) and vacancies in
the Sb sublattice. Group velocities, phonon lifetimes, and mean
free paths averaged over a small energy window of 2 cm−1 are
also shown in the same figure. The temperature dependence of
the thermal conductivity for this latter system averaged over
the three Cartesian directions is shown in Fig. 15.

From Figs. 13 and 14 it is clear that the acoustic phonons
mostly contribute to the thermal conductivity at 300 K, with a
small contribution from the lower-energy optical modes and a
negligible contribution from the high-energy optical modes. In
the disordered Matsunaga phase in particular, the whole lattice
thermal conductivity originates from the acoustic modes with
energy below 30 cm−1.
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FIG. 14. (a) Cumulative lattice thermal conductivities within the
SMA (see text) along the c axis in the hexagonal notation (κz,
see Fig. 1) in the perpendicular plane (κx) and their average for a
polycrystalline sample (κav, see text), (b) group velocities, (c) phonon
lifetimes, and (d) mean free paths over a small energy window of
2 cm−1 as a function of phonon frequencies in Ge2Sb2Te5 crystal at
300 K for stacking A (Kooi, right panels), B (Petrov, left panels), and
for the disordered stacking according to Matsunaga (central panels)
including vacancies (see text).

TABLE VI. Lattice thermal conductivity of hexagonal Ge2Sb2Te5

at 300 K along the c axis in the hexagonal notation (κz, see Fig. 11)
in the perpendicular plane (κx) and their average for a polycrystalline
sample (κav, see text). Both stacking A (Kooi) and B (Petrov) are
considered. The thermal conductivity is computed for the perfect
crystals (ideal), for a crystal with 1.8 at. % of Ge vacancies (1.8% Ge
vac, see text), for 1.25 at. % of Sb vacancies (1.25% Sb vac, see text),
for a complete disorder in the Ge/Sb sublattice with no vacancies
(Ge/Sb disorder, Matsunaga structure), and finally with both disorder
in the Ge/Sb and a content of Ge vacancies (Ge/Sb + Ge vac) or
Sb vacancies (Ge/Sb + Sb vac) as given above. All the results refer
to the exact BTE solution, however the differences between exact
and SMA results are marginal. Data are given in W m−1 K−1. The
experimental [9] lattice thermal conductivity is 0.45 W m−1 K−1.

A (Kooi) B (Petrov)

κz κx κav κz κx κav

Ideal 0.34 1.59 1.20 0.59 2.10 1.60
1.8% Ge vac 0.28 1.19 0.83 0.42 1.49 1.13
1.25% Sb vac 0.25 1.10 0.82 0.47 1.50 1.16
Ge/Sb disorder 0.20 0.77 0.61 0.30 0.99 0.76
Ge/Sb + Ge vac 0.16 0.56 0.43 0.25 0.75 0.58
Ge/Sb + Sb vac 0.11 0.37 0.28 0.23 0.51 0.42
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FIG. 15. Temperature dependence of thermal conductivity of
polycrystalline GST with disorder in the Sb/Ge sublattice and
including vacancies (see text).

Note that disordering the Kooi or Petrov structures with
a 50-50 occupation by Sb and Ge in all layers leads to
the same structure and thus in principle to the same lattice
thermal conductivity. This is not the case for the results in
Table IV because disorder has been introduced perturbatively.
This approximation leads to a dependence of the final results
on the choice of the ordered starting configuration. In the
structural model proposed by Matsunaga, the disorder in the
occupation of the Ge/Sb sites is actually not complete as the
cationic lattice sites closer to the vdW gap are occupied by Sb
in a fraction of 56% (with a reversed proportion for the inner
cationic sites). The uncertainties related to our perturbative
approach to the disorder prevent us from assessing such small
deviations from a 50-50 occupation of the Sb/Ge sites on the
basis of the calculated thermal conductivity. In spite of these
uncertainties, it is clear that both vacancies and disorder are
needed to achieve a good agreement between theoretical and
experimental data (see Table VI). This result strongly suggests
that the low thermal conductivity in the hexagonal phase of
GST is actually an indicator of the (Ge/Sb) sublattice disorder
confirmed by recent experimental data from Z-resolved TEM
in GST nanowires [20].

We remark that the thermal conductivity was obtained from
the solution of the BTE with the inclusion of disorder in the
Sb/Ge sublattice and vacancies in Ge2Sb2Te5. The value of
0.42 W m−1 K−1 in Table VI is very close to the minimum
thermal conductivity obtained from the theoretical average
transverse and longitudinal sound velocity (vL, vT ) and atomic
density na according to Cahill et al. [52] and valid above the
Debye temperature as given by

κmin = 1

2

(
πn2

a

6

) 1
3

(vL + 2vT )kB (3)

where kB is the Boltzmann constant. By plugging in Eq. (3)
the sound velocities averaged over the BZ vL = 3120 m/s
and vT =1950 m/s one finds κmin = 0.43 W m−1 K−1, which
is close to the full DFT solution and to the experimental value
of 0.45 W m−1 K−1 as already observed in Refs. [9,53]. This
result raises an overall concern on the applicability of the BTE
itself in the presence of such a strong phonon scattering due to
disorder. However, as we can see in Fig. 14, disorder does not
affect the phonon mean free path in the same manner for all
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frequencies. The disorder actually suppresses the contribution
to the thermal conductivity of phonons with frequency above
50 cm−1 which gives instead an important contribution to the
thermal conductivity of the ideal crystal. On the other hand
phonons with frequency below 30 cm−1 that mostly contribute
to the thermal conductivity of the disordered crystal still show
a mean free path of several nm which seems consistent with
the use of a BTE approach.

Note that the lattice thermal conductivity of GeTe, Sb2Te3,
and Ge2Sb2Te5 has been computed by using the anharmonic
force constant computed at 0 K. In a recent theoretical
paper [54] on the lattice thermal conductivity of Bi2Te3 which
is isostructural and isoelectronic with Sb2Te3, it is shown
that the lattice expansion has little effect on anharmonic
force constants. On the other hand, it is shown that the
effects of thermal phonon population on the anharmonic force
constants are not negligible in Bi2Te3 at 300 K. The use of
the anharmonic force constants obtained at 0 K leads to an
underestimation of about 20% of the in-plane lattice thermal
conductivity at 300 K with respect to the value obtained with
the anharmonic force constant extracted consistently from
molecular-dynamics simulations at 300 K [54]. It remains
to be seen whether a similar effect might be present in
GeTe, Sb2Te3, and Ge2Sb2Te5 compounds. If this were the
case, the error introduced by the use made here of the 0-K
anharmonic force constants would not change anyway our
conclusions on the need of introducing defects either in the
form of vacancies (in GeTe) or disorder in the occupation of
the Sb/Ge sublattices (in GST) to reproduce the experimental
lattice thermal conductivity.

IV. CONCLUSIONS

We have computed the lattice thermal conductivity of
the phase change compound Ge2Sb2Te5 in the hexagonal
crystalline phase from the full solution of the linearized
Boltzmann transport equation with phonons and phonon-
phonon scattering rates computed within density functional
perturbation theory. Due to the weak Te-Te bonds, the
lattice thermal conductivity is strongly anisotropic with a
low conductivity along the c axis. However, scattering due to
disorder in the Sb/Ge sublattice has to be introduced to bring
the thermal conductivity close to the value of 0.45 W m−1 K−1

measured experimentally. These results confirm the presence
of disorder in the Sb/Ge sublattices emerged from most recent
x-ray-diffraction data [19] and from transmission electron
microscopy of nanowires [20]. The same calculations on the
GeTe trigonal crystal reveal that the presence of Ge vacancies,
responsible for a degenerate p-type character, leads to the
large variability of the bulk thermal conductivity measured
experimentally for this compound. A similarly good agreement
with experiments is obtained for the thermal conductivity of
Sb2Te3.
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