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ENSEMBLE DEPENDENCE OF FLUCTUATIONS.

CANONICAL MICROCANONICAL EQUIVALENCE OF ENSEMBLES.

NICOLETTA CANCRINI AND STEFANO OLLA

ABSTRACT. We study the equivalence of microcanonical and canonical ensembles in

continuous systems, in the sense of the convergence of the corresponding Gibbs mea-

sures and the first order corrections. We are particularly interested in extensive observ-

ables, like the total kinetic energy. This result is obtained by proving an Edgeworth

expansion for the local central limit theorem for the energy in the canonical measure,

and a corresponding local large deviations expansion. As an application we prove a

formula due to Lebowitz-Percus-Verlet that express the asymptotic microcanonical vari-

ance of the kinetic energy in terms of the heat capacity.

1. INTRODUCTION

The relation between averages of observables of a physical system with respect to
different phase-space ensembles permits to prove what is called the equivalence of en-
sembles. That is, in the thermodynamic limit (size of the system goes to ∞), the proba-
bility distribution of a local observable is independent of the ensemble used. Whether
the microcanonical and the canonical ensembles give the same physical predictions was
studied from the beginning of statistical mechanics, starting from Boltzmann introduc-
tion of distributions on phase space [1] and Gibbs formulation of the ensembles in their
modern probabilistic form [2],

There are many different aspects and approaches to determine if the different ensem-
bles give the same predictions. The idea to apply local limit theorems to the problem
of equivalence of ensembles goes back to the book of Khinchin [10]. The equivalence
between canonical and grandcanonical ensembles, using the central limit theorem, was
proved in the seminal article of Dobrushin and Tirozzi [7] in the discrete case. They
consider the equivalence not only in the sense of equality between thermodynamical
functions, but also in the sense of equality between all the correlation functions. Correc-
tions, always in the discrete context for the grandcanonical and canonical ensembles,
has been studied in [4].

For the relation between microcanonical and canonical ensembles in the thermody-
namic limit we mention the seminal article of Lanford [13], and more recently [17].

We are interested here, for a system of finite N particles, in the difference between
the microcanonical average of an observable A on a given energy shell (microcanonical
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manifold), and the canonical average of A at the corresponding temperature:

∆N (A, u) = 〈A|u〉N − 〈A〉N,βN (u) (1.1)

where Nu is the value of the energy fixed in the microcanonical average, while βN (u)
is the corresponding inverse temperature determined such that the canonical average
of the energy per particle is u. We will restrict our considerations to situations far from
phase transitions (far from thermodynamic singularities). .

By the law of large numbers we have a concentration of the canonical distribution of
the energy per particle in the canonical distribution around the expected value. Since
the microcanonical average is just a conditional expectation of the canonical average
for a given value of the total energy, if A is uniformly bounded in N , or local, and the
microcanonical expectation 〈A|u〉N is enough regular in u, ∆N (A, u) → 0, as an easy
consequence of a large deviation principle for the distribution of the energy under the
canonical distribution (see section 4).

But here we are principally interested in extensive observables, like the total kinetic
energyKN , and their fluctuations in the microcanonical ensemble. In particular the mi-
crocanonical fluctuations of the total kinetic energy is greatly affected, and reduced, by
the global constraint on the total energy and the asymptotic microcanonical variance,
properly normalized, differs from the canonical one. In order to study such difference
we need to compute explicitly the first order of ∆N (A, u).

More precisely, let 〈KN ;KN |u〉N =
〈
K2
N |u

〉
N

− 〈KN |u〉2N , the microcanonical vari-

ance of the kinetic energy, that typically has order N . The canonical variance of KN

depends only on the Maxwellian distribution on the velocities and is equal toNn/(2β2),
where n is the space dimension. It follows from the results contained in section 5 that

lim
N→∞

1

N
〈KN ;KN |u〉N =

n

2β2

(
1− n

2C(β)

)
(1.2)

where the energy u and inverse temperature β are connected by the thermodynamic
relation, and C(β) is the heat capacity per particle, defined as C(β) = du(β)/dβ−1.
Formula (1.2) was formally derived in [14] without controlling the error terms, and its
rigorous derivation is the main motivation for the present article. Actually we prove
(1.2) under some regularity conditions on the microcanonical expectations, and its
finite N version, where we also compute explicitly the next order term (see formula
(5.19)). We then provide one explicit example where these regularity conditions are
satisfied, but we expect that they are verified for a large class of systems. Formula
(1.2) is actually a consequence of a more general formula (5.2), also formally deduced
in [14], that gives the explicit first order correction for ∆N (A, u). Notice that our
formula (5.17) for the first order correction differs from the one obtained in [14], for
one term, see remark 5.4.

In the proof of (5.2) we use a strong form of the large deviations for the energy
distribution under the canonical measure, i.e. the asymptotic expression (3.11) for the
density of the canonical probability distribution of the energy. This strong local large
deviation expression is proven in section 3, as consequence of an Edgeworth expansion
in the corresponding local central limit theorem. The expansion is obtained in section 2
under the condition of uniform bounds in N for the first 4 derivatives of the free energy
per particle fN (β) of the canonical measure of the N -system, see (2.3).
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Even though many of the arguments and results in sections 2,3 and 4 are well known
in particular in the probabilistic literature, we decided to present this article as self con-
tained as possible. For example the Edgeworth expansion argument we use in section 2
is essentially the same as used in Feller book [9] for independent variables, but we
could not find a precise reference for this statement for dependent continuous vari-
ables under canonical Gibbs distributions (for the discrete setting see [6], the general
setting for dependent random variables is treated in [11]).

2. THE LOCAL CENTRAL LIMIT THEOREM AND ITS EDGEWORTH EXPANSION

Consider N particles, the momentum and coordinates given by p := (p1, · · · , pN ),
pi ∈ R

n and q := (q1, · · · , qN ), qi ∈ M , where M is a manifold of dimension n. The
phase space is ΩN = (Rn ×M)N . Let q̄i = (q1, · · · , qi−1, qi+1, · · · , qN ) be the coordi-
nates of all the particles except that of the i particle. To simplify the notation we take
n = 1.

We want to consider systems whose Hamiltonian can be written as

HN =

N∑

i=1

Xi

where

Xi :=
p2i
2

+ V (qi, q̄i) i = 1, · · · , N
where V is a regular function. Define for β > 0:

fN (β) :=
1

N
log

∫

ΩN

e−βHNdpdq.

Notice that the integration in the p can always be done explicitly and

fN (β) =
1

2
log
(
2πβ−1

)
+

1

N
log

∫

MN

e−β
∑N

i V (qi,q̄i)dq.

Assumption: We assume that there is an interval of values of β such that fN (β)
exists, together with its first four derivatives, and that are uniformly bounded in N :

sup
N

|f (j)N (β)| ≤ Cβ, j = 0, 1, 2, 3, 4 (2.1)

with Cβ locally bounded in closed bounded intervals not including β = 0.

The canonical Gibbs measure associated to HN and temperature β−1 is defined by

νβ,N(dp dq) = exp{−βHN (p,q) −NfN (β)}dp dq (2.2)

Defining hN := HN/N , direct calculations give:

f ′N(β) = −〈hN 〉β,N = −uN (β),
f ′′N(β) = N〈(hN − uN (β))

2〉β,N
f ′′′N (β) = −N2〈(hN − uN (β))

3〉β,N
f ′′′′N (β) = N3〈(hN − uN (β))

4〉β,N − 3Nf ′′N (β)
2.

(2.3)

where we indicated < · >β,N the average w.r.t. the canonical measure defined in (2.2).
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Notice that, thanks to the presence of the kinetic energy,

inf
N
f ′′N (β) := σ−(β) >

1

2β2
.

Define the centered energy

SN :=

N∑

j=1

(Xj − uN (β))

and its characteristic function

ϕβ,N (t) := 〈eit SN 〉β,N , t ∈ R. (2.4)

By performing explicitly the integration over p, we have

ϕβ,N (t) =

(
1

1− itβ−1

)N/2
〈eit

∑

j(V (qj ,q̄j)−vN )〉N,β

where NvN = 〈∑j(V (qj , q̄j)〉N,β. Consequently we have the bound:

|ϕβ,N (t)| ≤
(

β2

t2 + β2

)N
4

, (2.5)

thus |ϕβ,N (t)| < 1 for t 6= 0 (i.e. is a characteristic function of a non-lattice distri-
bution). Furthermore |ϕβ,N (t)| is integrable for N ≥ 3, and by the Fourier inversion
theorem (see chapter XV.3 of [9]) the probability density function of the variable SN
exists for N ≥ 3. Observe also that

ϕ′
β,N (0) = 0, ϕ′′

β,N (0) = −Nf ′′N (β), ϕ′′′
β,N (0) = −iNf ′′′N (β)

ϕ′′′′
β,N (0) = Nf ′′′′N (β) + 3N2f ′′N (β)

2.
(2.6)

In the following we denote the normal gaussian density by

φ(x) =
1√
2π
e−x/2.

Let {Hj(x)}j≥0 the Hermite polynomials defined by

dj

dxj
φ(x) = (−1)jHj(x)φ(x) (2.7)

The characteristic property of Hermite polynomials is that the Fourier transform of
Hj(x)φ(x) is given by ∫ +∞

−∞
Hj(x)φ(x)e

itxdx = (it)j φ̂(t)

where φ̂(t) = e−
t2

2 . Recall that H0 = 1, H1(x) = x, H3(x) = x3−3x, H4(x) = x4−6x+3
and H6(x) = x6 − 15x4 + 45x2 − 15.

We can now state the Local Central Limit Theorem we need in the rest of the article.

Theorem 2.1. Assume that β is such that the conditions (2.1) are satisfied. Define

YN :=

∑N
i=1(Xi − uN (β))√

Nf ′′N(β)
,
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then the density distribution gβ,N (x) of YN for N ≥ 3 exists and as N → ∞

gβ,N (x)− φ(x)− φ(x)


Q

(3)
β,N (x)√
N

+
Q

(4)
β,N (x)

N


 = o

(
1

N

)
KN (β) (2.8)

where

Q
(3)
β,N (x) =

f ′′′N (β)

3!f ′′N (β)
3
2

H3(x) (2.9)

Q
(4)
β,N (x) =

f ′′′′N (β)

4!f ′′N (β)
2
H4(x) +

1

2

(
f ′′′N (β)

3!f ′′N (β)
3
2

)2

H6(x) (2.10)

and KN (β) is bounded in N , uniformly on bounded closed intervals of β > 0.

Proof. We follow the proof of theorem 2 in chapter XVI.2 of [9] for independent random
variables. By (2.5) and the Fourier inversion theorem the left hand side of (2.8) exists
for N ≥ 3. To simplify the notation we do not write the dependence on β of fβ,N , ϕβ,N
and their derivatives. Consider the function

Φ̂N (t) = ϕN

( t√
Nf ′′N

)
− e−

t2

2

[
1 + PN

(
it√
Nf ′′N

)]
(2.11)

where ϕN (t/
√
Nf ′′N) is the Fourier transform of gβ,N (see (2.4) ) and PN (it) is an

appropriate polynomial in the variable it. We want to show that

∆N =

∫ ∞

−∞

∣∣∣Φ̂N (t)
∣∣∣ dt = o

(
1

N

)
. (2.12)

Choose δ > 0 arbitrary but fixed. There exists a number qδ < 1 such that
( β2

t2+β2

) 1
4 <

qδ for |t| ≥ δ. The contribution of the intervals |t| > δ
√
f ′′NN to the integral (2.12),

using (2.5), is bounded by

qN−3
δ

∫ ∞

−∞

(
β2

(t/
√
f ′′NN)2 + β2

)3

dt+

∫

|t|>δ
√
Nf ′′

N

e−
t2

2

∣∣∣∣∣PN
(

it√
Nf ′′N

)∣∣∣∣∣ dt (2.13)

and this tends to zero more rapidly than any power of 1/N .

We now estimate the contribution to ∆N from the region |t| ≤ δ
√
Nf ′′N (β). Let us

rewrite

∆N =

∫ ∞

−∞
e−

t2

2

∣∣∣∣∣e
ψN

(

t/
√

Nf
′′
N

)

− 1− PN

(
it√
Nf ′′N

)∣∣∣∣∣ dt (2.14)

where1

ψN (t) = logϕN (t) +
1

2
Nf ′′N t

2.

The function ψN (t) is four times differentiable and in t = 0 its derivatives are given
by

1For a complex number z such that |z| < 1, we define log(1 + z) =
∑

n

(−z)n

n
.
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ψ′
N (t) =

ϕ′
N (t)

ϕN (t)
+Nf ′′N t, ψ′

N (0) = 0.

ψ′′
N (t) =

ϕ′′
N (t)

ϕN (t)
− ϕ′

N (t)
2

ϕN (t)2
+Nf ′′N , ψ′′

N (0) = 0.

ψ′′′
N (t) =

ϕ′′′
N (t)

ϕN (t)
− ϕ′

N (t)ϕ
′′
N (t)

ϕN (t)2
− 2ϕ′

N (t)ϕ
′′
N (t)

ϕ2
N (t)

+
2ϕ′

N (t)
3

ϕN (t)3
, ψ′′′

N (0) = −iNf ′′′N .

ψ′′′′
N (t) =

ϕ′′′′
N (t)

ϕN (t)
− 3ϕ′

N (t)ϕ
′′′
N (t)

ϕN (t)2
− 3ϕ′′

N (t)
2

ϕ2
N (t)

+
4ϕ′

N (t)2ϕ′′
N (t)

ϕN (t)3
+

6ϕ′
N (t)

2ϕ′′
N (t)

ϕN (t)3
− 6ϕ′

N (t)
4

ϕN (t)4

ψ′′′′
N (0) = ϕ′′′′

N (0)− 3ϕ′′
N (0)

2 = Nf ′′′′N .

where we used relations (2.6). Let (it)2γN (it) be the Taylor approximation for ψN (t)/N .
Where γN (it) is a polynomial of degree 2 with γN (0) = 0; it is uniquely determined by
the property

ψN (t)−N (it)2γN (it) = No(|t|4) (2.15)

and it is given by

γN (it) :=
f ′′′N
3!
it+

f ′′′′N

4!
(it)2

We choose

PN (it) :=

2∑

k=1

1

k!

[
N (it)2 γN (it)

]k

then PN (it) is a polynomial in the variable it with real coefficients depending on N and
β. We use the inequality

∣∣∣∣∣e
α − 1−

2∑

k=1

βk

k!

∣∣∣∣∣ ≤
∣∣∣eα − eβ

∣∣∣+
∣∣∣∣∣e
β − 1−

2∑

k=1

βk

k!

∣∣∣∣∣ ≤ eγ
(
|α− β|+ |β|3

3!

)

with γ = max{|α|, |β|}. Furthermore we choose δ so small that for |t| < δ

|ψN (t)−N (it)2γN (it)| ≤ ǫ (f ′′N )
2N |t|4

and

|ψN (t)| < N
1

4
f ′′N t

2 |γN (it)| ≤ aN |t| ≤
1

4
f ′′N

provided that aN > 1+ |f ′′′N |. For |t| < δ
√
Nf ′′N the integrand in (2.14) can be bounded

by

e−
1
4
t2


ǫ t

4

N
+
a3N
3!

(
|t|3√
Nf ′′N

)3

 (2.16)

As ǫ is arbitrary we have that (2.12) is proved. The function ΦN(t) defined in (2.11) is
the Fourier transform of

gβ,N (x)− φ(x)− φ(x)
8∑

k=1

bNkHk(x) (2.17)
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where bNk are appropriate coefficients depending on N and Hk(x) are the Hermite
polynomials defined in (2.7). If we rearrange the terms of the sum in ascending pow-

ers of 1/
√
N we get an expression of the form postulated in the theorem plus terms

involving powers 1/Nk with k > 1 that can be dropped and obtain the result. �

The same argument leads to higher order expansions, but the terms cannot be ex-
pressed by simple explicit formulas. We have the following

Theorem 2.2. Assume that f ′′N (β), · · · , f
(k)
N (β) exist and are uniformly bounded in N .

Define

YN :=

∑N
i=1(Xi − uN (β))√

Nf ′′N (β)

then the density distribution gβ,N (x) of YN for N ≥ 3 exists and as N → ∞

gβ,N (x)− φ(x)− φ(x)
k∑

j=3

1

N
1
2
j−1

Q
(j)
β,N(x) = o

(
1

N
1
2
k−1

)
(2.18)

uniformly in x. Here φ(x) is the standard normal density, Q
(j)
β,N is a real polynomial

depending only on f ′′N(β), · · · , f
(k)
N (β), and whose coefficients are uniformly bounded in

N .

Note that Theorem 2.1 is Theorem 2.2 for k = 4 and taking k > 4 does not improve
our estimates and results.

Remark 2.3. Theorem 2.1 is stated for continuous random variables Xi. It can be stated
also for discrete random variables, in the same form once |ϕβ,N (t)|, the characteristic
function of SN , is integrable. In spin systems with finite range interacting potentials, like
the Ising model, this is the case, see [7] and [4] where a Gaussian upper bound on the
characteristic function is proved.

3. LOCAL LARGE DEVIATIONS AND BOLTZMANN FORMULA

In this section we study the energy distribution under the canonical measure. With
reasonable conditions on the interaction potential V , fN (β) is finite for every β > 0.
We can extend its definition to all β ∈ R denoting fN(β) = +∞ for β ≤ 0.

We define the Legendre-Fenchel transform of fN (β):

fN∗(u) := sup
β

{−βu− fN(β)} = sup
β>0

{−βu− fN(β)} (3.1)

Let DfN , DfN∗
the corresponding domain of definition. For any u ∈ DfN∗

there exists
a unique β ∈ DfN such that

u = −f ′N (β) and β = −f ′N∗(u). (3.2)

Under the canonical measure (2.2) hN can be seen as a normalized sum of random
variables. We denote by FN,β(u) the density of its probability distribution. For any
integrable function F : R → R∫

ΩN

F (hN )dνβ,N =

∫

R

F (u)FN,β(u)du =

∫

R

F (u)e−N [βu+fN (β)]WN (u)du (3.3)
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where

WN (u) :=
d

du

∫

hN≤u
dpdq (3.4)

Theorem 3.1. Let u ∈ DfN∗
and γ = −f ′N∗(u) defined by (3.2) be such that fN (γ)

satisfies (2.1). Then, for large N ,

WN (u) = e−NfN∗(u)

√
N f ′′N∗(u)

2π


1 +

Q
(4)
γ,N (0)

N
+ o

(
1

N

)
KN (γ)


 (3.5)

where KN (γ) and Q
(4)
γ,N (0) are defined in (2.8) and (2.10) respectively.

Proof. Let ω = (p,q) ∈ ΩN, X(ω) = (X1(ω), · · · ,XN (ω)), and x = (x1, · · · , xN ) ∈ R
N .

Consider the positive measure αN (dx) on R
N defined, for any integrable function F on

R
N , by ∫

ΩN

F (X(ω)) dω =

∫

RN

F (x) αN (dx) (3.6)

so that for any γ we have
∫

ΩN

F (X(ω))νγ,N (dω) =

∫

RN

F (x) e−γ
∑N

i=1 xi−NfN (γ)αN (dx) (3.7)

For any integrable function G : R → R we can write

∫

RN

G


 1

N

N∑

j=1

xj


 αN (dx) =

∫ +∞

−∞
G(s)WN (s)ds (3.8)

Take u ∈ DfN∗
and γ ∈ DfN as in the hypotheses of the theorem. For any integrable

function G : R → R we have

∫

RN

G


 1

N
√
f ′′N (γ)

N∑

j=1

(xj − u)


 e−γ

∑N
j=1 xj−NfN (γ)αN (dx)

=

∫

R

G

(
s− u√
f ′′N (γ)

)
e−γNs−NfN (γ)WN (s)ds

= eNfN∗(u)
√
f ′′N (γ)

∫

R

G (y) e−γN
√
f ′′
N
(γ)yWN (

√
f ′′N(γ)y + u)dy .

In order to apply theorem 2.1 we identify

eNfN∗(u)
√
f ′′N(γ)e

−γN
√
f ′′
N
(γ)yWN (

√
f ′′N (γ)y + u) =

√
Ngγ,N (

√
Ny)

so that for y = 0

eNfN∗(u)
√
f ′′N (γ)WN (u) =

√
Ngγ,N (0) =

√
N

2π


1 +

Q
(4)
γ,N (0)

N
+ o

(
1

N

)
KN (γ)


 .

(3.9)
Since f ′′N (γ) = 1/f ′′N∗(u), (3.5) follows directly. �
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We can resume the above result more explicitly, by using the bounds and the explicit

form of the polynomial Q
(4)
γ,N (0) =

γ
4 f

′′′′

N (γ),
∣∣∣∣∣WN (u)e

NfN∗(u)

√
2π

N f ′′N∗(u)
− 1

∣∣∣∣∣ ≤
γCγ
4N

+ o

(
1

N

)
KN (γ) . (3.10)

Theorem 3.1 allows to write the probability density function in (3.3) as

FN,β(u) = e−NIN,β(u)

√
N

2π
f ′′N∗(u)


1 +

Q
(4)
γ(u),N (0)

N
+ o

(
1

N

)
KN (γ(u))


 (3.11)

where γ(u) = −f ′N∗(u) and

IN,β(u) := βu+ fN (β) + fN∗(u) = β(u− uN (β))− fN∗(uN (β)) + fN∗(u). (3.12)

As β = −f ′N∗(uN (β)), we can thus rewrite

IN,β(u) := fN∗(u)− fN∗(uN (β))− f ′N∗(uN (β))(u − uN (β)). (3.13)

The functional IN,β(u) is convex, derivable and has a minimum in uN (β) where
uN (β) := 〈hN 〉β,N ,

I ′N,β(uN (β) = 0,

and

I ′′N,β(uN (β)) = f ′′N∗(uN (β)) = 1/f ′′N (β).

Equation (3.11) says that the sequence hN satisfies a local large deviation principle,
also called Large Deviation Principle in the Strong Form, see [6] where the principle
is defined for discrete random variables with assumptions that are generally stronger
than (2.1).

4. MICROCANONICAL DISTRIBUTION AND EQUIVALENCE OF ENSEMBLES.

We here define the equivalence of ensembles. Given an observable A on ΩN , we
define the microcanonical average 〈A|u〉N as a conditional expectation by the classic
formula:

〈AF (hN )〉N,β = 〈〈A|hN 〉F (hN )〉N,β =

∫
F (u)〈A|u〉NFN,β(u)du, (4.1)

for any measurable function F (u) on R. It is an easy exercise to see that these con-
ditional expectations do not depend on β. Of course (4.1) defines the conditional
expectation only a.s. with respect to the Lebesgue measure. But under the regularity
assumptions on the interaction potential V , the microcanonical surface

ΣN (u) = {(p,q) ∈ ΩN : hN = u} (4.2)

is regular enough such that the change of variables (co-area formulas cf. [12]) can be
applied and give the existence of a regular conditional distribution on ΣN(u), defined
for every value of u. We will assume in the following various conditions on the function
u 7→< A|u >N , that have to be verified in the various applications.

By equivalence of ensembles we mean here the convergence of

〈A〉β,N − 〈A|uN (β)〉N −→
N→∞

0, (4.3)
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for a certain class of functions. We are in particular interested in the rate of convergence
in (4.3).

For the case when A is a bounded function such that < A|u >N is continuous around
u = uN (β) uniformly in N , this is a quite straightforward consequence of the upper
bound on large deviations. By the uniform continuity of < A|u >N , for any ǫ > 0, there
exists δǫ > 0 such that |〈A|u〉N − 〈A|uN (β)〉N | < ǫ if |u− uN (β)| < δǫ. Then

|〈A〉β,N − 〈A|uN (β)〉N | ≤ 2‖A‖∞
∫

|u−uN (β)|≥δǫ
FN,β(u)du + ǫ

Let us split the large deviation term:

∫

|u−uN (β)|≥δǫ
FN,β(u)du =

∫

u>uN (β)+δǫ

FN,β(u)du+

∫

u<uN (β)−δǫ
FN,β(u)du.

We estimate the first term of the RHS of the above expression.. By the exponential
Chebychef inequality, for any λ > 0:

∫

u>ū
FN,β(u)du ≤ e−N [λ(uN (β)+δǫ)−fN (β−λ)+fN (β)].

Notice that, using (3.1) and (3.12),

IN,β(ū) = sup
β−λ

(λū− fN (β − λ)) + fN(β) ū = uN (β) + δǫ (4.4)

Consequently optimizing the estimate over β − λ > 0, λ > 0 we have

∫

u>ū
FN,β(u)du ≤ e−NIN,β(ū) .

Analogously applying exponential Chebichef inequality on the second term we have

IN,β(ū) = sup
β+λ>0

(λū− fN(β + λ)) + fN (β) ū = uN (β)− δǫ

and a similar estimate can be obtained.
Condition (2.1) on f ′′N (β) implies the strong convexity of IN,β(ū) in an interval

around uN (β), uniform in N . For any β > 0 there exist δ > 0 such that

IN,β(uN (β)± δ) ≥ δ2

2Cβ
(4.5)

It follows that ∫

|u−uN (β)|≥δǫ
FN,β(u)du ≤ 2e−Nδ

2
ǫ /2Cβ (4.6)

that converges exponentially to 0 for any ǫ > 0. Taking ǫ → 0 concludes the argument.
In the next section we will analyze closer this convergence, allowing observables A that
are extensive.
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5. LEBOWITZ-PERCUS-VERLET FORMULAS FOR FLUCTUATIONS

In this section A is a function on ΩN , eventually extensive. We define ‖A‖p,β,N the
Lp-norm of A with respect to the canonical measure νβ,N .

We assume that for every β > 0 in the same interval of (2.1) and bβ > 0, the
observable A satisfies the following relations:

(i) There exists a positive constant Cβ and a small number ǫ > 0 such that

‖A‖4,β,N ≤ Cβ‖A‖2,β,N < +∞
|〈A|uN (β)〉N | ≤ Cβ ‖A‖2,β,N ,∣∣∣∣

d

du
〈A|u〉N

∣∣∣
uN (β)

∣∣∣∣ ≤ Cβ N
1/2‖A‖2,β,N ,

∣∣∣∣
d2

du2
〈A|u〉N

∣∣∣
uN (β)

∣∣∣∣ ≤ Cβ N
1−ǫ‖A‖2,β,N .

(ii) If δN := bβ

√
logN
N there exists a positive constant Cβ such that

BN,β := sup
|u−uN (β)|≤δN

∣∣∣∣
d3

du3
〈A|u〉N

∣∣∣∣ ≤
Cβ

√
N

logN
‖A‖2,β,N . (5.1)

Theorem 5.1. Assume conditions (i)-(ii) above. Then, for N large enough, the following
formula holds

〈A|uN (β)〉N = 〈A〉β,N − 1

2N

d

dβ

[
1

f ′′N (β)
d

dβ
〈A〉β,N

]
+ o

(
1

N

)
‖A‖2,β,N . (5.2)

Proof. In the proof Cβ will be a generic constant depending on β. Since expression
(5.2) is homogeneous in A, we can divide by ‖A‖2,β,N and consider functions A such
that ‖A‖2,β,N = 1. We write the difference between the canonical and microcanonical
expectations as

〈A〉β,N − 〈A|uN (β)〉N =

∫
FN,β(u) [〈A|u〉N − 〈A|uβ,N 〉N ] du (5.3)

Denote

GN (u) = 〈A|u〉N − 〈A|uN (β)〉N − d

du
〈A|u〉N

∣∣∣
uN (β)

(u− uN (β))

−1

2

d2

du2
〈A|u〉N

∣∣∣
uN (β)

(u− uN (β))
2

(5.4)

Obviously GN (uN (β)) = G′
N (uN (β)) = G′′

N (uN (β)) = 0. We want to prove that
∫

FN,β(u)GN (u) du ∼ o

(
1

N

)
. (5.5)

Under conditions (i) above and using (2.1), the properties of the norm and Schwarz
inequality, we have that ‖GN‖22,β,N ≤ C ′

β .

Let δN = bβ

√
logN
N be the sequence of assumption (ii) above. Due to the strong

convexity of IN,β(u), by (4.6), we have IN,β(u) ≥ δ2N/(2Cβ) for N large enough. We
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choose bβ such that b2β/(2Cβ) > 4. This last condition will be clear at the end of the

proof.
Consider the bounded function

GN,δN (u) = GN (u)1[|u−uN (β)|<δN ].

We can split the integral and, using Schwarz inequality, obtain
∣∣∣∣
∫

FN,β(u)GN (u)du

∣∣∣∣ ≤
√
C ′
β

(∫
FN,β(u) 1[|u−uN (β)|≥δN ]du

)1/2

+

∣∣∣∣
∫

FN,β(u)GN,δN (u) du
∣∣∣∣

By (4.5) and the above choice of δN the integral of the first term can be bounded by

∫
FN,β(u) 1[|u−uN (β)|≥δN ] du ≤ 2N

−
b2
β

2Cβ . (5.6)

As b2β/(2Cβ) > 4, the first term on the RHS is of order o(1/N).

For the second term, by Jensen’s inequality and (3.11), for any α > 0 we have
∣∣∣∣
∫

FN,β(u)GN,δN (u) du
∣∣∣∣ ≤

1

αN
log

∫
eαNGN,δN

(u)FN,β(u)du

=
1

αN
log

[∫

[|u−uN(β)|<δN ]
e−N(IN,β(u)−αGN,δN

(u))
√
N

2π
f ′′N∗(u) (1 + . . . ) du+ 2N

−
b2
β

2Cβ

]
.

Since, by Taylor formula and condition (ii) above, |GN,δN (u)| ≤ BN,β |u−uN (β)|3, and

IN,β(u) ≥ aβ(u− uN (β))
2 as |u− uN (β)| < δN , we have that

IN,β(u)− αGN,δN (u) ≥ (u− uN (β))
2 (aβ − αBN,β |u− uN (β)|)

≥ (u− uN (β))
2 (aβ − αBN,βδN )

(5.7)

Choose now a sequence αN → ∞, for N → ∞, and such that αNBN,βδN < 1/(2Cβ).
We have consequently that

IN,β(u)− αNGN,δN (u) ≥ 0, if |u− uN (β)| < δN .

Then we have:

N

∣∣∣∣
∫

FN,β(u)GN,δN (u) du
∣∣∣∣

≤ 1

αN
log

[
2δN

√
N

2π
sup

|u−uN (β)|<δN

√
f ′′N∗(u) (1 + . . . ) + 2N−aβb2β

]

=
1

αN
log

[
bβ
√

logN

√
2

π
sup

|u−uN (β)|<δN

√
f ′′N∗(u) (1 + . . . ) + 2N−aβb2β

]
.

We choose αN growing faster than log logN and this last term will go to 0. Since

BN,βδN ≤ C√
logN

, it is enough to choose αN := c
√
logN for c small enough to have

αNBN,βδN < 1/(2Cβ) satisfied.
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We can thus rewrite equation (5.3) as

〈A〉β,N = 〈A|uN (β)〉N +
f ′′N (β)

2N

d2

du2
〈A|u〉N

∣∣∣
u=uN (β)

+ o

(
1

N

)
. (5.8)

Note that for any differentiable function g(u)

d

du
g(u)

∣∣∣
u=uN (β)

= − 1

f ′′N (β)
d

dβ
g(uN (β)) (5.9)

f ′′N(β)
d2

du2
g(u)

∣∣∣
u=uN (β)

=
d

dβ

[
1

f ′′N (β)
d

dβ
g(uN (β))

]
. (5.10)

By (5.10) we can write (5.8) as

〈A|uN (β)〉N = 〈A〉β,N − 1

2N

d

dβ

[
1

f ′′N(β)
d

dβ
〈A|uN (β)〉N

]
+ o

(
1

N

)
. (5.11)

By lemma 5.2 below and condition (ii) above:

1

N

d

dβ

[
1

f ′′N (β)
d

dβ

(
〈A〉β,N − 〈A|uN (β)〉N

)]
∼ o

(
1

N

)

and (5.2) follows. �

Lemma 5.2. Under the conditions of Theorem 5.1 the following relations hold

d

dβ

(
〈A〉β,N − 〈A|uN (β)〉N

)
=
f ′′′N (β)

2N

d2

du2
〈A|u〉N

∣∣
u=uN (β)

+ oN (1) ‖A‖2,β,N

d2

dβ2

(
〈A〉β,N − 〈A|uN (β)〉N

)
=
f ′′′′N (β)

2N

d2

du2
〈A|u〉N

∣∣
u=uN (β)

+ oN (1) ‖A‖2,β,N
(5.12)

where oN (1) → 0 as N → ∞.

Proof. As in the previous proof, we can assume that ‖A‖2,β,N = 1. Note that by (5.3)

d

dβ

(
〈A〉β,N − 〈A|uN (β)〉N

)

= −N
∫

(〈A|u〉N − 〈A|uN (β)〉N ) (u− uN (β))Fβ,N (u)du − d

dβ
〈A|uN (β)〉N ,

(5.13)

and, the definition (5.4) of GN (u) and (5.5), this is equal to

= −f ′′N(β)
d

du
〈A|u〉N

∣∣
u=uN (β)

− d

dβ
〈A|uN (β)〉N +

f ′′′N (β)

2N

d2

du2
〈A|u〉N

∣∣
u=uN (β)

−N
∫
GN (u) (u− uN (β))Fβ,N (u)du

=
f ′′′N (β)

2N

d2

du2
〈A|u〉N

∣∣
u=uN (β)

−N

∫
GN (u) (u− uN (β))Fβ,N (u)du.

In order to estimate the last term on the right hand side of the above relation, define

G̃N,δN (u) := NGN (u) (u− uN (β)) 1[|u−uN (β)|≤δN ].
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Then dividing the integral we have

N

∫
GN (u) (u− uN (β))Fβ,N (u)du =

∫

[|u−uN(β)|≤δN ]
G̃N,δN (u)Fβ,N (u)du

+N

∫

[|u−uN(β)|>δN ]
GN (u) (u− uN (β))Fβ,N (u)du .

The first term can be easily estimated by condition (5.1) and Taylor formula as

|G̃N,δN (u)| ≤ NCβ
δ3N√
logN

= Cβ b
3
β

logN√
N

.

For the second integral we use Schwarz inequality so that

N

∫

[|u−uN (β)|>δN ]
GN (u) (u− uN (β))Fβ,N (u)du

≤ N‖GN‖2,β,N
(∫

[|u−uN(β)|>δN ]
(u− uN (β))

2Fβ,N (u)du
)1/2

≤ N‖GN‖2,β,N

(∫

[|u−uN(β)|>δN ]
(u− uN (β))

4Fβ,N (u)du
)1/4(∫

[|u−uN (β)|>δN ]
Fβ,N (u)du

)1/4

≤ CβN
1

N1/2
N−aβb2β/4 = CN−

aβb2
β

4
+ 1

2 ,

where we used (2.1), (2.3), (5.6). The condition aβ b
2
β > 4 assures the convergence to

0 as N → ∞. This proves the first of (5.12).
For the second one, deriving (5.13) once more in β and using (2.3), we obtain

d2

dβ2

(
〈A〉β,N − 〈A|uN (β)〉N

)

= N2

∫
(〈A|u〉N − 〈A|uN (β)〉N ) (u− uN (β))

2 Fβ,N (u)du

−Nf ′′N(β)
(
〈A〉β,N − 〈A|uN (β)〉N

)
− d2

dβ2
〈A|uN (β)〉N .

(5.14)

Using again definition (5.4) of GN (u) we have that (5.14) is equal to

N2 d

du
〈A|u〉N

∣∣
u=uN (β)

∫
(u− uN (β))

3 Fβ,N (u)du

+
N2

2

d2

du2
〈A|u〉N

∣∣
u=uN (β)

∫
(u− uN (β))

4 Fβ,N (u)du

− 1

2

d2

du2
〈A|u〉N

∣∣
u=uN (β)

(f ′′N (β))
2 − d2

dβ2
〈A|uN (β)〉N

+N2

∫
GN (u)(u− uN (β))

2Fβ,N (u)du +N

∫
GN (u)Fβ,N (u)du

(5.15)
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The first 4 therms of (5.15) are equal to

− f ′′′N (β)
d

du
〈A|u〉N

∣∣
u=uN (β)

+

(
1

2N
f ′′′′N (β) +

3

2
(f ′′N (β))

2

)
d2

du2
〈A|u〉N

∣∣
u=uN (β)

− 1

2
(f ′′N (β))

2 d
2

du2
〈A|u〉N

∣∣
u=uN (β)

− d2

dβ2
〈A|uN (β)〉N

= −f ′′′N (β)
d

du
〈A|u〉N

∣∣
u=uN (β)

+
1

2N
f ′′′′N (β)

d2

du2
〈A|u〉N

∣∣
u=uN (β)

+ (f ′′N (β))
2 d

2

du2
〈A|u〉N

∣∣
u=uN (β)

− d2

dβ2
〈A|uN (β)〉N

=
f ′′′N (β)

f ′′N(β)
d

dβ
〈A|uN (β)〉N +

1

2N
f ′′′′N (β)

d2

du2
〈A|u〉N

∣∣
u=uN (β)

+ f ′′N(β)
d

dβ

1

f ′′N(β)
d

dβ
〈A|uN (β)〉N − d2

dβ2
〈A|uN (β)〉N

=
1

2N
f ′′′′N (β)

d2

du2
〈A|u〉N

∣∣
u=uN (β)

.

where we used (5.9), (5.10). We consider now the last two terms of (5.15). To estimate
the first one define

ĜN,δN (u) := N2GN (u) (u− uN (β))
2 1[|u−uN (β)|≤δN ].

Then, by (5.1) we have that |ĜN,δN (u)| ≤ Cβ N
2δ5N and

∣∣∣∣
∫
ĜN,δN (u)Fβ,N (u)du

∣∣∣∣ ≤ Cβ N
2δ6N = Cβ

(logN)3

N
.

While using Schwarz inequality twice we get
∣∣∣∣∣

∫

[|u−uN (β)|>δN ]
N2GN (u) (u− uN (β))

2 Fβ,N (u)du
∣∣∣∣∣

≤ N2‖GN‖4,β,N‖u− uN (β)‖24,β,N

(∫

[|u−uN (β)|>δN ]
Fβ,N (u)du

)1/4

≤ CβN
2 1

N

1

Naβb
2
β
/4

= CβN
−

aβb2
β

4
+1

that is of oN (1) since aβb
2
β > 4. By (5.5) the last term in (5.15) is oN (1). This proves

the second of (5.12).
�

Let A and B two functions such that they and their product satisfies the assumptions
of Theorem (5.1). Applying formula (5.2) to AB we obtain

〈AB|uN (β)〉N = 〈AB〉N,β −
1

2N

d

dβ

[
1

f ′′N(β)

d〈AB〉N,β
dβ

]
+ o

(
1

N

)
‖AB‖2,β,N .
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while

〈A|uN (β)〉N 〈B|uN (β)〉N =〈A〉N,β〈B〉N,β −
1

2N

(
〈A〉N,β

d

dβ

[
1

f ′′N (β)

d〈B〉N,β
dβ

]
+

+〈B〉N,β
d

dβ

[
1

f ′′N(β)

d〈A〉N,β
dβ

])
+CN

=
1

N

1

f ′′N (β)

d〈A〉N,β
dβ

d〈B〉N,β
dβ

− 1

2N

d

dβ

[
1

f ′′N (β)

d(〈A〉N,β〈B〉N,β)
dβ

]
+ CN

where CN contains all term of smaller order and is bounded by

|CN | ≤ o

(
1

N

)
‖A‖2,β,N‖B‖2,β,N .

Then defining the correlations

〈A;B|uN (β)〉N := 〈AB|uN (β)〉N − 〈A|uN (β)〉N 〈B|uN (β)〉N ,
〈A;B〉β,N := 〈AB〉β,N − 〈A〉β,N 〈B〉β,N ,

(5.16)

we get the formula for the equivalence of the correlations:

〈A;B|uN (β)〉N = 〈A;B〉N,β −
1

N

1

f ′′N (β)

d〈A〉N,β
dβ

d〈B〉N,β
dβ

− 1

2N

d

dβ

[
1

f ′′N (β)

d〈A;B〉N,β
dβ

]

+ o

(
1

N

)
( ‖AB‖2,β,N + ‖A‖2,β,N‖B‖2,β,N ) .

(5.17)

Remark 5.3. This formula is different than the one of reference [14]. The term with the
derivative of the canonical correlation is in general smaller than the others. It can be even
smaller than the error term as we will see evaluating the fluctuations of the kinetic energy
below.

Remark 5.4. For extensive variables, like A =
∑N

i=1 p
2
i , typically we have ‖A‖2,β,N ∼ N ,

that implies that the error in (5.17) is of order o(N). But in these cases the other terms
are of order N .

5.1. Fluctuations of kinetic energy. Consider the kinetic energy

K(p) =

N∑

j=1

p2j
2
.

Then, if n is the space dimension,

〈K〉N,β =
Nn

2β
, 〈K2〉N,β =

N(N + 2)n2

4β2
〈K;K〉N,β =

Nn2

2β2

and

d〈K〉N,β
dβ

= −Nn
2β2

,
d〈K;K〉N,β

dβ
= −Nn

2

β3
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applying equation (5.17) we obtain

〈K;K|uN (β)〉N − 〈K;K〉N,β =− n2N

4β4f ′′N (β)
+

1

2

d

dβ

(
n2

f ′′Nβ
3

)

+ o

(
1

N

) (
‖K2‖2,β,N + ‖K‖22,β,N

)
.

(5.18)

Observe that as ‖K‖2,β,N ∼ N/β and ‖K2‖2,β,N ∼ N2/β2 the second term in the r.h.s
of (5.18) is smaller than the error term. Dividing by N , we obtain for the variances of

K/
√
N :

1

N
〈K;K|uN (β)〉N =

n

2β2
− n2

4β4f ′′N(β)
+ oN (1) =

n

2β2

(
1− n

2CN (β)

)
+ oN (1) (5.19)

The quantity CN (β) = β2f ′′N (β) is called heat capacity (per particle). This is in fact

equal to d
dβ−1uN (β). Notice that (5.19) coincide, up to terms of lower order in N , to

formula (3.7) in [14].
In particular the asymptotic canonical and microcanonical variances of 1√

N
KN are

different. Denoting by V the total potential energy, since K + V is constant under the
microcanonical measure, we have that 〈K;K|uN (β)〉N = 〈V ;V |uN (β)〉N , so the same
formula is valid for 〈V ;V |uN (β)〉N .

It remains to prove the conditions of theorem 5.1 are satisfied by 〈KN ;KN |u〉N , but
this in general depends on the model considered, i.e. on the interaction between the
particles.

In section 3 we have defined

WN (u) =
d

du
ΩN (u)

where

ΩN (u) =

∫

RN

dp

∫

RN

dq θ (N(u− hN (p,q)))

where the Heaviside unit step function θ(x) is defined by θ(x) = 0 for x < 0 and
θ(x) = 1 for x ≥ 0. Using the N-spherical coordinates on the momentum variables, this
can be written as

ΩN (u) = SN−1

∫

RN

dq

∫ ∞

0
ρN−1θ

(
Nu− ρ2

2
− V (q)

)
dρ

= SN−1

∫

RN

dq θ (Nu− V (q))

∫ √
2(Nu−V (q))

0
ρN−1dρ

= SN−1
2N/2

N

∫

RN

dq (Nu− V (q))
N
2 θ (Nu− V (q))

where SN−1 = 2πN/2/Γ(N/2) is the surface of the N − 1 dimensional unit sphere.
Consequently

WN (u) =
(2π)N/2N

Γ(N/2)

∫

RN

dq (Nu− V (q))
N
2
−1 θ (Nu− V (q)) (5.20)
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This formula goes back to Gibbs ([2], chapter 8, (308)), and one can prove that WN (u)
is at least

[
N
2 − 1

]
times differentiable see [8].

For any observable A, the microcanonical mean can be written as

〈A |u〉N =
∂
∂u

∫
dp dq θ(Nu−H(p,q))A(p,q)

WN (u)
(5.21)

Using the N dimensional spherical momentum coordinates as above, one can write the
microcanonical mean of the kinetic energy as

〈K |u〉N =WN (u)
−1

(
(2π)N/2N

Γ(N/2)

∫

RN

dq (Nu− V (q))
N
2 θ(Nu− V (q))

)

=
N2ΩN (u)

2WN (u)
=

∫
RN dq (Nu− V (q))

N
2 θ(Nu− V (q))

∫
RN dq (Nu− V (q))

N
2
−1θ(Nu− V (q))

Of course we have the trivial bound 〈K |u〉N ≤ Nu. Furthermore, since the micro-
canonical distribution is symmetric in the {pj , j = 1, . . . , N}, we have

1

2
〈p2j |u〉N =

2
∫
RN dq (Nu− V (q))

N
2 θ(Nu− V (q))

N
∫
RN dq (Nu − V (q))

N
2
−1θ(Nu− V (q))

(5.22)

An analogous calculation brings to

〈K2 |u〉N =
22
∫
RN dq (Nu− V (q))

N
2
+1θ(Nu− V (q))

∫
RN dq (Nu− V (q))

N
2
−1θ(Nu− V (q))

(5.23)

We can rewrite these expression by using the microcanonical potential energy weight:

W̃N (v) :=
d

dv

∫

RN

θ(Nv − V (q))dq. (5.24)

then

〈K |u〉N = N
2
∫ u
0 (u− v)

N
2 W̃N (v)dv∫ u

0 (u− v)
N
2
−1W̃N (v)dv

and

〈K2 |u〉N = 4N2 2
∫ u
0 (u− v)

N
2
+1W̃N (v)dv∫ u

0 (u− v)
N
2
−1W̃N (v)dv

. (5.25)

The formulas above imply that these microcanonical averages are at least [N/2] times
differentiable in u and the derivatives can be explicitly computed.

Starting from expression (5.23) we give a qualitative argument to understand why
conditions (i)-(iii) in section 5 should be satisfied for extensive observables. We then
present an example where most calculations can be made exactly. From (5.23) one
can see that dimensionally the microcanonical mean of K2 behaves as N2u2 and that
the derivatives with respect to u are well defined till the order N/2 − 1. The third
derivative of 〈K2 |u〉N behaves dimensionally as N2/u. Thus, as the canonical norm
‖K‖22,β,N = N(N+2)/(4β) and uN (β) does not grow in N , the required conditions are,
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at least dimensionally, satisfied. The same reasoning can be extended to any extensive
or intensive quantity looking directly expression (5.21).

5.2. Exactly solvable one dimensional model. We here introduce the one dimen-
sional model system studied in [8] where conditions (5.1) can be explicitly satisfied.

Consider N identical point particles confined by a one dimensional box of size L.
The Hamiltonian is

H(p,q) =
N∑

i=1

p2i
2m

+ V (q) = E (5.26)

The potential energy V = Vint + Vbox is determined by the interaction potential

Vint(q) =
1

2

∑

i,j=1
i6=j

Vpair(|qi − qj |)

and the box potential

Vbox(q) =

{
0 q ∈ [0, L]N

+∞ otherwise.

The pair potential is given by

Vpair(r) =





∞ r ≤ dhc

−U0 dhc < r < dhc + r0

0 r ≥ dhc + r0

where dhc > 0 is the hard core diameter of a particle with respect to pair interactions.
The pair potential above can be viewed as a simplified Lennard-Jones potential. The
depth of the potential well is determined by the binding energy parameter U0 > 0 and
the interaction range by the parameter r0. It is assumed

0 < r0 ≤ dhc

the latter condition ensures that particles may interact with their nearest neighbors
only. In order to have the volume sufficiently large for realizing the completely disso-
ciated state, corresponding to V = 0 it is L > Lmin ≡ (N − 1)(dhc + r0). The energy E
of the system can take values between the ground state energy E0 = −(N − 1)U0 and
infinity. Following the calculations of [8] expression (5.23) for this model becomes

〈K2 |u〉N =

∑N−1
k=0 ωk(Nu+ kU0)

N
2
+1θ(Nu+ kU0)∑N−1

k=0 ωk(Nu+ kU0)
N
2
−1θ(Nu+ kU0)

(5.27)

where ωk are positive coefficient depending on N and L see [8] for more details. Fur-
thermore the canonical mean energy per particle

uN (β) =
1

2β
− U0

N

∑N−1
k=0 k ωk e

−βkU0

∑N−1
k=0 ωk e−βkU0

,

so that
1

2β
− U0 ≤ uN (β) ≤

1

2β
(5.28)
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Expression (5.27) shows that 〈K2 |u〉N does not vanish iff at least u + N−1
N U0 ≥ 0

this implies u + U0 > 0. Expression (5.27) is explicit but complicate. To verify that
〈K2 |u〉N satisfies conditions (i)-(iii) we consider the particular case of −(N − 2)/N ≤
u < −(N − 3)/N . As only the last two terms are present in the sums, expression (5.27)
becomes

〈K2 |u〉N =
ωN−1 + ωN−2

(
1− 1

N
U0

u+U0

)N/2+1

ωN−1 + ωN−2

(
1− 1

N
U0

u+U0

)N/2−1
N2(u+ U0)

2

where we use to simplify the formulas u+ N−1
N U0 ∼ u+U0 for N large. Calculating the

derivatives of (5.27) (we omit the boring calculation) one can show that there exists a
positive constant A such that

〈K2 |u〉N ≤ N2(u+ U0)
2

∣∣∣∣
d

du
〈K2 |u〉N

∣∣∣∣ ≤ AN2(u+ U0)

∣∣∣∣
d2

du2
〈K2 |u〉N

∣∣∣∣ ≤ AN2

(
U0

u+ U0
+

U2
0

(u+ U0)2

)

∣∣∣∣
d3〈K2 |u〉N

du3

∣∣∣∣ ≤ AN2

[
U0

(u+ U0)2
+

U2
0

(u+ U0)3
+

U3
0

(u+ U0)4

]

(5.29)

Remembering that

〈K2〉N,β =
N(N + 2)

4β2

by (5.28) and (5.29) conditions (i)-(iii) of theorem 5.1 are satisfied.

6. THERMODYNAMIC LIMIT

All the statements in the previous sections are for finite N . We here recall the classi-
cal Lanford results in the thermodynamic limit [13], under the assumption that fN (β)
is bounded in N along with the first four derivatives.

By definition fN(β) is analytical in β. Assume now that fN (β) converges to z(β)
which is analytical in β. Then all the derivatives of fN (β) converge to the derivatives
of z(β) and conditions (2.1) are satisfied. We thus have

f ′N (β) → z′(β) = −u(β), f ′′N (β) → z′′(β) = χ(β)

Usual thermodynamic notations denote F (β−1) = −β−1z(β) the free energy, χ(β) heat
capacity, and s(u) = −z∗(u) = − limN→∞ fN∗(u) the thermodynamic entropy. It follows
the Boltzmann formula:

s(u) = lim
N→∞

1

N
logWN (u) (6.1)

Also we denote

Iβ(u) = lim
N→∞

Iβ,N (u) = βu− s(u) + z(β) (6.2)

that is the rate function for the large deviations of hN in the infinite Gibbs state defined
by DLR equations.

In absence of phase transition, i.e. Iβ(u) = 0 only for u = z′(β), then the equivalence
on ensembles follows from (5.3). Differentiability of the limit of fN(β) depends on the
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system we are considering. In next section we give examples where analyticity of z(β)
is assured at least for β small enough.

7. EXAMPLES

7.1. Independent case. Consider a system ofN noninteracting particles in a potential.
This is the case V (qi, q̄i) = V (qi). The Hamiltonian can be written as the sum of N
identical terms

HN (p,q) =

N∑

i=1

h(pi, qi). (7.1)

Consequently fN (β) does not depend on N and is a smooth function of β if V is a nice
reasonable potential.

7.1.1. Independent harmonic oscillators. Consider a system of N harmonic oscillators
in dimension d. The Hamiltonian is given by

H =
N∑

i=1

[
p2i
2

+
q2i
2

]
. (7.2)

To simplify notations take n = 1. Explicitely we have

f(β) = log(2πβ−1)

and z′(β) = −β−1, z′′(β) = β−2, so that the heat capacity here is z′′(β)β2 = 1.
If we calculate the expected value of the kinetic energy K with respect to the canon-

ical measure at inverse temperature β we obtain

〈K〉β =
N

2β
. (7.3)

The fluctuations (the variance) of K are given by

〈K;K〉β =
N

2β2
. (7.4)

The expected value of K with respect to the microcanonical measure is given by

〈K|u〉N =
Nu

2
(7.5)

and

〈K2|u〉N =
N + 2

4(N + 1)
(Nu)2. (7.6)

This imply that the microcanonical variance is given by

〈K;K|u〉N = 〈K2|u〉N − 〈K|u〉2N =
(Nu)2

4(N + 1)
. (7.7)

Since 〈hN 〉β = uN (β) =
1
β , we have

〈K;K|uN (β)〉N − 〈K;K〉N,β =
N2

4(N + 1)β2
− N

2β2
= − N

4β2

(
1 +

1

N + 1

)
, (7.8)

that coincide with the general formula (5.18).
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7.2. Mean Field. We consider the Hamiltonian

hN =
1

N

N∑

1

p2i
2

+
1

N2

N∑

i,j=1

V (qi, qj), (7.9)

where V is a symmetric reasonable potential such that
∫
e−βV dq1dq2 < +∞ for any

β > 0. One can check by direct computation, using the symmetry of the potential that

f
(j)
N (β) are uniformly bounded in N .

7.3. One dimensional chain of oscillators. A very common model is an unpinned
chain of anharmonic oscillators of Fermi-Pasta-Ulam type, whose hamiltonian is given
by

HN =
N∑

1

[
p2i
2

+ V (qi − qi−1)

]
(7.10)

with various boundary conditions. Defining ri = qi − qi−1, we are back to the indepen-
dent case.

7.4. Real Gas. Consider a system ofN particles interacting with a stable and tempered
pair potential V : Rd → R ∪ {∞}, i.e., there exists B ≥ 0 such that:

∑

1≤i≤j≤N
V (qi − qj) ≥ −BN

for all N and all q1, · · · , qN and the integral

C(β) =

∫

Rd

|e−βV (q) − 1|dq

is convergent for some β > 0 (and hence for all β > 0. In [16] it has been proved the
validity of cluster expansion for the canonical partition function in the high temperature
- low density regime. This implies that the thermodynamic free energy is analytic in β
if β and the density are small enough. Conditions (2.1) are thus satisfied.

7.5. Unbounded spin systems with finite range potential. We consider here the un-
bounded spin systems studied in [3]. For any domain Λ of Z

d, with |Λ| = N , we
consider the following ferromagnetic Hamiltonian on the phase space R

Λ defined as
follows

HN (q) =

N∑

j=1


φ(qj) +

∑

i∼j
V (qi, qj)


 =

N∑

j=1

Xj ,

where i ∼ j means that the sum is over the sites that are at distance R > 0 from j. Here
φ is a one particle phase on R with at least quadratic increase at infinity, V is a convex
function on R with bounded second derivative, i.e. |V ′′(t)| ≤ C. As the kinetic energy
term is not present to use Theorem 2.2 we need to prove that the characteristic function
ϕN (t) of the centered energy has modulus |ϕN (t)| < 1 and |ϕN (t)| is integrable. We
have to prove an analogous of (2.5) which assures that the probability density function
of the variable SN exists. The finite range of the potential is sufficient to prove both
properties. Define a ΛR ⊂ Λ

ΛR = {i ∈ Λ : d(i, j) > 2R},
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and

Yk = φ(qk) + 2
∑

i∼k
V (qi, qk).

We can write the Hamiltonian as

HN (q) =
∑

k∈ΛR

Yk +HΛ\ΛR
,

where HΛ\ΛR
depends only on the variables in Λ \ ΛR. For any Λ ⊂ Z

d, let νβ,Λ be the

canonical measure defined by the Hamiltonian defined above and indicate by Eβ,Λ the
expected value w.r.t. νβ,Λ. Then

ϕN (t) = Eβ,Λ(e
it
∑

k∈ΛR
Yk+itHΛ\ΛR ) = Eβ,Λ(e

itHΛ\ΛR Eβ,ΛR
(e
it
∑

k∈ΛR
Yk))

= Eβ,Λ(e
itHΛ\ΛR

|ΛR|∏

k=1

Eβ,k(e
itYk)),

where in the last equality we used independence of the {Yk} variables due to the finite
range potential. We thus have

|ϕN (t)| ≤ Eβ,Λ(

|ΛR|∏

k=1

|Eβ,k(eitYk)|) = Eβ,Λ(

|ΛR|∏

k=1

|ϕk(t)|).

The variables {Yk} have finite probability density. This implies that their characteristic
functions {ϕk(t)} have modulus strictly less than one for t 6= 0 (see [9]). Furthermore
such density is in L2 so that, by Plancherel equality, |ϕk(t)|2 is integrable (see [9]).
These two properties of ϕk(t) assure that the modulus of ϕN (t) is strictly less than one
for t 6= 0 and integrable for |ΛR| large enough so that, by the Fourier inversion theorem,
the probability density function of the centered energy exists.

In [3] exponential decay of correlations is proven for β small enough which implies
analyticity of the free energy in the thermodynamic limit.
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Poincaré, Probabilités et Statistiques 23 (1987), 397–423.

[6] R. L. Dobrushin and B. Shlosman, Large and Moderate Deviations in the Ising Model, Adv. Soviet Math.

20 (1994), 1–130.

[7] R. L. Dobrushin and B. Tirozzi, The Central Limit Theorem and the Problem of Equivalence of Ensem-

bles, Comm. Math. Phys. 54 (1977), 173–192.

[8] J. Dunkel and S. Hilbert, Phase Transitions in small systems: Microcanonical vs. canonical ensembles,

Physica A 370 (2006), 390–406.

[9] Feller W., An introduction to probability theory and its applications, 3rd ed. (Wiley, ed.), Vol. II, 1971.

[10] Khinchin A. Ia, Mathematical foundations of statistical mechanics.



24 N. CANCRINI AND S. OLLA

[11] I. A. Ibragimov and Yu. V. Linnik, Independent and Stationary Random Variables (G. Wolters-

Noordhoff, ed.), 1971.

[12] L Evans and R. Gariepy, Measure Theory and Fine Properties of Functions (CRC, ed.), 1992.

[13] O. E. Lanford, Entropy and equilibrium states in classical statistical mechanics (A. Lenard, ed.),

Springer Berlin Heidelberg, Berlin, Heidelberg, 1973.

[14] J. L. Lebowitz, J. K Percus, and L. Verlet, Ensemble Dependence of Fluctuations with Applications to

Machine Computations, Phys. Rev 153 (1967), no. 1, 250–254.

[15] S. Olla, Large Deviations, Appunti lezioni (2013).

[16] E. Pulvirenti and D. Tsagkarogiannis, Cluster Expansion in the Canonical Ensemble, Commun. Math.

Phys. 316 (2012), 289–306.

[17] D. W. Stroock and O. Zeitouni, Microcanonical distributions, Gibbs states, and the equivalence of en-

sembles, Festchrift in honour of F. Spitzer. Birkhauser (1991), 399–424.

NICOLETTA CANCRINI, DIIIE UNIVERSITÀ. L’AQUILA, 1-67100 L’AQUILA, ITALY
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