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Abstract

A dual mixed finite element method, for quasi–Newtonian fluid flow obeying the power law or the Carreau
law, is constructed and analyzed in Farhloul–Zine [13]. This mixed formulation possesses good local (i.e.,
at element level) conservation properties (conservation of the momentum and the mass) as in the finite
volume methods. In Farhloul–Zine [12], we developed an a posteriori error analysis for a non–Newtonian
fluid flow problems. The analysis is based on the fact that the equation describing the extra–stress tensor
in terms of the rate of strain tensor is invertible and may give the rate of strain tensor as a function of
the stress tensor. To free ourselves from this constraint of inversion of laws, and as a generalization of the
obtained results in [12], we propose in this work an a posteriori error analysis to this mixed formulation.

Keywords : A posteriori Error Analysis, Dual–Mixed Formulations, Quasi–Newtonian, Power law, Car-
reau law.

AMS (MOS) subject classification: 65N30; 65N15;

1. Introduction

Governed by the classical Stokes problem, the Newtonian fluid flows are a reasonable approximation
of the more realistic non–Newtonian fluids (quasi–Newtonian or Viscoelastic). In the case of quasi–
Newtonian fluids, the viscosity is a function of strain rate tensor, temperature, time, etc. For a steady
and creeping flow of an incompressible quasi-Newtonian fluid, the most used formulation, see Bird et
al. [4], is based on the strain rate tensor. In that case, for Ω a bounded domain of R2 with a Lipschitz
boundary Γ and a given mass forces f defined on Ω, the combination of the constitutive an conservation
equations leads to the following Nonlinear Stokes problem:{

−div
(

2µ(|d(u)|)d(u)
)

+∇p = f in Ω,

divu = 0 in Ω,
(1)

where u and p, the unknowns of the problem, are the velocity and pressure, respectively.

d(u) =
1

2

(
∇u+(∇u)t

)
is the strain rate tensor, and |d(u)|2 =

2∑
i,j=1

d(u)2
ij .

For µ0 > 0 a reference viscosity and r a fluid characteristic real parameter verifying 1 < r < ∞, the
viscosity function µ(·), depending on |d(u)|, is usually given by one of the two following famous models:
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µ(x) = µ0 x
r−2, ∀x ∈ R+, for the Power law model, or

µ(x) = µ0

(
1 + x2

)(r−2)/2

, ∀x ∈ R+, for the Carreau model.

Finally, system (1) is supplemented by a set of boundary conditions.
The generalized Stokes problem (1) and its approximation by standard finite elements was first studied

in Baranger and Najib [1]. Extensions and improvements of the error bounds have been obtained in Sandri
[19] and Barrett and Liu [2, 3].

In these works, only the primal variables velocity and pressure are taken into account. But, for various
reasons, one may need information on other (dual) variables such as velocity gradients ∇u, strain rate
tensor d(u), and extra-stress tensor σ = 2µ(|d(u)|)d(u). For these reasons, it is necessary to build
appropriate mixed formulations.

On the other hand, in connection with the use of the gradient tensor ∇u which corresponds to the
Ladyzhenskaya model [17]:

µ(|∇u|) = (µ0 + µ1 |∇u|)r−2
, µ0 ≥ 0, µ1 > 0, r > 1,

a large amount of work is available in the literature. Among these works, there may be mentioned Manouzi
and Farhloul [18], Farhloul and Zine [10], Gatica et al. [15, 16] and Ervin et al. [9]. The major drawback
of formulations using the gradient lies in the fact that we can not deal with natural boundary condi-
tions. To overcome this drawback related to the boundary conditions, we have introduced and analyzed
a dual–mixed finite element method for quasi-Newtonian fluid flow obeying to the Power law, in Farhloul
and Zine [11, 12]. A priori error estimates for the finite element approximation were proved in the first
paper, while a posteriori error estimation was provided in the second work. In both papers, our analysis
is based on the fact that the equation describing the extra–stress tensor in terms of the rate of strain
tensor is invertible and give the rate of strain tensor as a function of the stress tensor. In a recent work
Farhloul–Zine [13], we developed a mixed formulation to overcome this constraint of inversibility of the
viscosity law. The main advantage of this formulation is that it makes it possible to consider differently
viscosity functions obeying the Power law or Carreau Law.

The aim of this work is to give an a posteriori error estimates for the mixed formulation developed
in [13]. In the next section we recall the mixed formulation developed in [13] and then we give the a
posteriori error estimates in section 3. This will be done by extending our investigations by avoiding the
assumption of expressing the rate of strain tensor as function of the stress tensor. We may be then able
to deal with both problems associated with Power law and Carreau model.

2. Dual–mixed formulation

In order to obtain a dual–mixed formulation of (1), first the problem (1) is formulated as follows: −div
(
σ − p I

)
= f in Ω,

divu = 0 in Ω,
u = 0 on Γ,

(2)

and then, we introduce two new variables

t = d(u), the strain rate tensor, (3)

A(t) = 2µ (|t|) t = σ, the extra stress tensor. (4)
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Suppose f ∈ [Lr(Ω)]2, 1 < r < ∞. Let ω = ω(u) = 1
2 (∇u−(∇u)t) be the vorticity tensor. Then,

for all (τ , q) ∈ [Lr′(Ω)]2×2×Lr′

0 (Ω), such that div
(
τ − q I

)
∈ [Lr′(Ω)]2, and for all u ∈ [W 1,r(Ω)]2 such

that divu = 0, it is easy to see that

(t, τ ) = (d(u), τ ) = −(div(τ − q I),u)− (ω, τ ),

where, from now on, ( · , · ) denotes the duality pairing between Lr′(Ω) and Lr(Ω), and

Lr′

0 (Ω) =

{
q ∈ Lr′(Ω);

∫
Ω

q dx = 0

}
.

In order to derive the mixed formulation of (2), we define the following spaces:

T = [Lr(Ω)]
2×2

,

Σ =
{

(τ , q) ∈ [Lr′(Ω)]2×2 × Lr′

0 (Ω); div(τ − q I) ∈ [Lr′(Ω)]2
}
,

M =
{

(v,η) ∈ [Lr(Ω)]2 × [Lr(Ω)]2×2; η + ηt = 0
}
,

equipped with the following norms:

‖ s ‖T = ‖s‖0,r,Ω =

(∫
Ω

|s|r
) 1

r

,

‖(τ , q)‖Σ =
(
‖τ‖r

′

0,r′,Ω + ‖q‖r
′

0,r′,Ω + ‖div(τ − q I)‖r
′

0,r′,Ω

) 1
r′
,

‖(v,η)‖M =
(
‖v‖r0,r,Ω + ‖η‖r0,r,Ω

) 1
r

.

The dual–mixed formulation of problem (2) reads as follows: Find t ∈ T , (σ, p) ∈ Σ and (u,ω) ∈ M
such that 

(A(t), s)− (σ, s) = 0 ∀ s ∈ T ,
(t, τ ) + (div(τ − q I),u) + (τ ,ω) = 0 ∀τ

∼
= (τ , q) ∈ Σ,

(div(σ − p I),v) + (σ,η) + (f ,v) = 0 ∀v
∼

= (v,η) ∈M .
(5)

Remark 2.1. From the last equation of (5),

(div(σ − p I),v) + (σ,η) + (f ,v) = 0, ∀(v,η) ∈M ,

one gets
(σ,η) = 0, ∀η ∈ [Lr(Ω)]2×2 such that η + ηt = 0.

This corresponds to the symmetry relaxation of the extra–stress tensor σ by a Lagrange multiplier.

Remark 2.2. As stated above, the use of the rate of strain tensor enables to handle different types of
boundary conditions, such as mixed boundary conditions. More precisely, assuming that we consider the
following boundary conditions:  u = 0 on ΓD and

(2µ(|d(u)|)d(u)− p I) n = 0 on ΓN ,

where Γ = ΓD ∪ ΓN , ΓD 6= ∅ and n is the unit outward normal vector field along the boundary of Ω.
Then, the only change to be made is to replace the space Σ by the following one:

Σ =
{

(τ , q) ∈ [Lr′(Ω)]2×2 × Lr′

0 (Ω); div(τ − q I) ∈ [Lr′(Ω)]2; (τ − q I)n = 0 on ΓN

}
.

However, for the sake of clearness, we developed in [13] the analysis in the case of Dirichlet boundary
conditions only.
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To formally rewrite (5) as a twofold saddle–point problem, we define the following operators:

A : T −→ T ′, B : T −→ Σ′ and C : Σ −→M ′,

where for a Banach space X, X ′ denotes the dual space with associated norm ‖ · ‖X′ .

[A(t), s] = (A(t), s) , ∀ s, t ∈ T , (6)

[B(s), τ
∼

] = − (s, τ ) , ∀ s ∈ T , ∀τ
∼

= (τ , q) ∈ Σ, (7)

[C(τ
∼

), v
∼

] = −(div(τ −q I),v)− (τ ,η), ∀τ
∼
∈ Σ,∀v

∼
∈M . (8)

Remark 2.3. Recall that the operator A is defined by

∀ t ∈ T , A(t) = 2µ(|t|) t,

µ, the viscosity function, being given by either Power or Carreau law.

Problem (5) is then written in the following twofold saddle–point form: Find t ∈ T , σ
∼
∈ Σ and u

∼
∈M

such that 
[A(t), s] + [s,B ′(σ

∼
)] = 0 ∀ s ∈ T ,

[B(t), τ
∼

] + [τ
∼
,C′(u

∼
)] = 0 ∀τ

∼
∈ Σ,

[C(σ
∼

), v
∼

] = [F , v
∼

] ∀v
∼
∈M ,

(9)

where, [F , v
∼

] = (f ,v) ,∀v
∼
∈M , and B ′ and C′ denote the dual operators of B and C, respectively.

The existence, uniqueness and stability of
(
t,σ

∼
,u
∼

)
=
(
t, (σ, p), (u,ω)

)
∈ T ×Σ×M , solution to the

problem (9) are obtained under some assumptions on the operators A, B and C. These hypotheses are
verified by some technical lemmas that we recall here. These assumptions concern the properties of the
operators A, B and C. Mainly:

• A is bounded, continuous and strictly monotone,
• B verifies the inf–sup condition on the Kernel of C,
• C verifies the inf–sup condition.

Several technical lemmas that establish the appropriate conditions on the operators A are given in [13].
We also recall here the inf–sup condition in the continuous framework. Its discrete form is recalled below,
see Lemma 2.3. These two conditions are used for a posteriori estimates.

Lemma 2.1. There exists a positive constant β2 such that

inf
v
∼
∈M

sup
τ
∼
∈Σ

[C(τ
∼

), v
∼

]

‖τ
∼
‖Σ ‖v∼‖M

≥ β2. (10)

Lemma 2.2. Let

Z∗1 =

{
τ
∼

= (τ , q) ∈ Σ; (div(τ −q I),v) = 0, ∀v ∈ [Lr(Ω)]2
}
.

Then, there exists a positive constant β∗1 such that

inf
τ
∼
∈Z∗1

sup
s∈T

(s, τ )

‖ s ‖T ‖τ∼‖Σ
≥ β∗1 .
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Proof. The proof of this result is similar to the one of Lemma 3.6 in [13].

The following result giving the existence, uniqueness and stability is also established in [13].

Theorem 2.1. Problem (9) admits a unique solution (t,σ
∼
,u
∼

) ∈ T ×Σ×M satisfying the following

stability condition,
‖ t ‖T + ‖σ

∼
‖Σ + ‖u

∼
‖M ≤ C(f),

where C(f) is a positive constant depending on f .

Let us now recall the discrete problem. We assume that the boundary Γ of the domain Ω is polygonal.
We first give some finite element notations. Let h > 0 and Th a triangulation of Ω into triangles. We
assume that the triangulation Th is regular in the sense of Ciarlet [6]. Let K ∈ Th be an element of the
triangulation, we denote by bK the bubble function defined by

bK(x) = λ1(x)λ2(x)λ3(x), ∀x ∈ K,

λi, i = 1, · · · , 3 being the barycentric co-ordinates with respect to the element K. For k ∈ N, let Pk(K)
denote the space of polynomials of degree less than or equal to k on K, and

R(K) =
[
P1(K)

]2 ⊕ R curl bK ,

where curl bK = (
∂bK
∂x2

, −∂bK
∂x1

).

To write the discrete mixed formulation, we introduce the following finite dimensional spaces:

T h =
{
sh ∈ T ; sh|K ∈ R(K), ∀K ∈ Th

}
,

Σh =
{
τh
∼

= (τh, qh) ∈ Σ; τh|K ∈ [R(K)]2, qh|K ∈ P1(K), ∀K ∈ Th
}
,

Mh =
{
vh
∼

= (vh,ηh) ∈M ; vh|K ∈
[
P0(K)

]2
,ηh = θh χ, θh|K ∈ P1(K),∀K ∈ Th

}
,

where

χ =

[
0 −1
1 0

]
.

The discrete mixed formulation of problem (9) is given by the following: Find th ∈ T h, σh
∼
∈ Σh and

uh
∼
∈Mh such that 

[A(th), sh] + [sh,B
′(σh

∼
)] = 0 ∀ sh ∈ T h,

[B(th), τh
∼

] + [τh
∼
,C′(uh

∼
)] = 0 ∀τh

∼
∈ Σh,

[C(σh
∼

),vh
∼

] = [F ,vh
∼

] ∀vh
∼
∈Mh .

(11)

The analysis of the above discrete problem (11), as well as the a priori estimates of discrete errors,
are given in Farhloul–Zine [13]. These results are, in part, based on the some lemmas that we recall
here because we need them further to establish the posteriori estimates. For the details on proofs, see
Farhloul–Zine [13].

Lemma 2.3. There exists a positive constant β∗2 independent of h, such that

inf
vh
∼
∈Mh

sup
τh
∼
∈Σh

[C(τh
∼

),vh
∼

]

‖τh
∼
‖Σ ‖vh

∼
‖M
≥ β∗2 . (12)
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Lemma 2.4. Let

Zh
1 =

{
τh
∼

= (τh, qh) ∈ Σh; [C(τh
∼

),vh
∼

] = 0, ∀vh
∼
∈Mh

}
.

Then, there exists a positive constant C, independent of h, such that

∀τh
∼
∈ Zh

1 , ‖qh‖0,r′,Ω ≤ C ‖τh‖0,r′,Ω . (13)

Due to the previous Lemma, the discrete inf–sup conditions (10) and (12), we obtain, as for the
continuous problem, the existence, uniqueness and stability of the discrete solution. More precisely,

Theorem 2.2. Problem (11) admits a unique solution (th,σh
∼
,uh

∼
) ∈ T h×Σh×Mh satisfying the fol-

lowing stability condition,
‖ th ‖T + ‖σh

∼
‖Σ + ‖uh

∼
‖M ≤ C(f).

where C(f) is a positive constant depending on f and independent of h.

3. A posteriori error estimates

Let (t,σ
∼
,u
∼

) =
(
t, (σ, p), (u,ω)

)
∈ T ×Σ×M and (th,σh

∼
,uh
∼

) =
(
th, (σh, ph), (uh,ωh)

)
∈ T h×Σh×Mh

be the solutions of (9) and (11), respectively. On T ,Σ and M , one define the residuals R1, R2 and R3

by

< R1, s > = (A(th), s)− (σh, s), ∀ s ∈ T , (14)

< R2, τ∼ > = (th, τ ) + (div(τ − q I),uh) + (τ ,ωh), ∀ τ
∼

= (τ , q) ∈ Σ, (15)

< R3, v∼ > = (div(σh − ph I),v) + (σh,η) + (f ,v), ∀ v
∼

= (v,η) ∈M . (16)

We denote by R1∗,R2∗ and R3∗ the dual norms of R1,R2 and R3, respectively.

R1∗ = sup
s∈T

| < R1, s > |
‖ s ‖T

, R2∗ = sup
τ∼∈Σ

| < R2, τ∼ > |

‖ τ
∼
‖Σ

and R3∗ = sup
v∼∈M

| < R3, v∼ > |

‖ v
∼
‖M

.

In the sequel, our goal is to obtain upper bounds of the errors ‖ t− th ‖T , ‖σ
∼
−σh
∼
‖Σ and ‖u

∼
−uh
∼
‖M

as functions of the above dual norms R1∗,R2∗ and R3∗ whose expressions involve only the data of the
problem and the available computed quantities th,σh

∼
and uh

∼
. And then, we give upper bounds to the

estimators R1∗,R2∗ and R3∗.
As we will see later, these results depend on the parameter r. We have then to distinguish two cases:

1 < r < 2 and r ≥ 2.

First, let us give the following estimate of
(
A(th)−A(t), th− t

)
in terms of R1∗,R2∗ and R3∗.

Proposition 3.1. There exists a constant C independent of h such that(
A(th)−A(t), th− t

)
≤ C

{
(R1∗+R3∗) ‖ th− t ‖T + R2∗ ‖f − P 0

hf‖0,r′,Ω

+ (R1∗+R3∗)R2∗+R2∗ sup
s∈T

(
A(t)−A(th), s

)
‖ s ‖T

}
,

(17)

where P 0
hf is the L2–projection of f onto

[ ∏
K∈Th

P0(K)
]2

.
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Proof.
From the first equation of (9), one gets, ∀ s ∈ T ,(

A(th)−A(t), s
)

= (A(th), s)− (σ, s)

= (A(th), s)− (σh, s) + (σh, s)− (σ, s)

= 〈R1, s〉+ (σh − σ, s) .

Thus, (
A(th)−A(t), s

)
=
〈
R1, s

〉
+ (σh − σ, s) , ∀ s ∈ T . (18)

From the second equation of (9), one gets

(th− t, τ ) + (div(τ −q I),uh−u) + (τ ,ωh − ω) =
〈
R2, τ∼

〉
, ∀ τ

∼
∈ Σ . (19)

Using the last equation of (9), we obtain

(div[(σh − ph I)− (σ − p I)],v) + (σh − σ,η)) = 〈R3, v∼〉, ∀ v∼ ∈ M . (20)

Now, taking τ
∼

= σh
∼
−σ
∼

in (19) and v
∼

= uh
∼
−u
∼

in (20), we obtain

(th− t,σh − σ) + (div[(σh − ph I)− (σ − p I)],uh − u) + (σh − σ,ωh − ω) = 〈R2,σh
∼
−σ
∼
〉

and,
(div[(σh − ph I)− (σ − p I)],uh − u) + (σh − σ,ωh − ω) = 〈R3,uh

∼
−u
∼
〉.

These two last equations imply

(th− t,σh − σ) = 〈R2,σh
∼
−σ
∼
〉 − 〈R3,uh

∼
−u
∼
〉.

Finally, substituting s, by s = th− t, in (18) and using the above last equation, we get(
A(th)−A(t), th− t

)
=
〈
R1, th− t

〉
+ 〈R2,σh

∼
−σ
∼
〉 − 〈R3,uh

∼
−u
∼
〉. (21)

By the inf–sup condition (10) and (19), it follows

β2‖uh
∼
−u
∼
‖M ≤ sup

τ∼∈Σ

(div(τ − q I),uh − u) + (τ ,ωh − ω)

‖ τ
∼
‖Σ

≤ sup
τ∼∈Σ

< R2, τ∼ >

‖ τ
∼
‖Σ

+ sup
τ∼∈Σ

|(th− t, τ )|
‖ τ
∼
‖Σ

.

Thus,

‖uh
∼
−u
∼
‖M ≤ C

(
R2∗+ ‖th− t‖T

)
. (22)

Now, using the third equation of (9) and the third equation of (11), one gets, ∀v ∈ [Lr(Ω)]
2
,

(div[(σh − ph I)− (σ − p I)],v) +
(
P 0
hf − f ,v

)
=
(
div(σh − ph I) + P 0

hf ,v
)

= 0. (23)

On the other hand, since P 0
hf − f ∈ [Lr′

0 (Ω)]2, there exists (see Galdi [14])

ξ ∈ {τ ∈ [Lr′(Ω)]2×2; div τ ∈ [Lr′(Ω)]2}
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such that
div ξ = P 0

hf − f in Ω and ‖ξ‖0,r′,Ω + ‖div ξ‖0,r′,Ω ≤ C‖P 0
hf − f |0,r′,Ω.

Thus, from these last relations and (23), we get(
div

[
(σh − ph I) + ξ − (σ − p I)

]
,v
)

= 0, ∀v ∈ [Lr(Ω)]2,

Hence, using the above mentioned inf–sup condition in Lemma 2.2, we obtain

β∗1‖ (σh − σ + ξ, ph − p) ‖Σ ≤ sup
s∈T

(s,σh − σ + ξ)

‖ s ‖T
≤ sup
s∈T

(s,σh − σ)

‖ s ‖T
+ sup
s∈T

(s, ξ)

‖ s ‖T
.

This last inequality together with (18), lead to

‖(σh − σ + ξ, ph − p)‖Σ ≤ C
(
R1∗+ sup

s∈T

(A(th)−A(t), s)

‖ s ‖T
+ ‖f − P 0

hf‖0,r′,Ω.
)
. (24)

On the other hand,

‖σh
∼
−σ
∼
‖Σ = ‖ (σh − σ, ph − p) ‖Σ ≤ ‖ (σh − σ + ξ, ph − p) ‖Σ + ‖ (ξ, 0) ‖Σ.

and

‖ (ξ, 0) ‖Σ =
(
‖ξ‖r

′

0,r′,Ω + ‖div ξ‖r
′

0,r′,Ω

)1/r′

≤ C‖P 0
hf − f‖0,r′,Ω.

Then, from (24), we get

‖σh
∼
−σ
∼
‖Σ ≤ C

(
R1∗+‖P 0

hf − f‖0,r′,Ω + sup
s∈T

(A(th)−A(t), s)

‖ s ‖T

)
. (25)

Finally, using (21), (22) and (25), we get(
A(th)−A(t), th− t

)
≤ R1∗ ‖ th− t ‖T + R2∗ ‖σh

∼
−σ
∼
‖Σ + R3∗ ‖uh

∼
−u
∼
‖M

≤ C
{
R1∗ ‖ th− t ‖T + R2∗R1∗+R2∗ ‖P 0

hf − f‖0,r′,Ω

+R2∗ sup
s∈T

(
A(th)−A(t), s

)
‖ s ‖T

+ R3∗R2∗+R3∗ ‖ th− t ‖T
}
.

This ends the proof of the previous proposition.

As it was mentioned above, the upper bounds of the errors depend on the parameter r > 1. On the
other hand, to distinguish the two models, we set: δ = 0 for Power law and δ = 1 for Carreau law.
We first consider the case where the parameter r verify 1 < r < 2

Theorem 3.1. Let (t,σ
∼
,u
∼

) and (th,σh
∼
,uh
∼

) be the solution of problems (9) and (11), respectively. Sup-

pose that 1 < r < 2, then there exists a constant C independent of h such that

‖ t− th ‖T ≤ C

(
3∑

i=1

Ri∗+R
r/2
2∗ +‖f − P 0

hf‖0,r′,Ω

)
, (26)

‖σ
∼
−σh
∼
‖Σ ≤ C

(
R1∗+

3∑
i=1

R
2/r′

i∗ +R
r/r′

2∗ +‖f − P 0
hf‖0,r′,Ω + ‖f − P 0

hf‖
2/r′

0,r′,Ω

)
, (27)

‖u
∼
−uh
∼
‖M ≤ C

(
3∑

i=1

Ri∗+R
r/2
2∗ +‖f − P 0

hf‖0,r′,Ω

)
. (28)
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Proof. Owing to Lemma 3.1 and Lemma 3.3 in Farhloul–Zine [13], we have

(
A(th)−A(t), th− t

)
≥ C

{
‖ th− t ‖20,r,Ω

δ + ‖ th ‖2−r0,r,Ω + ‖ t ‖2−r0,r,Ω

+

∫
Ω

|A(th)−A(t)| |th− t| dx

}
and,

‖A(th)−A(t)‖0,r′,Ω ≤ C
[∫

Ω

|A(th)−A(t)| |th− t| dx
]1/r′

. (29)

Then, we get from (17),

‖ th− t ‖2T
δ + ‖ th ‖2−rT + ‖ t ‖2−rT

+

∫
Ω

|A(th)−A(t)| |th− t| dx ≤

C
{

(R1∗+R3∗)‖ th− t ‖T + R2∗ ‖f − P 0
hf‖0,r′,Ω +

(R1∗+R3∗)R2∗+R2∗ sup
s∈T

(A(t)−A(th), s)

‖ s ‖T

}
On the other hand, using stability conditions (see Farhloul–Zine [13]),

‖ t ‖T ≤ C(f) and ‖ th ‖T ≤ C(f),

and (29), we get

‖ th− t ‖2T +

∫
Ω

|A(th)−A(t)| |th− t| dx ≤ C
{

(R1∗+R3∗)‖ t− th ‖T

+ R2∗ ‖f − P 0
hf‖0,r′,Ω + R2∗(R1∗+R3∗)

+ R2∗
[ ∫

Ω

|A(th)−A(t)| |th− t| dx
]1/r′}

.

Now, using the Young inequality, we obtain, ∀ ε > 0 and ∀ ε > 0,

‖ th− t ‖2T +

∫
Ω

|A(th)−A(t)| |th− t| dx ≤ C
{
ε−1(R1∗+R3∗)

2 + ε‖ t− th ‖2T

+ R2∗ ‖f − P 0
hf‖0,r′,Ω + R2∗(R1∗+R3∗)

+ (ε)−r Rr
2∗+(ε)r

′
∫

Ω

|A(t)−A(th)| |t− th| dx
}
.

Thus, for an adequate choice of ε and ε, we get

‖ th− t ‖2T +

∫
Ω

|A(th)−A(t)| |th− t| dx ≤ C
{

(R1∗+R3∗)
2 + R2∗ ‖f − P 0

hf‖0,r′,Ω

+ R2∗(R1∗+R3∗) + Rr
2∗

}
.

This implies, in particular, the expected result in equation (26), namely:

‖ t− th ‖T ≤ C
( 3∑

1

Ri∗+R
r/2
2∗ +‖f − P 0

hf‖0,r′,Ω
)
,

and ∫
Ω

|A(th)−A(t)| |t− th| dx ≤ C
( 3∑

1

R2
i∗+Rr

2∗+‖f − P 0
hf‖20,r′,Ω

)
. (30)

Finally, to obtain the expected estimate (27), it suffices to use the inequalities (25), (29) and (30). And
the estimate (28) is a direct consequence of (22) and (26).

After the study of the case 1 < r < 2, we will now consider the case r ≥ 2.
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Theorem 3.2. Let (t,σ
∼
,u
∼

) and (th,σh
∼
,uh
∼

) be the solution of problems (9) and (11), respectively. Sup-

pose that r ≥ 2, then there exists a constant C independent of h such that

‖ t− th ‖T ≤ C
( 3∑

i=1

R
r′/r
i∗ +R2∗+R

2/r
2∗ +‖f − P 0

hf‖0,r′,Ω
)
, (31)

‖σ
∼
−σh
∼
‖Σ ≤ C

(
R

r′/2
1∗ +R

r′/2
3∗ +

3∑
i=1

Ri∗+‖f − P 0
hf‖0,r′,Ω

)
, (32)

‖u
∼
−uh
∼
‖M ≤ C

( 3∑
i=1

R
r′/r
i∗ +R2∗+R

2/r
2∗ +‖f − P 0

hf‖0,r′,Ω
)
. (33)

Proof. Using Lemma 3.2 in Farhloul–Zine [13], we get(
A(th)−A(t), th− t

)
≥ C

(
‖ th− t ‖r0,r,Ω +

∫
Ω

(
δ + |th|r−2

+ |t|r−2
)
|th− t|2 dx

)
and

‖A(th)−A(t)‖0,r′,Ω ≤ C

[∫
Ω

(
δ + |th|r−2

+ |t|r−2
)
|th− t|2 dx

]1/2

(34)

×
[
δ + ‖th‖(r−2)/2

0,r,Ω + ‖t‖(r−2)/2
0,r,Ω

]
.

To simplify notations, we set Λ = ‖ t− th ‖rT +

∫
Ω

(
δ + |th|r−2

+ |t|r−2
)
|t− th|2 dx. Then, from (17), we

have

Λ ≤ C
{

(R1∗+R3∗)(‖ th− t ‖T + R2∗) + R2∗ ‖f − P 0
hf‖0,r′,Ω + R2∗ ‖A(th)−A(t)‖0,r′,Ω

}
And then, from (34), we get

Λ ≤ C
{

(R1∗+R3∗)(‖ th− t ‖T + R2∗) + R2∗ ‖f − P 0
hf‖0,r′,Ω

+ R2∗

[∫
Ω

(
δ + |th|r−2

+ |t|r−2
)
|th− t|2 dx

]1/2 (
δ + ‖th‖(r−2)/2

T + ‖t‖(r−2)/2
T

)}
And again, using Young’s inequality with two parameters ε and ε, we get

Λ ≤ C
{
εr‖ th− t ‖rT + ε−r

′
(R1∗+R3∗)

r′ + R2∗ ‖f − P 0
hf‖0,r′,Ω

+ (R1∗+R3∗)R2∗+ε

∫
Ω

(
δ + |th|r−2

+ |t|r−2
)
|th− t|2 dx

+ (ε)−1 R2
2∗

(
δ + ‖th‖(r−2)/2

T + ‖t‖(r−2)/2
T

)2 }
.

Thus, using the stability conditions ‖t‖T ≤ C(f) and ‖th‖T ≤ C(f), we obtain

Λ ≤ C
{

(R1∗+R3∗)
r′ + R2∗ ‖f − P 0

hf‖0,r′,Ω + (R1∗+R3∗)R2∗+R2
2∗

}
. (35)

This last inequality leads in particular to

‖ t− th ‖rT ≤ C
{

(R1∗+R3∗)
r′ + Rr′

2∗+‖f − P 0
hf‖r0,r′,Ω + Rr

2∗+R2
2∗

}
.

And then,

‖ t− th ‖T ≤ C
{ 3∑

i=1

R
r′/r
i∗ +R2∗+R

2/r
2∗ +‖f − P 0

hf‖0,r′,Ω
}
,
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which is precisely the expected estimate (31).

On the other hand, from (35), we deduce the following estimate∫
Ω

(
δ + |th|r−2

+ |t|r−2
)
|t− th|2 dx ≤ C

{
(R1∗+R3∗)

r′ + (R1∗+R3∗)
2 + R2

2∗+‖f − P 0
hf‖20,r′,Ω

}
,

and then, using (25), (34) and the fact that ‖ t ‖T and ‖ th ‖T are bounded, we get

‖σ
∼
−σh
∼
‖Σ ≤ C

{ 3∑
i=1

Ri∗+R
r′/2
1∗ +R

r′/2
3∗ +‖f − P 0

hf‖0,r′,Ω
}
,

which is the expected estimate (32).
Finally, the estimation (33) is a consequence of the estimates (22) and (31).

Finally, the previous results show that to have the a posteriori error estimates of our problem, it suffices
to estimate Ri∗, i = 1, 2, 3. To this end, we first precise some notations: for a tensor field τ ∈ R2×2 and
for a vector field v = (v1, v2) ∈ R2,

• tr(τ ) = τ11 + τ22, as(τ ) = τ21 − τ12, rot(τ ) =

(
∂τ12

∂x1
− ∂τ11

∂x2
,
∂τ22

∂x1
− ∂τ21

∂x2

)
,

• Curl(v) =

 ∂v1

∂x2
− ∂v1

∂x1
∂v2

∂x2
− ∂v2

∂x1

 ,

• and
[[
g
]]
E

stands for the jump of function g across an edge E.

We also recall the following Helmholtz decomposition of a tensor field in Σ.

Proposition 3.2. Let τ
∼
∈ Σ. Then there exist z ∈

[
W 2,r′(Ω)

]2
and ψ ∈

[
W 1,r′(Ω)

]2
such that

τ − q I = ∇z + Curlψ, (36)

with the estimate
‖z‖2,r′,Ω + ‖ψ‖1,r′,Ω ≤ C ‖ τ∼ ‖Σ. (37)

Proof. To prove this result it is sufficient to apply Theorem 1.1 of Creus et al. [8] to each row of the
tensor τ − q I, i.e. the two vector fields (τ11 − q, τ12) and (τ21, τ22 − q).

Lemma 3.1. For every τ
∼
∈ Σ, we have

< R2, τ∼ > =
∑

K∈Th

(th +ωh,∇z −Πh(∇z)) +
∑

K∈Th

(tr(th)), q)

+
∑

K∈Th

(rot(th +ωh),ψ − Icl(ψ))

−
∑

E∈Eh

<
[[

(th +ωh)t
]]
E
,ψ − Icl(ψ) >E

(38)

where
– (z,ψ) ∈ [W 2,r′(Ω)]2 × [W 1,r′(Ω)]2 denotes the Helmholtz decomposition of τ

∼
∈ Σ,

– Icl(ψ) is the Clment interpolant of ψ (see Clment [7]),
– Eh denotes the set of all edges of the triangulation Th,
–
[[

(th +ωh)t
]]
E

denotes the tangential jump of th +ωh across the edge E.,
– Πh(∇z) is the Brezzi-Douglas-Marini interpolant of the lowest degree of ∇z (see Brezzi et al. [5]).
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Proof. By (15), we get for every τ
∼
∈ Σ,

< R2, τ∼ >= (th +ωh, τ ) + (div(τ − q I),uh).

Then, using the Helmholtz decomposition (36), we get

< R2, τ∼ > = (th +ωh,∇z) + (th +ωh, q I) + (th +ωh, Curlψ) + (div(∇z),uh). (39)

On the other hand, using the properties of Πh(∇z), the Brezzi–Douglas–Marini interpolant, we get

(div(Πh(∇z)),vh) = (div(∇z),vh), ∀vh ∈
[ ∏
K∈Th

P0(K)
]2
.

Thus, using this last relation and the fact that tr(ωh) = 0, the equation (39) may be rewritten as follows:

< R2, τ∼ > = (th +ωh,∇z) + (tr(th), q) + (th +ωh, Curlψ) + (div(Πh(∇z)),uh). (40)

Taking successively τh
∼

= (Πh(∇z), 0) ∈ Σh and τh
∼

= (Curl(Icl(ψ)), 0) ∈ Σh in the second equation of

the discrete problem (11), we obtain

(th +ωh,Πh(∇z)) + (div(Πh(∇z)),uh) = 0 and,

(th +ωh, Curl(Icl(ψ))) = 0.

Injecting these two last relations in the right-hand side of (40), we get

< R2, τ∼ > = (th +ωh,∇z −Πh(∇z)) + (tr(th), q) + (th +ωh, Curl(ψ − Icl(ψ))).

Thus, using Green’s formula, we obtain

< R2, τ∼ > = (th +ωh,∇z −Πh(∇z)) + (tr(th), q)

+
∑

K∈Th

[
(rot(th +ωh),ψ − Icl(ψ))−

〈
(th +ωh)t,ψ − Icl(ψ)

〉
∂K

]
=

∑
K∈Th

[
(th +ωh,∇z −Πh(∇z)) + (tr(th), q) + (rot(th +ωh),ψ − Icl(ψ))

]
−

∑
E∈Eh

<
[[

(th +ωh)t
]]
E
,ψ − Icl(ψ) >E .

We are now able to give upper bounds of R1∗,R2∗ and R3∗. These upper bounds will be functions of
the error indicators η1, η2 and η3. More precisely, we have the following results.

Theorem 3.3. There exists a constant C independent of h such that

R1∗ ≤
( ∑

K∈Th

η1(K)r
′
)1/r′

, (41)

R2∗ ≤ C
( ∑

K∈Th

η2(K)r
)1/r

, (42)

R3∗ ≤ C
( ∑

K∈Th

η3(K)r
′
)1/r′

, (43)
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where η1(K), η2(K) and η3(K) are the local estimators given by

η1(K)r
′

= ‖A(th)− σh‖r
′

0,r′,K ,

η2(K)r = hrK
[
‖ th +ωh‖r0,r,K + ‖ rot(th +ωh)‖r0,r,K

]
+ ‖tr(th)‖r0,r,K

+
∑

E∈∂K

hE‖
[[
th +ωh)t

]]
E
‖r0,r,E ,

η3(K)r
′

= ‖f − P 0
hf‖r

′

0,r′,K + ‖as(σh)‖r
′

0,r′,K .

Proof. It follows from (14) that for every s ∈ T ,

|< R1, s >| ≤
( ∑

K∈Th

‖A(th)− σh‖r
′

0,r′,K

)1/r′

‖ s ‖0,r,Ω

and then,

sup
s∈T

|< R1, s >|
‖ s ‖T

≤
( ∑

K∈Th

‖A(th)− σh‖r
′

0,r′,K

)1/r′

.

Which is precisely the estimate (41). To show the estimate (42), we will use (38) obtained in Lemma 3.1.
This inequality leads, for every τ

∼
∈ Σ, to

| < R2, τ∼ > | ≤
∑

K∈Th

‖ th +ωh‖0,r,K‖∇z −Πh(∇z)‖0,r′,K +
∑

K∈Th

‖tr(th)‖0,r,K‖q‖0,r′,K

+
∑

K∈Th

‖ rot(th +ωh)‖0,r,K‖ψ − Icl(ψ)‖0,r′,K

+
∑

E∈Eh

∥∥[[(th +ωh)t
]]
E

∥∥
0,r,E

‖ψ − Icl(ψ)‖0,r′,E .

(44)

Now, by Lemma 3.1 in Verfürth [20], we have

‖ψ − Icl(ψ)‖0,r′,K ≤ ChK |ψ|1,r′,ωK

and
‖ψ − Icl(ψ)‖0,r′,E ≤ Ch1/r

E |ψ|1,r′,ωE
,

where ωK denotes the union of K with all the triangles from the triangulation Th adjacent to the triangle
K, ωE denotes the union of at most two triangles of Th admitting E as a common edge and | · |1,r′,ω,

the semi-norm of W 1,r′(ω).
Thus, using these two last estimates and the fact that

‖∇z −Πh(∇z)‖0,r′,K ≤ ChK |∇z|1,r′,K ,

the above inequality (44) yield

| < R2, τ∼ > | ≤ C
∑

K∈Th

hK‖ th +ωh‖0,r,K |∇z|1,r′,K + C
∑

K∈Th

‖tr(th)‖0,r,K‖q‖0,r′,K

+ C
∑

K∈Th

hK‖ rot(th +ωh)‖0,r,K |ψ|1,r′,ωK

+ C
∑

E∈Eh

h
1/r
E ‖

[[
(th +ωh)t

]]
E
‖0,r,E |ψ|1,r′,ωE

≤ C(
∑

K∈Th

hrK‖ th +ωh‖r0,r,K)1/r|∇z|1,r′,Ω

+ C(
∑

K∈Th

‖tr(th)‖r0,r,K)1/r‖q‖0,r′,Ω
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+ C(
∑

K∈Th

hrK‖ rot(th +ωh)‖r0,r,K)1/r|ψ|1,r′,Ω

+ C(
∑

E∈Eh

hE
∥∥[[(th +ωh)t

]]
E

∥∥r
0,r,E

)1/r|ψ|1,r′,Ω,

and so

| < R2, τ∼ > | ≤ C
{ ∑

K∈Th

(hrK‖ th +ωh‖r0,r,K + ‖tr(th)‖r0,r,K

+ hrK‖ rot(th +ωh)‖r0,r,K +
∑

E⊂∂K

hE‖
[[

(th +ωh)t
]]
E
‖r0,r,E)

}1/r

×
{
|∇z|r

′

1,r′,Ω + ‖q‖r
′

0,r′,Ω + |ψ|r
′

1,r′,Ω

}1/r′

.

Therefore, using (37), we obtain

| < R2, τ∼ > | ≤ C
( ∑

K∈Th

η2(K)r
)1/r

‖ τ
∼
‖Σ

and (42) follows immediately.
It remains to prove (43). By (16), we have for every v

∼
∈M ,

| < R3, v∼ > | ≤
( ∑

K∈Th

‖div(σh − ph I) + f‖r
′

0,r′,K

)1/r′

‖v‖0,r,Ω + C
( ∑

K∈Th

‖as(σh)‖r
′

0,r′,K

)1/r′

‖η‖0,r,Ω

≤ C
( ∑

K∈Th

‖div(σh − ph I) + f‖r
′

0,r′,K + ‖as(σh)‖r
′

0,r′,K

)1/r′

(‖v‖r0,r,Ω + ‖η‖r0,r,Ω)1/r.

On the other hand, following the second equation of the discrete problem (11), we have

div(σh − ph I) = −P 0
hf .

Therefore, for every v
∼
∈M ,

| < R3, v∼ > | ≤ C(
∑

K∈Th

‖f − P 0
hf‖r

′

0,r′,K + ‖as(σh)‖r
′

0,r′,K)1/r′‖ v
∼
‖M

which implies R3∗ ≤ Cη3, and the proof is completed.

4. Conclusion

In this work, we have developed and analyzed a new a posteriori error estimator for a dual mixed
finite element approximation of non-Newtonian fluid flow problems. Our mixed method allows to treat,
in a unified approach, both the power law and the Carreau law. The estimator justifies an adaptive finite
element scheme which refines a given grid only in regions where the error is relatively large. Furthermore,
this estimator generalises the one that we have obtained in the particular case of power law (see, Farhloul
and Zine [12]).
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obéit à la loi puissance ou la loi de Carreau, Numer Math 58 (1990) 35-49.

[2] J.W. Barrett and W.B. Liu, Finite element error analysis of a quasi–Newtonian flow obeying the
Carreau or power law, Numer Math 64 (1993) 433–453.

[3] J.W. Barrett and W.B. Liu, Quasi–norm error bounds for the finite element approximation of a
non–Newtonian flow, Numer Math 68 (1994) 437–456.

[4] R. B. Bird, Robert C. Armstrong and Ole Hassager, Dynamics of polymeric liquids. Volume I : Fluid
mechanics, eds. John Wiley & Sons, Inc., New York, 2nd ed., 1987

[5] F. Brezzi, J. Douglas, and L.D. Marini, Two families of mixed finite elements for second order elliptic
problems, Numer Math 47 (1985) 217–235.

[6] P.G. Ciarlet, The Finite Element Methods for Elliptic Problems, North Holland, 1978.

[7] P. Clément, Approximation by finite element functions using local regularization, RAIRO Anal
Numer 2 (1975) 77-84.

[8] E. Creusé, M. Farhloul, and L. Paquet, A posteriori error estimation for the dual mixed finite element
method for the p-Laplacian in a polygonal domain, Comput. Methods Appl. Mech. Engrg. 196 (2007)
2570–2582.

[9] V.J. Ervin, J.S. Howell, I. Stanculescu. A dual-mixed approximation method for a three-field model
of a nonlinear generalized Stokes problem, Comput Methods Appl Mech Engrg 197 (2008) 2886-2900.

[10] M. Farhloul, A.M. Zine, A mixed finite element method for a Ladyzhenskaya model, Comput. Meth-
ods Appl. Mech. Engrg. 191 (2002) 4497-4510.

[11] M. Farhloul and A.M. Zine, A mixed finite element method for a quasi–Newtonian fluid flow, Numer
Methods PDE 20 (2004) 803–819.

[12] M. Farhloul, A.M. Zine. A posteriori error estimation for a dual mixed finite element approximation
of non-Newtonian fluid flow problems, International Journal of Numerical Analysis and Modeling 5
(2008) 320-330.

[13] M. Farhloul and A.M. Zine, A dual–mixed finite element method for quasi–Newtonian flows
whose viscosity obeys a power law or the Carreau law, Math. Comput. Simulation (2017),
http://dx.doi.org/10.1016/j.matcom.2016.09.015

[14] G.P. Galdi, An introduction to the mathematical theory of the Navier-Stokes equations, Vol. I,
Springer-Verlag, Berlin, 1994.

[15] G.N. Gatica, M. Gonzalez, S. Meddahi. A low-order mixed finite element method for a class of
quasi-Newtonian Stokes flows. Part I: a priori error analysis, Comput Methods Appl Mech Engrg
193 (2004) 881-892.

[16] G.N. Gatica, M. Gonzalez, S. Meddahi. A low-order mixed finite element method for a class of quasi-
Newtonian Stokes flows. Part II: a posteriori error analysis, Comput Methods Appl Mech Engrg 193
(2004) 893-911.

[17] O.A. Ladyzhenskaya, New equations for the description of the viscous incompressible fluids and
solvability in the large of the boundary value problems for them, Boundary Value Problems of
Mathematical Physics V. Providence, RI: American Mathematical Society, 1970.

[18] H. Manouzi and M. Farhloul, Mixed finite element analysis of a non-linear three-fields Stokes model.
IMA J Numer Anal 21 (2001) 143–164.

15



[19] D. Sandri, Sur l’approximation numérique des écoulements quasi-Newtoniens dont la viscosité suit
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