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A posteriori error estimation for a dual mixed finite element method for quasi-Newtonian flows whose viscosity obeys a power law or Carreau law

Introduction

Governed by the classical Stokes problem, the Newtonian fluid flows are a reasonable approximation of the more realistic non-Newtonian fluids (quasi-Newtonian or Viscoelastic). In the case of quasi-Newtonian fluids, the viscosity is a function of strain rate tensor, temperature, time, etc. For a steady and creeping flow of an incompressible quasi-Newtonian fluid, the most used formulation, see Bird et al. [START_REF] Bird | Dynamics of polymeric liquids[END_REF], is based on the strain rate tensor. In that case, for Ω a bounded domain of R 2 with a Lipschitz boundary Γ and a given mass forces f defined on Ω, the combination of the constitutive an conservation equations leads to the following Nonlinear Stokes problem:

-div 2µ(|d(u)|) d(u) + ∇p = f in Ω, div u = 0 in Ω, (1) 
where u and p, the unknowns of the problem, are the velocity and pressure, respectively.

d(u) = 1 2 ∇ u +(∇ u) t
is the strain rate tensor, and |d(u

)| 2 = 2 i,j=1 d(u) 2 ij .
For µ 0 > 0 a reference viscosity and r a fluid characteristic real parameter verifying 1 < r < ∞, the viscosity function µ(•), depending on |d(u)|, is usually given by one of the two following famous models: µ(x) = µ 0 x r-2 , ∀x ∈ R + , for the Power law model, or µ(x) = µ 0 1 + x 2 (r-2)/2

, ∀x ∈ R + , for the Carreau model.

Finally, system (1) is supplemented by a set of boundary conditions. The generalized Stokes problem [START_REF] Baranger | Analyse numérique des écoulements quasi-newtoniens dont la viscosité obéit à la loi puissance ou la loi de Carreau[END_REF] and its approximation by standard finite elements was first studied in Baranger and Najib [START_REF] Baranger | Analyse numérique des écoulements quasi-newtoniens dont la viscosité obéit à la loi puissance ou la loi de Carreau[END_REF]. Extensions and improvements of the error bounds have been obtained in Sandri [START_REF] Sandri | Sur l'approximation numérique des écoulements quasi-Newtoniens dont la viscosité suit la loi puissance ou la loi de Carreau[END_REF] and Barrett and Liu [2,[START_REF] Barrett | Quasi-norm error bounds for the finite element approximation of a non-Newtonian flow[END_REF].

In these works, only the primal variables velocity and pressure are taken into account. But, for various reasons, one may need information on other (dual) variables such as velocity gradients ∇ u, strain rate tensor d(u), and extra-stress tensor σ = 2µ(|d(u)|) d(u). For these reasons, it is necessary to build appropriate mixed formulations.

On the other hand, in connection with the use of the gradient tensor ∇ u which corresponds to the Ladyzhenskaya model [START_REF] Ladyzhenskaya | New equations for the description of the viscous incompressible fluids and solvability in the large of the boundary value problems for them[END_REF]:

µ(|∇ u|) = (µ 0 + µ 1 |∇ u|) r-2 , µ 0 ≥ 0, µ 1 > 0, r > 1,
a large amount of work is available in the literature. Among these works, there may be mentioned Manouzi and Farhloul [START_REF] Manouzi | Mixed finite element analysis of a non-linear three-fields Stokes model[END_REF], Farhloul and Zine [START_REF] Farhloul | A mixed finite element method for a Ladyzhenskaya model[END_REF], Gatica et al. [START_REF] Gatica | A low-order mixed finite element method for a class of quasi-Newtonian Stokes flows. Part I: a priori error analysis[END_REF][START_REF] Gatica | A low-order mixed finite element method for a class of quasi-Newtonian Stokes flows. Part II: a posteriori error analysis[END_REF] and Ervin et al. [START_REF] Ervin | A dual-mixed approximation method for a three-field model of a nonlinear generalized Stokes problem[END_REF]. The major drawback of formulations using the gradient lies in the fact that we can not deal with natural boundary conditions. To overcome this drawback related to the boundary conditions, we have introduced and analyzed a dual-mixed finite element method for quasi-Newtonian fluid flow obeying to the Power law, in Farhloul and Zine [START_REF] Farhloul | A mixed finite element method for a quasi-Newtonian fluid flow[END_REF][START_REF] Farhloul | A posteriori error estimation for a dual mixed finite element approximation of non-Newtonian fluid flow problems[END_REF]. A priori error estimates for the finite element approximation were proved in the first paper, while a posteriori error estimation was provided in the second work. In both papers, our analysis is based on the fact that the equation describing the extra-stress tensor in terms of the rate of strain tensor is invertible and give the rate of strain tensor as a function of the stress tensor. In a recent work Farhloul-Zine [START_REF] Farhloul | A dual-mixed finite element method for quasi-Newtonian flows whose viscosity obeys a power law or the Carreau law[END_REF], we developed a mixed formulation to overcome this constraint of inversibility of the viscosity law. The main advantage of this formulation is that it makes it possible to consider differently viscosity functions obeying the Power law or Carreau Law.

The aim of this work is to give an a posteriori error estimates for the mixed formulation developed in [START_REF] Farhloul | A dual-mixed finite element method for quasi-Newtonian flows whose viscosity obeys a power law or the Carreau law[END_REF]. In the next section we recall the mixed formulation developed in [START_REF] Farhloul | A dual-mixed finite element method for quasi-Newtonian flows whose viscosity obeys a power law or the Carreau law[END_REF] and then we give the a posteriori error estimates in section 3. This will be done by extending our investigations by avoiding the assumption of expressing the rate of strain tensor as function of the stress tensor. We may be then able to deal with both problems associated with Power law and Carreau model.

Dual-mixed formulation

In order to obtain a dual-mixed formulation of (1), first the problem (1) is formulated as follows:

   -div σ -p I = f in Ω, div u = 0 in Ω, u = 0 on Γ, (2) 
and then, we introduce two new variables t = d(u), the strain rate tensor, (3)

A(t) = 2µ (|t|) t = σ, the extra stress tensor. ( 4 
) Suppose f ∈ [L r (Ω)] 2 , 1 < r < ∞. Let ω = ω(u) = 1 2 (∇ u -(∇ u) t
) be the vorticity tensor. Then, for all (τ , q) ∈ [L r (Ω)] 2×2 × L r 0 (Ω), such that div τ -q I ∈ [L r (Ω)] 2 , and for all u ∈ [W 1,r (Ω)] 2 such that div u = 0, it is easy to see that

(t, τ ) = (d(u), τ ) = -(div(τ -q I), u) -(ω, τ ),
where, from now on, ( • , • ) denotes the duality pairing between L r (Ω) and L r (Ω), and

L r 0 (Ω) = q ∈ L r (Ω); Ω q dx = 0 .
In order to derive the mixed formulation of (2), we define the following spaces:

T = [L r (Ω)] 2×2 , Σ = (τ , q) ∈ [L r (Ω)] 2×2 × L r 0 (Ω); div(τ -q I) ∈ [L r (Ω)] 2 , M = (v, η) ∈ [L r (Ω)] 2 × [L r (Ω)] 2×2 ; η + η t = 0 ,
equipped with the following norms:

s T = s 0,r,Ω = Ω |s| r 1 r , (τ , q) Σ = τ r 0,r ,Ω + q r 0,r ,Ω + div(τ -q I) r 0,r ,Ω 1 r , (v, η) M = v r 0,r,Ω + η r 0,r,Ω 1 r . 
The dual-mixed formulation of problem (2) reads as follows: Find t ∈ T , (σ, p) ∈ Σ and (u,

ω) ∈ M such that      (A(t), s) -(σ, s) = 0 ∀ s ∈ T , (t, τ ) + (div(τ -q I), u) + (τ , ω) = 0 ∀τ ∼ = (τ , q) ∈ Σ, (div(σ -p I), v) + (σ, η) + (f , v) = 0 ∀v ∼ = (v, η) ∈ M . (5) 
Remark 2.1. From the last equation of (5),

(div(σ -p I), v) + (σ, η) + (f , v) = 0, ∀(v, η) ∈ M , one gets (σ, η) = 0, ∀η ∈ [L r (Ω)] 2×2 such that η + η t = 0.
This corresponds to the symmetry relaxation of the extra-stress tensor σ by a Lagrange multiplier.

Remark 2.2. As stated above, the use of the rate of strain tensor enables to handle different types of boundary conditions, such as mixed boundary conditions. More precisely, assuming that we consider the following boundary conditions:

   u = 0 on Γ D and (2µ(|d(u)|) d(u) -p I) n = 0 on Γ N ,
where Γ = Γ D ∪ Γ N , Γ D = ∅ and n is the unit outward normal vector field along the boundary of Ω.

Then, the only change to be made is to replace the space Σ by the following one:

Σ = (τ , q) ∈ [L r (Ω)] 2×2 × L r 0 (Ω); div(τ -q I) ∈ [L r (Ω)] 2 ; (τ -q I) n = 0 on Γ N .
However, for the sake of clearness, we developed in [START_REF] Farhloul | A dual-mixed finite element method for quasi-Newtonian flows whose viscosity obeys a power law or the Carreau law[END_REF] the analysis in the case of Dirichlet boundary conditions only.

To formally rewrite (5) as a twofold saddle-point problem, we define the following operators:

A : T -→ T , B : T -→ Σ and C : Σ -→ M ,
where for a Banach space X, X denotes the dual space with associated norm • X .

[

A(t), s] = (A(t), s) , ∀ s, t ∈ T , (6) 
[B(s), τ ∼ ] = -(s, τ ) , ∀ s ∈ T , ∀τ ∼ = (τ , q) ∈ Σ, (7) 
[C(τ ∼ ), v ∼ ] = -(div(τ -q I), v) -(τ , η), ∀τ ∼ ∈ Σ, ∀v ∼ ∈ M . (8) 
Remark 2.3. Recall that the operator A is defined by

∀ t ∈ T , A(t) = 2µ(|t|) t,
µ, the viscosity function, being given by either Power or Carreau law.

Problem ( 5) is then written in the following twofold saddle-point form:

Find t ∈ T , σ ∼ ∈ Σ and u ∼ ∈ M such that        [A(t), s] + [s, B (σ ∼ )] = 0 ∀ s ∈ T , [B(t), τ ∼ ] + [τ ∼ , C (u ∼ )] = 0 ∀τ ∼ ∈ Σ, [C(σ ∼ ), v ∼ ] = [F , v ∼ ] ∀v ∼ ∈ M , (9) 
where, [F , v ∼ ] = (f , v) , ∀v ∼ ∈ M , and B and C denote the dual operators of B and C, respectively. The existence, uniqueness and stability of t, σ ∼ , u 9) are obtained under some assumptions on the operators A, B and C. These hypotheses are verified by some technical lemmas that we recall here. These assumptions concern the properties of the operators A, B and C. Mainly:

∼ = t, (σ, p), (u, ω) ∈ T × Σ × M , solution to the problem (
• A is bounded, continuous and strictly monotone,

• B verifies the inf-sup condition on the Kernel of C,

• C verifies the inf-sup condition.

Several technical lemmas that establish the appropriate conditions on the operators A are given in [START_REF] Farhloul | A dual-mixed finite element method for quasi-Newtonian flows whose viscosity obeys a power law or the Carreau law[END_REF].

We also recall here the inf -sup condition in the continuous framework. Its discrete form is recalled below, see Lemma 2.3. These two conditions are used for a posteriori estimates.

Lemma 2.1. There exists a positive constant

β 2 such that inf v ∼ ∈M sup τ ∼ ∈Σ [C(τ ∼ ), v ∼ ] τ ∼ Σ v ∼ M ≥ β 2 . ( 10 
) Lemma 2.2. Let Z * 1 = τ ∼ = (τ , q) ∈ Σ; (div(τ -q I), v) = 0, ∀ v ∈ [L r (Ω)] 2 .
Then, there exists a positive constant

β * 1 such that inf τ ∼ ∈Z * 1 sup s∈T (s, τ ) s T τ ∼ Σ ≥ β * 1 .
Proof. The proof of this result is similar to the one of Lemma 3.6 in [START_REF] Farhloul | A dual-mixed finite element method for quasi-Newtonian flows whose viscosity obeys a power law or the Carreau law[END_REF].

The following result giving the existence, uniqueness and stability is also established in [START_REF] Farhloul | A dual-mixed finite element method for quasi-Newtonian flows whose viscosity obeys a power law or the Carreau law[END_REF].

Theorem 2.1. Problem (9) admits a unique solution (t, σ ∼ , u ∼ ) ∈ T × Σ × M satisfying the following stability condition, t T + σ ∼ Σ + u ∼ M ≤ C(f ),
where C(f ) is a positive constant depending on f .

Let us now recall the discrete problem. We assume that the boundary Γ of the domain Ω is polygonal. We first give some finite element notations. Let h > 0 and T h a triangulation of Ω into triangles. We assume that the triangulation T h is regular in the sense of Ciarlet [START_REF] Ciarlet | The Finite Element Methods for Elliptic Problems[END_REF]. Let K ∈ T h be an element of the triangulation, we denote by b K the bubble function defined by

b K (x) = λ 1 (x)λ 2 (x)λ 3 (x), ∀x ∈ K, λ i , i = 1, • • • , 3
being the barycentric co-ordinates with respect to the element K. For k ∈ N, let P k (K) denote the space of polynomials of degree less than or equal to k on K, and

R(K) = P 1 (K) 2 ⊕ R curl b K , where curl b K = ( ∂b K ∂x 2 , - ∂b K ∂x 1
).

To write the discrete mixed formulation, we introduce the following finite dimensional spaces:

T h = s h ∈ T ; s h| K ∈ R(K), ∀K ∈ T h , Σ h = τ h ∼ = (τ h , q h ) ∈ Σ; τ h| K ∈ [R(K)] 2 , q h| K ∈ P 1 (K), ∀K ∈ T h , M h = v h ∼ = (v h , η h ) ∈ M ; v h| K ∈ P 0 (K) 2 , η h = θ h χ, θ h| K ∈ P 1 (K), ∀K ∈ T h ,
where

χ = 0 -1 1 0 .
The discrete mixed formulation of problem ( 9) is given by the following: Find

t h ∈ T h , σ h ∼ ∈ Σ h and u h ∼ ∈ M h such that          [A(t h ), s h ] + [s h , B (σ h ∼ )] = 0 ∀ s h ∈ T h , [B(t h ), τ h ∼ ] + [τ h ∼ , C (u h ∼ )] = 0 ∀τ h ∼ ∈ Σ h , [C(σ h ∼ ), v h ∼ ] = [F , v h ∼ ] ∀v h ∼ ∈ M h . ( 11 
)
The analysis of the above discrete problem [START_REF] Farhloul | A mixed finite element method for a quasi-Newtonian fluid flow[END_REF], as well as the a priori estimates of discrete errors, are given in Farhloul-Zine [START_REF] Farhloul | A dual-mixed finite element method for quasi-Newtonian flows whose viscosity obeys a power law or the Carreau law[END_REF]. These results are, in part, based on the some lemmas that we recall here because we need them further to establish the posteriori estimates. For the details on proofs, see Farhloul-Zine [START_REF] Farhloul | A dual-mixed finite element method for quasi-Newtonian flows whose viscosity obeys a power law or the Carreau law[END_REF].

Lemma 2.3. There exists a positive constant β * 2 independent of h, such that

inf v h ∼ ∈M h sup τ h ∼ ∈Σ h [C(τ h ∼ ), v h ∼ ] τ h ∼ Σ v h ∼ M ≥ β * 2 . ( 12 
) Lemma 2.4. Let Z h 1 = τ h ∼ = (τ h , q h ) ∈ Σ h ; [C(τ h ∼ ), v h ∼ ] = 0, ∀v h ∼ ∈ M h .
Then, there exists a positive constant C, independent of h, such that

∀τ h ∼ ∈ Z h 1 , q h 0,r ,Ω ≤ C τ h 0,r ,Ω . (13) 
Due to the previous Lemma, the discrete inf-sup conditions ( 10) and ( 12), we obtain, as for the continuous problem, the existence, uniqueness and stability of the discrete solution. More precisely, Theorem 2.2. Problem (11) admits a unique solution

(t h , σ h ∼ , u h ∼ ) ∈ T h × Σ h × M h satisfying the fol- lowing stability condition, t h T + σ h ∼ Σ + u h ∼ M ≤ C(f ).
where C(f ) is a positive constant depending on f and independent of h.

A posteriori error estimates

Let (t, σ ∼ , u ∼ ) = t, (σ, p), (u, ω) ∈ T × Σ × M and (t h , σ h ∼ , u h ∼ ) = t h , (σ h , p h ), (u h , ω h ) ∈ T h × Σ h × M h
be the solutions of ( 9) and [START_REF] Farhloul | A mixed finite element method for a quasi-Newtonian fluid flow[END_REF], respectively. On T , Σ and M , one define the residuals R 1 , R 2 and R 3 by

< R 1 , s > = (A(t h ), s) -(σ h , s), ∀ s ∈ T , (14) 
< R 2 , τ ∼ > = (t h , τ ) + (div(τ -q I), u h ) + (τ , ω h ), ∀ τ ∼ = (τ , q) ∈ Σ, (15) 
< R 3 , v ∼ > = (div(σ h -p h I), v) + (σ h , η) + (f , v), ∀ v ∼ = (v, η) ∈ M . ( 16 
)
We denote by R 1 * , R 2 * and R 3 * the dual norms of R 1 , R 2 and R 3 , respectively.

R 1 * = sup s∈T | < R 1 , s > | s T , R 2 * = sup τ ∼ ∈Σ | < R 2 , τ ∼ > | τ ∼ Σ and R 3 * = sup v ∼ ∈M | < R 3 , v ∼ > | v ∼ M .
In the sequel, our goal is to obtain upper bounds of the errors t -

t h T , σ ∼ -σ h ∼ Σ and u ∼ -u h ∼ M
as functions of the above dual norms R As we will see later, these results depend on the parameter r. We have then to distinguish two cases:

1 < r < 2 and r ≥ 2.
First, let us give the following estimate of A(t h ) -A(t), t h -t in terms of R 1 * , R 2 * and R 3 * .

Proposition 3.1. There exists a constant C independent of h such that

A(t h ) -A(t), t h -t ≤ C (R 1 * + R 3 * ) t h -t T + R 2 * f -P 0 h f 0,r ,Ω + (R 1 * + R 3 * ) R 2 * + R 2 * sup s∈T A(t) -A(t h ), s s T , (17) 
where P 0 h f is the L 2 -projection of f onto

K∈T h P 0 (K) 2 .
Proof.

From the first equation of ( 9), one gets, ∀ s ∈ T ,

A(t h ) -A(t), s = (A(t h ), s) -(σ, s) = (A(t h ), s) -(σ h , s) + (σ h , s) -(σ, s) = R 1 , s + (σ h -σ, s) . Thus, A(t h ) -A(t), s = R 1 , s + (σ h -σ, s) , ∀ s ∈ T . (18) 
From the second equation of ( 9), one gets

(t h -t, τ ) + (div(τ -q I), u h -u) + (τ , ω h -ω) = R 2 , τ ∼ , ∀ τ ∼ ∈ Σ . ( 19 
)
Using the last equation of ( 9), we obtain

(div[(σ h -p h I) -(σ -p I)], v) + (σ h -σ, η)) = R 3 , v ∼ , ∀ v ∼ ∈ M . (20) 
Now, taking τ

∼ = σ h ∼ -σ ∼ in (19) and v ∼ = u h ∼ -u ∼ in (20), we obtain (t h -t, σ h -σ) + (div[(σ h -p h I) -(σ -p I)], u h -u) + (σ h -σ, ω h -ω) = R 2 , σ h ∼ -σ ∼ and, (div[(σ h -p h I) -(σ -p I)], u h -u) + (σ h -σ, ω h -ω) = R 3 , u h ∼ -u ∼ .
These two last equations imply

(t h -t, σ h -σ) = R 2 , σ h ∼ -σ ∼ -R 3 , u h ∼ -u ∼ .
Finally, substituting s, by s = t h -t, in (18) and using the above last equation, we get

A(t h ) -A(t), t h -t = R 1 , t h -t + R 2 , σ h ∼ -σ ∼ -R 3 , u h ∼ -u ∼ . (21) 
By the inf -sup condition [START_REF] Farhloul | A mixed finite element method for a Ladyzhenskaya model[END_REF] and [START_REF] Sandri | Sur l'approximation numérique des écoulements quasi-Newtoniens dont la viscosité suit la loi puissance ou la loi de Carreau[END_REF], it follows

β 2 u h ∼ -u ∼ M ≤ sup τ ∼ ∈Σ (div(τ -q I), u h -u) + (τ , ω h -ω) τ ∼ Σ ≤ sup τ ∼ ∈Σ < R 2 , τ ∼ > τ ∼ Σ + sup τ ∼ ∈Σ |(t h -t, τ )| τ ∼ Σ .
Thus,

u h ∼ -u ∼ M ≤ C R 2 * + t h -t T . (22) 
Now, using the third equation of ( 9) and the third equation of [START_REF] Farhloul | A mixed finite element method for a quasi-Newtonian fluid flow[END_REF], one gets, ∀v ∈

[L r (Ω)] 2 , (div[(σ h -p h I) -(σ -p I)], v) + P 0 h f -f , v = div(σ h -p h I) + P 0 h f , v = 0. ( 23 
)
On the other hand, since P 0 h ff ∈ [L r 0 (Ω)] 2 , there exists (see Galdi [START_REF] Galdi | An introduction to the mathematical theory of the Navier-Stokes equations[END_REF])

ξ ∈ {τ ∈ [L r (Ω)] 2×2 ; div τ ∈ [L r (Ω)] 2 }
such that div ξ = P 0 h ff in Ω and ξ 0,r ,Ω + div ξ 0,r ,Ω ≤ C P 0 h ff | 0,r ,Ω . Thus, from these last relations and (23), we get

div (σ h -p h I) + ξ -(σ -p I) , v = 0, ∀v ∈ [L r (Ω)] 2 ,
Hence, using the above mentioned inf -sup condition in Lemma 2.2, we obtain

β * 1 (σ h -σ + ξ, p h -p) Σ ≤ sup s∈T (s, σ h -σ + ξ) s T ≤ sup s∈T (s, σ h -σ) s T + sup s∈T (s, ξ) s T .
This last inequality together with [START_REF] Manouzi | Mixed finite element analysis of a non-linear three-fields Stokes model[END_REF], lead to

(σ h -σ + ξ, p h -p) Σ ≤ C R 1 * + sup s∈T (A(t h ) -A(t), s) s T + f -P 0 h f 0,r ,Ω . . ( 24 
)
On the other hand,

σ h ∼ -σ ∼ Σ = (σ h -σ, p h -p) Σ ≤ (σ h -σ + ξ, p h -p) Σ + (ξ, 0) Σ . and (ξ, 0) Σ = ξ r 0,r ,Ω + div ξ r 0,r ,Ω 1/r ≤ C P 0 h f -f 0,r ,Ω .
Then, from (24), we get

σ h ∼ -σ ∼ Σ ≤ C R 1 * + P 0 h f -f 0,r ,Ω + sup s∈T (A(t h ) -A(t), s) s T . (25) 
Finally, using (21), ( 22) and (25), we get

A(t h ) -A(t), t h -t ≤ R 1 * t h -t T + R 2 * σ h ∼ -σ ∼ Σ + R 3 * u h ∼ -u ∼ M ≤ C R 1 * t h -t T + R 2 * R 1 * + R 2 * P 0 h f -f 0,r ,Ω + R 2 * sup s∈T A(t h ) -A(t), s s T + R 3 * R 2 * + R 3 * t h -t T .
This ends the proof of the previous proposition.

As it was mentioned above, the upper bounds of the errors depend on the parameter r > 1. On the other hand, to distinguish the two models, we set: δ = 0 for Power law and δ = 1 for Carreau law. We first consider the case where the parameter r verify 1 < r < 2

Theorem 3.1. Let (t, σ ∼ , u ∼ ) and (t h , σ h ∼ , u h ∼
) be the solution of problems ( 9) and ( 11), respectively. Suppose that 1 < r < 2, then there exists a constant C independent of h such that

t -t h T ≤ C 3 i=1 R i * + R r/2 2 * + f -P 0 h f 0,r ,Ω , (26) 
σ ∼ -σ h ∼ Σ ≤ C R 1 * + 3 i=1 R 2/r i * + R r/r 2 * + f -P 0 h f 0,r ,Ω + f -P 0 h f 2/r 0,r ,Ω , (27) 
u ∼ -u h ∼ M ≤ C 3 i=1 R i * + R r/2 2 * + f -P 0 h f 0,r ,Ω . (28) 
Proof. Owing to Lemma 3.1 and Lemma 3.3 in Farhloul-Zine [START_REF] Farhloul | A dual-mixed finite element method for quasi-Newtonian flows whose viscosity obeys a power law or the Carreau law[END_REF], we have

A(t h ) -A(t), t h -t ≥ C t h -t 2 0,r,Ω δ + t h 2-r 0,r,Ω + t 2-r 0,r,Ω + Ω |A(t h ) -A(t)| |t h -t| dx and, A(t h ) -A(t) 0,r ,Ω ≤ C Ω |A(t h ) -A(t)| |t h -t| dx 1/r . ( 29 
)
Then, we get from [START_REF] Ladyzhenskaya | New equations for the description of the viscous incompressible fluids and solvability in the large of the boundary value problems for them[END_REF],

t h -t 2 T δ + t h 2-r T + t 2-r T + Ω |A(t h ) -A(t)| |t h -t| dx ≤ C (R 1 * + R 3 * ) t h -t T + R 2 * f -P 0 h f 0,r ,Ω + (R 1 * + R 3 * ) R 2 * + R 2 * sup s∈T (A(t) -A(t h ), s) s T
On the other hand, using stability conditions (see Farhloul-Zine [START_REF] Farhloul | A dual-mixed finite element method for quasi-Newtonian flows whose viscosity obeys a power law or the Carreau law[END_REF]),

t T ≤ C(f ) and t h T ≤ C(f ),
and (29), we get

t h -t 2 T + Ω |A(t h ) -A(t)| |t h -t| dx ≤ C (R 1 * + R 3 * ) t -t h T + R 2 * f -P 0 h f 0,r ,Ω + R 2 * (R 1 * + R 3 * ) + R 2 * Ω |A(t h ) -A(t)| |t h -t| dx 1/r .
Now, using the Young inequality, we obtain, ∀ ε > 0 and ∀ ε > 0,

t h -t 2 T + Ω |A(t h ) -A(t)| |t h -t| dx ≤ C ε -1 (R 1 * + R 3 * ) 2 + ε t -t h 2 T + R 2 * f -P 0 h f 0,r ,Ω + R 2 * (R 1 * + R 3 * ) + (ε) -r R r 2 * +(ε) r Ω |A(t) -A(t h )| |t -t h | dx .
Thus, for an adequate choice of ε and ε, we get

t h -t 2 T + Ω |A(t h ) -A(t)| |t h -t| dx ≤ C (R 1 * + R 3 * ) 2 + R 2 * f -P 0 h f 0,r ,Ω + R 2 * (R 1 * + R 3 * ) + R r 2 * .
This implies, in particular, the expected result in equation ( 26), namely:

t -t h T ≤ C 3 1 R i * + R r/2 2 * + f -P 0 h f 0,r ,Ω ,
and

Ω |A(t h ) -A(t)| |t -t h | dx ≤ C 3 1 R 2 i * + R r 2 * + f -P 0 h f 2 0,r ,Ω . (30) 
Finally, to obtain the expected estimate (27), it suffices to use the inequalities (25), ( 29) and (30). And the estimate (28) is a direct consequence of ( 22) and (26).

After the study of the case 1 < r < 2, we will now consider the case r ≥ 2.

Theorem 3.2. Let (t, σ ∼ , u ∼ ) and (t h , σ h ∼ , u h ∼
) be the solution of problems ( 9) and [START_REF] Farhloul | A mixed finite element method for a quasi-Newtonian fluid flow[END_REF], respectively. Suppose that r ≥ 2, then there exists a constant C independent of h such that

t -t h T ≤ C 3 i=1 R r /r i * + R 2 * + R 2/r 2 * + f -P 0 h f 0,r ,Ω , (31) 
σ ∼ -σ h ∼ Σ ≤ C R r /2 1 * + R r /2 3 * + 3 i=1 R i * + f -P 0 h f 0,r ,Ω , (32) 
u ∼ -u h ∼ M ≤ C 3 i=1 R r /r i * + R 2 * + R 2/r 2 * + f -P 0 h f 0,r ,Ω . (33) 
Proof. Using Lemma 3.2 in Farhloul-Zine [START_REF] Farhloul | A dual-mixed finite element method for quasi-Newtonian flows whose viscosity obeys a power law or the Carreau law[END_REF], we get

A(t h ) -A(t), t h -t ≥ C t h -t r 0,r,Ω + Ω δ + |t h | r-2 + |t| r-2 |t h -t| 2 dx
and

A(t h ) -A(t) 0,r ,Ω ≤ C Ω δ + |t h | r-2 + |t| r-2 |t h -t| 2 dx 1/2 (34) 
× δ + t h (r-2)/2 0,r,Ω + t (r-2)/2 0,r,Ω
.

To simplify notations, we set

Λ = t -t h r T + Ω δ + |t h | r-2 + |t| r-2 |t -t h | 2 dx. Then, from (17), we have 
Λ ≤ C (R 1 * + R 3 * )( t h -t T + R 2 * ) + R 2 * f -P 0 h f 0,r ,Ω + R 2 * A(t h ) -A(t) 0,r ,Ω
And then, from (34), we get

Λ ≤ C (R 1 * + R 3 * )( t h -t T + R 2 * ) + R 2 * f -P 0 h f 0,r ,Ω + R 2 * Ω δ + |t h | r-2 + |t| r-2 |t h -t| 2 dx 1/2 δ + t h (r-2)/2 T + t (r-2)/2 T
And again, using Young's inequality with two parameters ε and ε, we get

Λ ≤ C ε r t h -t r T + ε -r (R 1 * + R 3 * ) r + R 2 * f -P 0 h f 0,r ,Ω + (R 1 * + R 3 * ) R 2 * +ε Ω δ + |t h | r-2 + |t| r-2 |t h -t| 2 dx + (ε) -1 R 2 2 * δ + t h (r-2)/2 T + t (r-2)/2 T 2 .
Thus, using the stability conditions t T ≤ C(f ) and t h T ≤ C(f ), we obtain

Λ ≤ C (R 1 * + R 3 * ) r + R 2 * f -P 0 h f 0,r ,Ω + (R 1 * + R 3 * ) R 2 * + R 2 2 * . ( 35 
)
This last inequality leads in particular to

t -t h r T ≤ C (R 1 * + R 3 * ) r + R r 2 * + f -P 0 h f r 0,r ,Ω + R r 2 * + R 2 2 * .
And then,

t -t h T ≤ C 3 i=1 R r /r i * + R 2 * + R 2/r 2 * + f -P 0 h f 0,r ,Ω ,
which is precisely the expected estimate (31).

On the other hand, from (35), we deduce the following estimate

Ω δ + |t h | r-2 + |t| r-2 |t -t h | 2 dx ≤ C (R 1 * + R 3 * ) r + (R 1 * + R 3 * ) 2 + R 2 2 * + f -P 0 h f 2 0,r ,Ω ,
and then, using (25), (34) and the fact that t T and t h T are bounded, we get

σ ∼ -σ h ∼ Σ ≤ C 3 i=1 R i * + R r /2 1 * + R r /2 3 * + f -P 0 h f 0,r ,Ω ,
which is the expected estimate (32). Finally, the estimation (33) is a consequence of the estimates ( 22) and (31).

Finally, the previous results show that to have the a posteriori error estimates of our problem, it suffices to estimate R i * , i = 1, 2, 3. To this end, we first precise some notations: for a tensor field τ ∈ R 2×2 and for a vector field

v = (v 1 , v 2 ) ∈ R 2 , • tr(τ ) = τ 11 + τ 22 , as(τ ) = τ 21 -τ 12 , rot(τ ) = ∂τ 12 ∂x 1 - ∂τ 11 ∂x 2 , ∂τ 22 ∂x 1 - ∂τ 21 ∂x 2 , • Curl(v) =    ∂v 1 ∂x 2 - ∂v 1 ∂x 1 ∂v 2 ∂x 2 - ∂v 2 ∂x 1    ,
• and g E stands for the jump of function g across an edge E.

We also recall the following Helmholtz decomposition of a tensor field in Σ.

Proposition 3.2. Let τ ∼ ∈ Σ. Then there exist z ∈ W 2,r (Ω) 2 and ψ ∈ W 1,r (Ω) 2 such that

τ -q I = ∇z + Curlψ, (36) 
with the estimate

z 2,r ,Ω + ψ 1,r ,Ω ≤ C τ ∼ Σ . (37) 
Proof. To prove this result it is sufficient to apply Theorem 1.1 of Creus et al. [START_REF] Creusé | A posteriori error estimation for the dual mixed finite element method for the p-Laplacian in a polygonal domain[END_REF] to each row of the tensor τ -q I, i.e. the two vector fields (τ 11 -q, τ 12 ) and (τ 21 , τ 22 -q). Lemma 3.1. For every τ ∼ ∈ Σ, we have

< R 2 , τ ∼ > = K∈T h (t h +ω h , ∇z -Π h (∇z)) + K∈T h (tr(t h )), q) + K∈T h (rot(t h +ω h ), ψ -I cl (ψ)) - E∈E h < (t h +ω h )t E , ψ -I cl (ψ) > E (38) where -(z, ψ) ∈ [W 2,r (Ω)] 2 × [W 1,r (Ω)] 2 denotes the Helmholtz decomposition of τ ∼ ∈ Σ, -I cl (ψ)
is the Clment interpolant of ψ (see Clment [START_REF] Clément | Approximation by finite element functions using local regularization[END_REF]), -E h denotes the set of all edges of the triangulation T h , -(t h +ω h )t E denotes the tangential jump of t h +ω h across the edge E., -Π h (∇z) is the Brezzi-Douglas-Marini interpolant of the lowest degree of ∇z (see Brezzi et al. [START_REF] Brezzi | Two families of mixed finite elements for second order elliptic problems[END_REF]).

where η 1 (K), η 2 (K) and η 3 (K) are the local estimators given by

η 1 (K) r = A(t h ) -σ h r 0,r ,K , η 2 (K) r = h r K t h +ω h r 0,r,K + rot(t h +ω h ) r 0,r,K + tr(t h ) r 0,r,K + E∈∂K h E t h +ω h )t E r 0,r,E , η 3 (K) r = f -P 0 h f r 0,r ,K + as(σ h ) r 0,r ,K .
Proof. It follows from ( 14) that for every s ∈ T ,

|< R 1 , s >| ≤ K∈T h A(t h ) -σ h r 0,r ,K 1/r s 0,r,Ω
and then,

sup s∈T |< R 1 , s >| s T ≤ K∈T h A(t h ) -σ h r 0,r ,K 1/r .
Which is precisely the estimate (41). To show the estimate (42), we will use (38) obtained in Lemma 3.1. This inequality leads, for every τ ∼ ∈ Σ, to

| < R 2 , τ ∼ > | ≤ K∈T h t h +ω h 0,r,K ∇z -Π h (∇z) 0,r ,K + K∈T h tr(t h ) 0,r,K q 0,r ,K + K∈T h rot(t h +ω h ) 0,r,K ψ -I cl (ψ) 0,r ,K + E∈E h (t h +ω h )t E 0,r,E ψ -I cl (ψ) 0,r ,E . (44) 
Now, by Lemma 3.1 in Verfürth [START_REF] Verfürth | A review of a posteriori error estimation and adaptive mesh-refinement techniques[END_REF], we have

ψ -I cl (ψ) 0,r ,K ≤ Ch K |ψ| 1,r ,ω K and ψ -I cl (ψ) 0,r ,E ≤ Ch 1/r E |ψ| 1,r
,ω E , where ω K denotes the union of K with all the triangles from the triangulation T h adjacent to the triangle K, ω E denotes the union of at most two triangles of T h admitting E as a common edge and | • | 1,r ,ω , the semi-norm of W 1,r (ω).

Thus, using these two last estimates and the fact that ∇z -Π h (∇z) 0,r ,K ≤ Ch K |∇z| 1,r ,K , the above inequality (44) yield ( v r 0,r,Ω + η r 0,r,Ω ) 1/r .

| < R 2 , τ ∼ > | ≤ C K∈T h h K t h +ω h 0,
| < R 3 , v ∼ > | ≤ K∈T h div(σ h -p h I) + f r 0,r ,K 1 
On the other hand, following the second equation of the discrete problem [START_REF] Farhloul | A mixed finite element method for a quasi-Newtonian fluid flow[END_REF], we have div(σ h -p h I) = -P 0 h f .

Therefore, for every v ∼ ∈ M ,

| < R 3 , v ∼ > | ≤ C( K∈T h
f -P 0 h f r 0,r ,K + as(σ h ) r 0,r ,K ) 1/r v ∼ M which implies R 3 * ≤ Cη 3 , and the proof is completed.

Conclusion

In this work, we have developed and analyzed a new a posteriori error estimator for a dual mixed finite element approximation of non-Newtonian fluid flow problems. Our mixed method allows to treat, in a unified approach, both the power law and the Carreau law. The estimator justifies an adaptive finite element scheme which refines a given grid only in regions where the error is relatively large. Furthermore, this estimator generalises the one that we have obtained in the particular case of power law (see, Farhloul and Zine [START_REF] Farhloul | A posteriori error estimation for a dual mixed finite element approximation of non-Newtonian fluid flow problems[END_REF]).
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∼ and u h ∼ . And then, we give upper bounds to the estimators R 1 * , R 2 * and R 3 * .
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and (42) follows immediately. It remains to prove (43). By (
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), we have for every v ∼ ∈ M ,

Proof. By [START_REF] Gatica | A low-order mixed finite element method for a class of quasi-Newtonian Stokes flows. Part I: a priori error analysis[END_REF], we get for every τ ∼ ∈ Σ, < R 2 , τ ∼ >= (t h +ω h , τ ) + (div(τ -q I), u h ).

Then, using the Helmholtz decomposition (36), we get

On the other hand, using the properties of Π h (∇z), the Brezzi-Douglas-Marini interpolant, we get

Thus, using this last relation and the fact that tr(ω h ) = 0, the equation (39) may be rewritten as follows:

Taking successively [START_REF] Farhloul | A mixed finite element method for a quasi-Newtonian fluid flow[END_REF], we obtain

Injecting these two last relations in the right-hand side of (40), we get < R 2 , τ ∼ > = (t h +ω h , ∇z -Π h (∇z)) + (tr(t h ), q) + (t h +ω h , Curl(ψ -I cl (ψ))).

Thus, using Green's formula, we obtain

We are now able to give upper bounds of R 1 * , R 2 * and R 3 * . These upper bounds will be functions of the error indicators η 1 , η 2 and η 3 . More precisely, we have the following results. Theorem 3.3. There exists a constant C independent of h such that