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Evaluating the Performance

of Dynamic Database Applications

1 Introduction

In Database Management Systems (DBMSs), architectural or optimisation choices, efficiency compar-

ison or tuning all require the assessment of system performance. Traditionally, this is achieved with

the use of benchmarks, i.e., synthetic workload models (databases and operations) and sets of perfor-

mance metrics. To the best of our knowledge, none of the existing database benchmarks incorporate

the possibility of change in the access patterns, whereas in real life, almost no application always

accesses the same data in the same order repeatedly. Furthermore, the ability to adapt to changes

in access patterns is critical to database performance. Highly tuning a database to perform well for

only one particular access pattern can lead to poor performance when different access patterns are

used. In addition, the performance of a database on a particular trace provides little insight into the

reasons behind its performance, and thus is of limited use to database researchers or engineers, who

are interested in the identification and improvement in the performance of particular components of

the system. Hence, this chapter aims to present a new perspective on DBMS performance evaluation

by exploring how to assess the dynamic behavior of DBMSs.

More precisely, this chapter presents a benchmarking framework that allow users to explore the

performance of databases under different styles of access pattern change. In contrast, benchmarks of

the TPC family aim to provide standardised means of comparing systems for vendors and customers.

In this chapter, we take a look at how dynamic application behavior can be modeled and propose the

Dynamic Evaluation Framework (DEF). DEF contains a set of protocols which in turn define a set of

styles of access pattern change. DEF by no means has exhausted all possible styles of access pattern

change. However, it is designed to be fully extensible and its design allows new styles of change to be



easily incorporated. Finally, DEF is a generic platform that can be specialized to suit the particular

needs of a given family of DBMS (e.g., relational, object, object-relational, or XML). In particular,

it is designed to be implemented on top of an existing benchmark so that previous benchmarking

research and standards can be reused.

In this chapter, we show the utility of DEF by creating an instance of DEF called the Dy-

namic object Evaluation Framework (DoEF) (He & Darmont, 2003). DoEF is designed for object

databases. Note that, in the remainder of this chapter, we term Object Database Management Sys-

tems (ODBMSs) both object-oriented and object-relational systems, indifferently. ODBMSs include

most multimedia and XML DBMSs, for example.

To illustrate the effectiveness of DoEF, this chapter presents the results of two sets of exper-

iments. First it presents benchmark results of four state of the art dynamic clustering algorithms

(Bullat & Schneider, 1996; Darmont, Fromantin, Regnier, Gruenwald, & Schneider, 2000; He, Mar-

quez, & Blackburn, 2000). There are three reasons for choosing to test the effectiveness of DoEF using

dynamic clustering algorithms: (1) ever since the “early days” of object database management sys-

tems, clustering has been proven to be one of the most effective performance enhancement techniques

(Gerlhof, Kemper, & Moerkotte, 1996); (2) the performance of dynamic clustering algorithms is very

sensitive to changing access patterns; and (3) despite this sensitivity, no previous attempt has been

made to benchmark these algorithms in this way. Next, the utility of DoEF is further demonstrated

by benchmarking two transactional object stores: Platypus (He, Blackburn, Kirby, & Zigman, 2000)

and SHORE (Carey, DeWitt, Franklin, Hall, McAuliffe, Naughton, Schuh, Solomon, Tan, Tsatalos,

White, & Zwilling, 1994).

The remainder of this chapter is organised as follows. Section 2 provides an overview of existing

DBMS benchmarks. Sections 3 and 4 describe in detail the DEF framework and its object-oriented

instance DoEF, respectively. Section 5 presents and discusses the experimental results we achieved

with DoEF. We finally conclude this chapter in Section 6 and provide future research directions in

Section 7.



2 State of the Art: Existing Database Benchmarks

We provide in this section an overview of the prevalent benchmarks that have been proposed in the

literature for evaluating the performances of DBMSs. Note that, to the best of our knowledge, none

of these benchmarks incorporate any dynamic application behavior.

In the world of relational databases, the Transaction Processing Performance Council (TPC), a

non-profit institute founded in 1988, defines standard benchmarks, verifies their correct application,

and publishes the results. The TPC benchmarks include TPC-C (TPC, 2005) for OLTP; and TPC-

H (TPC, 2003a) and TPC-R (TPC, 2003b) for decision support. These last benchmarks were to be

replaced by the TPC-DS data warehouse benchmark (Poess, Smith, Kollar, & Larson, 2002), but it is

not completed yet and alternatives have appeared, such as the Data Warehouse Engineering Bench-

mark (Darmont, Bentayeb, & Boussaid, 2005). Finally, the TPC has also specified benchmarks for

web commerce: TPC-W (TPC, 2002) and web services: TPC-App (TPC, 2004). All these benchmarks

feature an elaborate database and set of operations, and except in DWEB, both are fixed. In the TPC

benchmarks, the only parameter is indeed the database size (scale factor).

In contrast, there is no standard object-oriented database benchmark. However, the OO1 bench-

mark (Cattell, 1991), the HyperModel benchmark (Anderson, Berre, Mallison, Porter, & Schneider,

1990), and the OO7 benchmark (Carey, DeWitt, & Naughton, 1993) may be considered as de facto

standards. They are all designed to mimic engineering applications such as CAD, CAM, or CASE

applications. They range from OO1, that has a very simple schema (two classes) and only three sim-

ple operations, to OO7, that is more generic and provides both a much richer and more customisable

schema (ten classes), and a wider range of operations (fifteen complex operations). However, even

OO7’s schema is static and still not generic enough to model other types of applications like financial,

telecommunications and multimedia applications (Tiwary, Narasayya, & Levy, 1995). Furthermore,

each step in adding complexity makes these benchmarks harder to implement. Finally, the Object

Clustering Benchmark (OCB) has been proposed as a generic benchmark that is able to simulate the



behavior of other main object-oriented benchmarks (Darmont, Petit, & Schneider, 1998; Darmont &

Schneider, 2000). OCB is further detailed in Section 4.1.

Object-relational benchmarks, such as the BUCKY benchmark (Carey, DeWitt, Naughton, As-

garian, Brown, Gehrke, & Shah, 1997) and the Benchmark for Object-Relational Databases (BORD)

(Lee, Kim, & Kim, 2000), are query-oriented benchmarks that are specifically aimed at evaluating

the performances of object-relational database systems. For instance, BUCKY only features opera-

tions that are specific to object-relational systems, since typical object navigation has already been

tested by other benchmarks (see above). Hence, these benchmarks focus on queries involving object

identifiers, inheritance, joins, class references, inter-object references, set-valued attributes, flattening

queries, object methods, and various abstract data types. The database schema is also static in these

benchmarks.

Carey and Franklin have also designed a set of workloads for measuring the performance of their

client-server Object-Oriented Database Management Systems (OODBMSs) (Carey, Franklin, Livny,

& Shekita, 1991; Franklin, Carey, & Livny, 1993). These workloads operate at the page grain instead

of the object grain, i.e., synthetic transactions read or write pages instead of objects. The workloads

contain the notion of hot and cold regions (some areas of database are more frequently accessed

compared to others), attempting to approximate real application behaviour. However, the hot region

never moves, meaning no attempt is made to model dynamic application behaviour.

Finally, a new family of benchmarks has recently appeared to specifically evaluate the perfor-

mances of XML databases in various contexts: data-centric or document-centric XML databases,

single or multi-document XML databases, global or micro benchmark, etc (Lu, Yu, Wang, Zheng,

Jiang, Yu, & Zhou, 2005). These so-called XML benchmarks include XMach-1 (Böhme & Rahm,

2001), XOO7, an XML extension of OO7 (Bressan, Lee, Li, Lacroix, & Nambiar, 2002), the Michi-

gan benchmark (Runapongsa, Patel, Jagadish, & Al-Khalifa, 2002), XMark (Schmidt, Waas, Kersten,

Carey, Manolescu, & Busse, 2002), and XBench (Yao, Ozsu, & Khandelwal, 2004). However, none of

them evaluate the dynamic behavior of XML database applications.



3 The Dynamic Evaluation Framework (DEF)

The primary goal of DEF is to evaluate the dynamic performance of DBMSs. To make the work of

DEF more general, we have made two key decisions: define DEF as an extensible framework; and

reuse existing and standard benchmarks when available.

3.1 Dynamic Framework

We start by giving an example scenario that the framework can mimic. Suppose we are modeling

an on-line book store in which certain groups of books are popular at certain times. For example,

travel guides to Australia during the 2000 Olympics may have been very popular. However, once the

Olympics is over, these books may suddenly or gradually become less popular.

Once the desired book has been selected, information relating to the book may be required. Ex-

ample required information includes customer reviews of the book, excerpts from the book, picture of

the cover, etc. If the data are stored in an ODBMS, retrieving the related information is translated

into an object graph navigation with the traversal root being the selected book. After looking at the

related information for the selected book, the user may choose to look at another book by the same

author. When information relating to the newly selected book is requested, the newly selected book

becomes the root of a new object graph traversal.

Next, we give an overview of the five main steps of the dynamic framework and in the process

show how the above example scenario fits in.

1. H-region parameters specification: The dynamic framework divides the database into regions

of homogeneous access probability (H-regions). In our example, each H-region represents a different

group of books, each group having its own probability of access. In this step, we specify the

characteristics of each H-region, e.g., its size, initial access probability, etc.

2. Workload specification. H-regions are responsible for assigning access probability to pieces of

data (tuples or objects). However, H-regions do not dictate what to do then. We term the selected



tuple or object workload root. In the remainder of this chapter we will use the term “root” to mean

workload root. In this step, we select the type of workload to execute after selecting the root.

3. Regional protocol specification. Regional protocols use H-regions to accomplish access pattern

change. Different styles of access pattern change can be accomplished by changing the H-region

parameter values with time. For example, a regional protocol may initially define one H-region

with a high access probability, while the remaining H-regions are assigned low access probabilities.

After a certain time interval, a different H-region may become the high access probability region.

This, when translated to the book store example, is similar to Australian travel books becoming

less popular after the 2000 Olympics end.

4. Dependency protocol specification. Dependency protocols allow us to specify a relationship

between the currently selected root and the next root. In our example, this is reflected in the

customer deciding to select a book which is by the same author as the previously selected book.

5. Regional and dependency protocol integration specification. In this step, regional and

dependency protocols are integrated to model changes in dependency between successive roots.

An example is a customer using our on-line book store, who selects a book of interest, and then is

confronted with a list of currently popular books by the same author. The customer then selects

one of the listed books (modeled by dependency protocol). The set of currently popular books by

the same author may change with time (modeled by regional protocol).

The first three steps we have described are generic, i.e., they can be applied on any selected

benchmark and system type (relational, object-oriented, or object-relational). The two last steps are

similar when varying the system type, but are nonetheless different because access paths and methods

are substantially different in a relational system (with tables, tuples, and joins) and an object-oriented

system (with objects and references), for instance.

Next, we further detail the concept of H-region and the generic regional protocol specification.



3.2 H-regions

H-regions are created by partitioning the objects of the database into non-overlaping sets. All objects

in the same H-region has the same access probability. Here we use the term access probability to mean

the likelihood that an individual object of the H-region will be accessed at a given moment in time.

The parameters that define an H-region are listed below.

– HR SIZE: The size of the H-region is specified as a fraction of the database size. Constraint: The

sum size of all regions must equal 1.

– INIT PROB W: The initial probability weight that is assigned to the region. The actual proba-

bility is derived from the probability weight, by dividing the probability weight of the region by

the sum probability weight of all regions.

– LOWEST PROB W: The lowest probability weight this region can go down to.

– HIGHEST PROB W: The highest probability weight this region can go up to.

– PROB W INCR SIZE: The amount by which the probability weight of this region increases or

decreases when change is requested.

– OBJECT ASSIGN METHOD: This determines the way objects are assigned into this region. The

options are random selection and by class selection. Random selection picks objects randomly

from anywhere in the database. By class selection places attempts to assign objects of the same

class into the same H-region, as much as possible. It first sorts objects by class ID and then picks

the first N objects (in sorted order), where N is the number of objects allocated to the H-region.

– INIT DIR: The initial direction that the probability weight increment moves in.

The access probability of an H-region can never be below LOWEST PROB W or above HIGH-

EST PROB W.

3.3 Regional Protocols

Regional protocols simulate access pattern change by first initializing the parameters of every H-

region, and then periodically changing the parameter values in certain predefined ways. This chapter



documents three styles of regional change: moving window of change, gradual moving window of

change, and cycles of change. Although these three styles of change together provide a good spectrum

of ways in which access pattern can change, they are by no means exhaustive. Other researchers or

framework users are encouraged to create new regional protocols of their own.

Moving Window of Change Protocol. This regional protocol simulates sudden changes in access

pattern. In our on-line book store, this is translated to books suddenly becoming popular due to some

event, and once the event passes, the books become unpopular very fast. For instance, books that are

recommended in a TV show may become very popular in the few days after the show, but may quickly

become unpopular when the next set of books are introduced. This style of change is accomplished by

moving a window through the database. The objects in the window have a much higher probability

of being chosen as root when compared to the remainder of the database. This is done by breaking

up the database into N H-regions of equal size. One H-region is first initialised to be the hot region

(where heat is used to denote probability of reference), and then after H root selections, a different

H-region becomes the hot region. H is a user-defined parameter that reflects the rate of access pattern

change.

– The database is broken up into N regions of equal size.

– All H-regions have the same value for HIGHEST PROB W, LOWEST PROB W and PROB W INCR SIZE.

– Set the INIT PROB W of one of the H-regions to equal HIGHEST PROB W (the hot region)

and the rest of the H-regions get their INIT PROB W assigned to LOWEST PROB W.

– Set PROB W INCR SIZE of every region to equal HIGHEST PROB W - LOWEST PROB W.

– The INIT DIR parameter of all the H-regions are set to move downwards. Initially, the window

is placed at the hot region. After every H root selections, the window moves from one H-region

to another. The H-region that the window is moving from has its direction set to down. The

H-region that the window is moving into has its direction set to up. Then, probability weights of

the H-regions are incremented or decremented depending on the current direction of movement.



Gradual Moving Window of Change Protocol. The way this protocol differs from the previous

one is that the hot region cools down gradually instead of suddenly. The cold regions also heat up

gradually as the window is moved onto them. In our book store example, this style of change may

depict travel guides to Australia gradually becoming less popular after the Sydney 2000 Olympics. As

a consequence, travel guides to other countries may gradually become more popular. Gradual changes

of heat may be more common in the real world.

This protocol is specified in the same way as the previous protocol with two exceptions. First,

PROB W INCR SIZE is now user-specified instead of being the difference between HIGHEST PROB W

and LOWEST PROB W. The value of PROB W INCR SIZE determines how vigorously access pat-

tern changes at every change iteration. We use the term change iteration to mean the changing of

access probabilities of the H-regions after every H (defined in the previous section) root selections.

The second exception is in the way the H-regions change direction. The H-region that the window

moves into has its direction toggled. The direction of the H-region that the window is moving from is

unchanged. This way, the previous H-region is able to continue cooling down gradually or heating up

gradually. When the access probability of a cooling H-region reaches its LOWEST PROB W it stops

cooling and similarly a heating up H-region stops heating up when it reaches its HIGHEST PROB W.

Cycles of Change Protocol. This style of change mimics something like a bank where customers

in the morning tend to be of one type (e.g., social category), and in the afternoon of another type.

This, when repeated, creates a cycle of change. Cycles of change can be simulated using the following

steps. Members of a set are not ordered.

– Break up the database into three H-regions. The first two H-regions represent objects going through

the cycle of change. The third H-region represents the remaining unchanged part of the database.

The HR SIZE of the first two H-regions are equal to each other and user-specified. The HR SIZE

of the third H-region is equal to the remaining fraction of the database.



– Set the LOWEST PROB W and HIGHEST PROB W parameters of the first two H-regions to

values that reflect the two extremes of the cycle.

– Set the PROB W INCR SIZE of the first two H-regions to both equal HIGHEST PROB W -

LOWEST PROB W. Set the PROB W INCR SIZE of the third H-region to equal zero.

– The INIT PROB W of the first H-region is set to HIGHEST PROB W and the second to LOW-

EST PROB W.

– Set the INIT DIR of the hot H-region to down and the INIT DIR of the cold H-region to up.

– Again, the H parameter is used to vary the rate of access pattern change.

4 The Dynamic Object Evaluation Framework (DoEF)

In this section, we describe DoEF, which is an instance of DEF. DoEF is built on top of the Object

Clustering Benchmark (OCB) and uses both the database built from the rich schema of OCB and

the operations offered by OCB. Since OCB’s generic model can be implemented within an object-

relational system and most of its operations are relevant for such a system, DoEF can also be used in

the object-relational context.

Next, we present the OCB benchmark and then detail the steps in DEF that are specific to the

object-oriented context, i.e., the specification of the depedency protocols and their integration with

the regional protocols.

4.1 The Object Clustering Benchmark (OCB)

OCB is a generic, tunable benchmark aimed at evaluating the performances of OODBMSs. It was first

oriented toward testing clustering strategies (Darmont et al., 1998) and was later extended to become

fully generic (Darmont & Schneider, 2000). The flexibility and scalability of OCB is achieved through

an extensive set of parameters. OCB is able to simulate the behavior of the de facto standards in

object-oriented benchmarking, namely OO1 (Cattell, 1991), HyperModel (Anderson et al., 1990), and

OO7 (Carey et al., 1993). Furthermore, OCB’s generic model can be implemented within an object-



relational system easily and most of its operations are relevant for such a system. We only provide

here an overview of OCB. Its complete specification is available in (Darmont & Schneider, 2000). The

two main components of OCB are its database and workload.

Database. The OCB database is made up of NC classes derived from the same metaclass (Fig-

ure 1). Classes are defined by two parameters: MAXNREF, the maximum number of references in

the instances and BASESIZE, an increment size used to compute the InstanceSize. Each CRef (class

reference) has a type: TRef. There are NTREF different types of references (e.g., inheritance, aggrega-

tion...). Finally, an Iterator is maintained within each class to save references toward all its instances.

Fig. 1. OCB database schema

Each object possesses ATTRANGE integer attributes that may be read and updated by trans-

actions. A Filler string of size InstanceSize is used to simulate the actual size of the object. After

instantiating the schema, an object O of class C points through the ORef references to at most

C.MAXNREF objects. There is also a backward reference (BackRef) from each referenced object

toward the refering object O.

The database generation proceeds through three steps.

1. Instantiation of the CLASS metaclass into NC classes and selection of class level references. Class

references are selected to belong to the [Class ID - CLOCREF, Class ID + CLOCREF] interval.

This models locality of reference at the class level.

2. Database consistency check-up: suppression of all cycles and discrepancies within the graphs that

do not allow them, e.g., inheritance graphs or composition hierarchies.



3. Instantiation of the NC classes into NO objects and random selection of the object references.

Object references are selected to belong to the [OID - OLOCREF, OID + OLOCREF] interval.

This models locality of reference at the instance level.

The main database parameters are summarized in Table 1.

Parameter name Parameter Default value

NC Number of classes in the database 50
MAXNREF(i) Maximum number of references, per class 10
BASESIZE(i) Instances base size, per class 50 bytes
NO Total number of objects 20,000
NREFT Number of reference types 4
ATTRANGE Number of integer attributes in an object 1
CLOCREF Class locality of reference NC
OLOCREF Object locality of reference NO

Table 1. OCB database main parameters

Workload. The operations of OCB are broken up into four categories.

– Random Access: Access to NRND randomly selected objects.

– Sequential Scan: Randomly select a class and then access all its instances. A Range Lookup addi-

tionally performs a test on the value of NTEST attributes, for each accessed instance.

– Traversal: There are two types of traversals in OCB. Set-oriented accesses (or associative accesses)

perform a breadth-first search. Navigational Accesses are further divided into Simple Traver-

sals (depth-first searches), Hierarchy Traversals that always follow the same reference type, and

Stochastic Traversals that select the next link to cross at random. Each traversal proceeds from a

randomly chosen root object, and up to a predefined depth. All the traversals can be reversed by

following the backward links.

– Update: Update operations are also subdivided into different types. Schema Evolutions are ran-

dom insertions and deletions of Class objects (one at a time). Database Evolutions are random



insertions and deletions of objects. Attribute Updates randomly select NUPDT objects to update,

or randomly select a class and update all of its objects (Sequential Update).

In DoEF, the workload type is selected from these types. For sequential scans, the class of the root

object is used to decide which objects are scanned; for traversals, the root object becomes the root

of the traversal; and for updates, either the class of the root object or just the root object is used to

decide which objects are updated (depending on the particular update workload selected).

4.2 Dependency Protocols

There are many scenarios in which a person executes a query and then decides to execute another

query based on the results of the first query, thus establishing a dependency between the two queries.

In this chapter, we have specified four dependency protocols: random selection protocol, by reference

selection protocol, traversed objects selection protocol, and same class selection protocol. Again, these

protocols are not meant to be exhaustive and other researchers or benchmark users are encouraged to

extend DoEF beyond these dependency protocols.

Random Selection Protocol. This method simply uses some random function to select the current

root. This protocol mimics a person starting a completely new query after finishing the previous one.

ri = RAND1()

ri is the ID of the ith root object. The function RAND1() can be any random function. An example

of RAND1() is a skewed random function that selects a certain group of root objects with a higher

probability than others.

By Reference Selection Protocol. The current root is chosen to be an object referenced by the

previous root. An example of this protocol in our on-line book store scenario is a person having finished

with a selected book, who then decides to look at the next book in the series (assuming the books of

the same series are linked together by structural references).

ri+1 = RAND2(RefSet(ri, D))



RefSet(ri, D) is a function that returns the set of objects that the ith root references. RAND2(),

like RAND1() can be any random function. Two types of references can be used: structure references

(S-references) and D-references. Structure references are simply the references obtained from the object

graph. D-references are a new type of reference used for the sole purpose of establishing dependencies

between roots of traversals. The parameter D is used to specify the number of D-references per object.

Note if structure references are specified, then parameter D is not used.

Traversed Objects Selection Protocol. The current root is selected from the set of objects that

are referenced in the previous traversal. An example is a customer in the first query requesting a list

of books along with their authors and publishers (thus requiring the book objects themselves to be

retrieved), who then decides to read an exerpt from one of the books listed.

ri+1 = RAND3(TraversedSet(ri, C))

TraversedSet(ri, C) returns the set of objects referenced during the traversal that began with

the ith root. RAND3(), like RAND1() can be any random function. The parameter C is used to

restrict the number of objects returned by TraversedSet(ri, C). C is specified as a fraction of the

objects traversed. This way, the degree of locality of objects returned by TraversedSet(ri, C) can be

controlled (smaller C means higher degree of locality).

Same Class Selection Protocol. In same class selection, the currently selected root must belong

to the same class as the previous root. Root selection is further restricted to a subset of objects of

the class. The subset is chosen by a function that takes the previous root as a parameter. That is,

the subset chosen is dependent on the previous root object. An example of this protocol is a customer

deciding to select a book from our on-line book store which is by the same author as the previous

selected book. In this case, the same class selection function returns books by the same author as the

selected book.

ri+1 = RAND4(f(ri, Class(ri), U))



Class(ri) returns the class of the ith root. RAND4(), like RAND1() can be any random function.

The parameter U is user-defined and specifies the size of the set returned by function f(). U is

specified as a fraction of the total class size. U can be used to increase or decrease the degree of

locality between the objects returned by f(). f() always returns the same set of objects given the

same set of parameters.

Hybrid Setting. The hybrid setting allows an experiment to use a mixture of the dependency

protocols outlined above. Its use is important since it simulates a user starting a fresh random query

after having followed a few dependencies. Thus, the hybrid setting is implemented in two phases. The

first randomisation phase uses the random selection protocol to randomly select a root. In the second

dependency phase, one of the dependency protocols outlined in the previous section is used to select

the next root. R iterations of the second phase are repeated before going back to the first phase. The

two phases are repeated continuously.

The probability of selecting a particular dependency protocol during the dependency phase is

specified via the following settings: RANDOM DEP PROB (random selection), SREF DEP PROB

(by reference selection using structure references), DREF DEP PROB (by reference selection using D-

references), TRAVERSED DEP PROB (traversed objects selection), and CLASS DEP PROB (same

class selection).

4.3 Integration of Regional and Dependency Protocols

Dependency protocols model user behavior. Since user behavior can change with time, dependency

protocols should also be able to change with time. The integration of regional and dependency protocols

allows us to simulate changes in the dependency between successive root selections. This is easily

accomplished by exploiting the dependency protocols’ property of returning a candidate set of objects

when given a particular previous root. Up to now, the next root is selected from the candidate set

by the use of a random function. Instead of using the random function, we partition the candidate

set using H-regions and then apply regional protocols on these H-regions. When integrating with the



traversed objects dependency protocol, the following property must hold: whenever given the same

root object, the same set of objects is always traversed. This way, the same previous root will return

the same candidate set.

5 Tests and Results

This section details two sets of experiments we have conducted to evaluate the effectiveness of DoEF.

In the first set of experiments four state of the art dynamic clustering algorithms are benchmarked.

In the second set two real object stores are benchmarked.

For dynamic clustering algorithms we have conducted two sets of experiments: moving and gradual

moving window of change regional protocol experiments; and moving and gradual moving S-reference

protocol experiments. For the real object stores, we also conducted two sets of experiments: moving

window of change protocol experiments; and moving window of change traversed objects experiment.

There are two reasons for choosing these set of protocols to test: the space constraints prohibit us from

showing results obtained using all combinations of protocols; and after testing many of the possible

combinations we found for the particular clustering algorithms and real OODBs we have tested, the

experiments presented gives the greatest insight into the effectiveness of DoEF.

5.1 Tested Systems and Algorithms

In this section, we briefly describe the dynamic clustering algorithms and object stores we have used

in our experiments.

Dynamic Clustering Algorithms. Dynamic clustering is the periodic on-line re-organisation of

objects in an ODBMS. The aim is to allow the physical placement of objects on disk to more closely

reflect the pervading pattern of database access. Objects that are likely to be accessed together in the

near future are placed in the same page, thereby reducing the number of disk I/Os.

Dynamic, Statistical and Tunable Clustering (DSTC) (Bullat & Schneider, 1996) is a dynamic clus-

tering algorithm that has the feature of achieving dynamicity without adding high statistics collection



overhead and excessive volume of statistics. However, it does not take care to reduce I/O generated

from the clustering process itself. The clustering algorithm is not very selective when deciding which

pages to re-cluster. The effect is a page is re-clustered even if there is a slight benefit in re-clustering

it. However, the slight benefit gained from re-clustering is often outweighed by the cost of loading

the page into memory for re-clustering. This situation (re-clustering of slightly badly clustered pages)

will become more frequent as access pattern changes more rapidly. It is for this reason we expect that

DSTC will perform poorly when access pattern changes rapidly.

Detection & Reclustering of Objects (DRO) (Darmont et al., 2000) capitalizes on the experiences

of DSTC and StatClust (Gay & Gruenwald, 1997) to produce less clustering I/O overhead and use less

statistics. DRO uses various thresholds to limit the pages involved in re-clustering to only the pages

that are most in need of re-clustering. We term this flexible conservative re-clustering. Experiments

conducted using OCB show that DRO outperforms DSTC (Darmont et al., 2000). The improvement

in performance is mainly attributed to the low clustering I/O overhead of DRO. In order to limit

statistics collection overhead, DRO only uses object frequency and page usage rate information. In

contrast, DSTC stores object transition information, which is much more costly. Since DRO chooses

only a limited number of the worst clustered pages to re-cluster (flexible conservative re-clustering) it

should perform better than DSTC when access pattern changes rapidly. This is because when access

pattern changes rapidly, the benefits in re-clustering pages become lower and thus there will be more

pages which only benefit slightly from re-clustering. DRO does not re-cluster these pages whereas

DSTC does. This leads DSTC to generate larger clustering overhead for very slight improvements in

clustering quality.

Opportunistic Prioritised Clustering Framework (OPCF) (He et al., 2000) is a framework for

translating any static clustering algorithm (where re-clustering occurs off-line) into a dynamic clus-

tering algorithm. OPCF creates algorithms that have the following key properties: read and write I/O

opportunism and prioritisation of re-clustering. Read and write I/O opportunism refers to limiting

re-clustering to pages that are currently in memory (in the case of read opportunism) and dirty (in



the case of write opportunism). This approach reduces the I/O overhead associated with re-clustering.

Prioritisation of re-clustering refers to choosing a limited number of the worst clustered pages to be

re-clustered first. This also reduces clustering overhead by reducing the number of pages re-clustered.

Therefore OPCF clustering algorithms also perform flexible conservative re-clustering. Two dynamic

clustering algorithms produced from the OPCF framework are presented in (He et al., 2000): dynamic

graph partitioning algorithm (GP) and dynamic probability ranking principle algorithm (PRP). Since

OPCF, like DRO, performs flexible conservative re-clustering, it should also perform well when access

pattern changes very rapidly. We will use the term flexible clustering algorithms to refer to DRO and

the OPCF dynamic clustering algorithms.

Object stores. Platypus (He et al., 2000) is a flexible high performance transactional object store,

designed to be used as the storage manager for persistent programming languages. The design includes

support for SMP concurrency: stand-alone, client-server and client-peer distribution configurations;

configurable logging and recovery; and object management that can accommodate garbage collection

and clustering mechanisms. In addition to these features, Platypus is built for speed. It features a new

recovery algorithm derived from the popular ARIES (Mohan, Haderle, Lindsay, Pirahesh, & Schwarz,

1992) recovery algorithm, which removes the need for log sequence numbers to be present in store

pages; a zero-copy memory-mapped buffer manager with controlled write-back behaviour; and a novel

fast and scalable data structure (splay trees) used extensively for accessing metadata.

SHORE (Carey et al., 1994) is a transactional persistent object system that is designed to serve

the needs of a wide variety of target applications, including persistent programming languages. It has

a peer-to-peer distribution configuration. Like Platypus, it also has a focus on performance.

5.2 Dynamic Clustering Experiments

These experiments use DoEF to compare the performance of four state of the art dynamic clustering

algorithms: DSTC, DRO, OPCF-PRP, and OPCF-GP (see Section 5.1). The parameters we have used

for the dynamic clustering algorithms are shown in Table 2. In the interests of space, we do not include



their description in this chapter. However, they are wholly described in their respective papers. The

clustering techniques have been parameterized for the same behaviour and best performance.

Parameter Value

n 200
np 1
p 1000
Tfa 1.0
Tfe 1.0
Tfc 1.0
w 0.3

(a) DSTC

Parameter Value

MinUR 0.001
MinLT 2
PCRate 0.02
MaxD 1
MaxDR 0.2
MaxRR 0.95
SUInd true

(b) DRO

Parameter PRP value GP value

N 200 200
CBT 0.1 0.1
NPA 50 50
NRI 25 25

(c) OPCF

Table 2. DSTC, DRO, OPCF-PRP, and OPCF-GP parameters

The experiments are conducted on the Virtual Object-Oriented Database simulator (VOODB)

(Darmont & Schneider, 1999). VOODB is based on a generic discrete-event simulation framework.

Its purpose is to allow performance evaluations of OODBMSs in general, and optimisation methods

like clustering in particular. VOODB has been validated for two real-world OODBMSs, O2 (Deux,

1991) and Texas (Singhal, Kakkad, & Wilson, 1992). The VOODB parameter values we have used are

depicted in Table 3 (a). Simulation is chosen for this experiment for two reasons. First, it allows rapid

development and testing of a large number of dynamic clustering algorithms (all previous dynamic

clustering papers compared at most two algorithms). Second, it is relatively easy to simulate accurately,

read, write and clustering I/O (the dominating metrics that determine the performance of dynamic

clustering algorithms).

Since DoEF uses the OCB database and operations, it is important for us to document the OCB

settings we have used for these experiments. The values of the database parameters we have used

are shown in Table 3 (b). The sizes of the objects we have used varies from 50 to 1600 bytes, with

the average size being 233 bytes. A total of 100,000 objects are generated for a total database size

of 23.3 MB. Although this is a small database size, we have also used a small buffer size (4 MB) to



keep the database to buffer size ratio large. Clustering algorithm performance is indeed more sensitive

to database to buffer size ratio than database size alone. The operation we have used for all the

experiments is the simple, depth-first traversal with traversal depth 2. The simple traversal is chosen

since it is the only traversal that always accesses the same set of objects given a particular root. This

establishes a direct relationship between varying root selection and changes in access pattern. Each

experiment involved executing 10,000 transactions.

The main DoEF parameter settings we have used in this study are shown in Table 4. These DoEF

settings are common to all experiments in this chapter. The HR SIZE setting of 0.003 (remember this is

the database population from which the traversal root is selected) creates a hot region about 3% the size

of the database (each traversal touches approximately 10 objects). This fact is verified from statistical

analysis of the trace generated. The HIGHEST PROB W setting of 0.8 and LOWEST PROB W

setting of 0.0006, produces a hot region with 80% probability of reference and the remaining cold

regions with a combined reference probability of 20%. These settings are chosen to represent typical

database application behaviour. Gray cites statistics from a real videotext application in which 3%

of the records got 80% of the references (Gray & Putzolu, 1987). Carey uses a hot region size of 4%

with a 80% probability of being referenced in the HOTCOLD workload we have used to measure data

caching tradeoffs in client-server OODBMSs (Carey et al., 1991). Franklin uses a hot region size of

2% with a 80% probability of being referenced in the HOTCOLD workload we have used to measure

the effects of local disk caching for client server OODBMSs (Franklin et al., 1993). In addition to the

results reported in this chapter, we also tested the sensitivity of the results to variations in hot region

size and probability of reference. We found the algorithms show similar general tendencies at different

hot region sizes and probability of reference. It is for this reason and in the interests of space we omit

these results.

The dynamic clustering algorithms shown on the graphs in this section are labeled as follows:



Parameter description Value

System class Centralized
Disk page size 4096 bytes
Buffer size 4 MB
Buffer replacement LRU-1
policy
Pre-fetching policy None
Multiprogramming level 1
Number of users 1
Object initial placement Sequential

(a) VOODB parameters

Parameter description Value

Number of classes in the database 50
Maximum number of 10
references, per class
Instances base size, per class 50
Total number of objects 100000
Number of reference types 4
Reference types random distribution Uniform
Class reference random distribution Uniform
Objects in classes random distribution Uniform
Objects references random distribution Uniform

(b) OCB parameters

Table 3. VOODB and OCB parameters

Parameter name Value

HR SIZE 0.003
HIGHEST PROB W 0.80
LOWEST PROB W 0.0006
PROB W INCR SIZE 0.02
OBJECT ASSIGN METHOD Random object assignment

Table 4. DoEF parameters



– NC: No Clustering;

– DSTC: Dynamic Statistical Tunable Clustering;

– GP: OPCF (greedy graph partitioning);

– PRP: OPCF (probability ranking principle);

– DRO: Detection & Reclustering of Objects.

As we discuss the results of these experiments, we focus our discussion on the relative ability of

each algorithm to adapt to changes in access pattern, i.e., as rate of access pattern change increases,

we seek to know which algorithm exhibits more rapid performance deterioration. This contrasts from

discussing which algorithm gives the best absolute performance. All the results presented here are

in terms of total I/O. Total I/O is the sum of transaction read I/O, clustering read and clustering

write I/O. Thus, the results give an overall indication of the performance of each clustering algorithm,

including each algorithm’s clustering I/O overhead.

A priori Analysis. In this section we analyse the relative performances of the dynamic clustering

algorithms based on the characteristics of DSTC, DRO, OPCF-PRP, and OPCF-GP. For the moving

window of change protocol experiments we expect the relative difference in performance between

DSTC and the flexible clustering algorithms to increase with increasing rate of change. This is because

DSTC does not do flexible conservative re-clustering and thus incurs high re-clustering overheads. The

relative difference between the different flexible clustering algorithms should not change by much with

increasing rate of change since they are all limit the clustering overheads to a bounded amount. In terms

of the shapes of the curves, we expect DSTC to perform linearly worse with increasing rate of change.

This is because it does not bound the clustering overhead. In contrast the flexible dynamic clustering

algorithms’ performance will increase with increasing rate of change but flat after a certain point (we

call this the saturation point). This is because these algorithms bound the clustering overhead and

thus there is a bound on how its performance.

In terms of the gradual moving window of change experiments, we expect the relative differences

between the algorithms to stay similar as the rate of change increases. The reason is this change



protocol is very mild and therefore do not cause the flexible clustering algorithms to reach their

saturation point. In terms of the shapes of the curves, we expect the performance of all the algorithms

to perform close to linear with increasing rate of change of access pattern. This is because increases

in the rate of change of access pattern causes the benefit of re-clustering to diminish, this increase is

constant and does not reach a saturation point due to the mild style of change.

Moving and Gradual Moving Regional Experiments. In these experiments, we have used the

regional protocols moving window of change and gradual moving window of change to test each of the

dynamic clustering algorithms’ ability to adapt to changes in access pattern. The regional protocol

settings we have used are shown in Table 4. We vary the parameter H, rate of access pattern change.

The results for these experiments are shown in Figure 2. There are three main results from this

experiment. Firstly, when rate of access pattern change is small (when parameter H is less than 0.0006

in Figure 2 (a) and all of Figure 2 (b)), all algorithms show similar performance trends (rate of

performance degradation). This implies at moderate levels of access pattern change all algorithms are

approximately equal in their ability to adapt to the change. Secondly, when the more vigorous style

of change is applied (Figure 2 (a)), all dynamic clustering algorithms’ performance quickly degrades

to worse than no clustering. Thirdly, when access pattern change is very vigorous (when paramter H

is greater than 0.0006 in Figure 2 (a)), DRO and OPCF algorithms GP and PRP show a better trend

performance (rate of performance degradation), implying DRO and OPCF are more robust to access

pattern change. This supports our analysis in Section 5.2.

Moving and Gradual Moving S-Reference Experiments. In these experiments, we explore the

effect that changing pattern of access has on the S-reference dependency protocol. This is accomplished

by using the integrated regional dependency protocol method outlined in Section 4.3. We integrated

S-reference dependency with the moving and gradual moving window of change regional protocols.

For this experiment, we use the hybrid dependency setting detailed in Section 4.2. R is set to 1. The

first phase (random phase) of the hybrid setting requires a random dependency function. The random



(a) Moving Window of Change (b) Gradual Moving Window of Change

Fig. 2. Regional dependency results. The x-axis is in log2 scale.

function we use partitions the database into one hot and one cold region. The hot region is set to

be 3% of the database size and has an 80% probability of reference (typical database application

behaviour (Gray & Putzolu, 1987; Carey et al., 1991; Franklin et al., 1993)). S-reference dependency

is the only dependency protocol used. The regional protocol settings are as described in Table 4.

The results for these experiments are shown in Figure 3. In the moving window of change results

(Figure 3 (a)), DRO and the OPCF algorithms (GP and PRP) are again more robust to changes

in access pattern than DSTC for moving window of change. However, in contrast to the previous

experiment, DRO and OPCF algorithms never perform worse than NC by much, even when parameter

H is 1 (access pattern changes after every transaction). The reason is that the cooling and heating

of S-references is a milder form of access pattern change than the pure moving window of change

regional protocol of the previous experiment. In the gradual moving window of change results shown

in figure 3 (b), all dynamic clustering algorithms show approximately the same trend performance.

This is similar to the observation made in the previous experiment. The analysis in Section 5.2 support

these observations.



(a) Moving Window of Change (b) Gradual Moving Window of Change

Fig. 3. S-reference dependency results. The x-axis is in log2 scale.

5.3 Object Store Experiments

In this section, we report the results of using DoEF to compare the performance of two real object

stores: SHORE and Platypus.

SHORE has a layered architecture that allows users to choose the level of support appropriate for

a particular application. The lowest layer of SHORE is the SHORE Storage Manager (SSM), which

provides basic object reading and writing primitives. Using the SHORE SSM, we have constructed PSI-

SSM, a thin layer providing PSI (Blackburn, 1998) compliance for SSM. By using the PSI interface,

the same DoEF code could be used for both Platypus and SHORE. The buffer replacement policy

that SHORE uses is CLOCK. We use SHORE version 2.0 for all of the experiments reported in this

chapter.

The Platypus implementation we have used for this set of experiments has the following features:

physical object IDs; the NOFORCE/STEAL recovery policy (Franklin, 1997); zero-copy memory

mapped buffer cache; the use of hash-splay trees to manage metadata; PSI compliance; the system

is SMP re-entrant and supports multiple concurrent client threads per process as well as multiple

concurrent client processes. Limitations of the Platypus implementation at the time of writing include:



the failure-recovery process is untested (although logging is fully implemented); virtual address space

reserved for metadata is not recycled; the store lacks a sophisticated object manager with support

for garbage collection and dynamic clustering, and lacks support for distributed store configurations.

Platypus uses the LRU replacement policy.

In this sets of experiments, the SHORE and Platypus implementations do not include dynamic

clustering algorithms. In contrast to the previous experiment, we are interested here in comparing

the other factors (besides clustering) that affect system performance. The experiments in this section

are conducted using Solaris 7 on an Intel machine with dual Celeron 433Mhz processors, 512 MB

of memory and a 4 GB hard disk. The OCB database and workload settings we have used for this

experiment are the same as for the previous set of experiments — see Section 5.2, with the exception

that a total of 400,000 objects is generated instead of 100,000. The reason for using a larger database

size is that the real object stores are configured with a larger buffer cache, therefore we need to increase

the database size in order to test the swapping. The size of the objects we have used vary from 50 to

1200 bytes, with the average size being 269 bytes. Therefore, the total database size is 108 MB.

A priori Analysis. For the moving window of change protocol experiments we expect the perfor-

mance of Platypus to start well in front of SHORE but its lead should rapidly diminishes as the rate

of access pattern change increases. The reason lies in the change in access locality when the rate of

access pattern change. When the rate of access pattern change is low, access locality is high (due to

small and slow moving hot region), and thus most object requests can be satisfied from the buffer

cache. However as the rate of access pattern change increases, access locality diminishes which results

in more buffer cache misses. Thus, the reason behind Platypus’ poor performance lies in its poor

swapping performance. Platypus’s poor swapping performance is due to the low degree of concurrency

(coarse grained locking) between the page server and the client process when swapping is in progress

(a deficiency in the implementation).

In the traversed objects protocol experiments we expect the results to again show the performance

of Platypus diminishes at a faster rate than SHORE. The reason for this behaviour can again be



explained by Platypus’ poor swapping performance. However, the saturation is expected to occur

later point than for the moving window of change protocol since the degree of locality in this protocol

is higher.

Moving Window of Change Regional Experiment. In this experiment, we use the moving

window of change protocol to compare the effects that changing pattern of access has on Platypus

and SHORE. The regional protocol settings we have used are the same as shown in Table 4. The

buffer size is set to 61 MB. Note that both Platypus and SHORE have there own buffer managers

with user-defined buffer sizes.

The results for this experiment are shown in Figure 4. The results show the trend predicted in

Section 5.3, namely the performance of Platypus start well in front of SHORE but its lead rapidly

diminishes as the rate of access pattern change increases.

Fig. 4. Moving window of change regional protocol results. The x-axis is in log2 scale.

Moving Window of Change Traversed Objects Experiment. In this experiment, we compare

the performance of Platypus and SHORE in the context of moving traversed objects dependency

protocol. This is accomplished by using the integrated regional dependency protocol method outlined

in Section 4.3. We have integrated traversed objects dependency protocol with the moving window



regional protocol. For this experiment, we use the hybrid dependency setting detailed in Section 4.2.

R is set to 1. The random function we use partitions the database into one hot and one cold region. The

hot region is set to be 0.01 fraction of the database size, and the cold region is assigned the remaining

portion of the database. 99% of the roots are selected from the hot region. The C parameter is set

to 1.0. Traversed objects dependency is the only dependency protocol we have used. The regional

protocol parameters we have used are identical to those used in the previous experiment, with the

exception HR SIZE is set to 0.05. In this experiment, the buffer size we have used is only 20 MB

as opposed to 61 MB in the previous experiment, because this experiment has a smaller working set

size, thus, at 61 MB, swapping would not occur (even when H is one). The reason behind the small

working set size lies in the fact that the random function we have used does not move its hot region.

The results for this experiment are shown in Figure 5. It’s behavior is consistent with that described

in Section 5.3.

Fig. 5. Traversed objects results. The x-axis is in log2 scale. The minimum and maximum coefficients
of variation are 0.005 and 0.037, respectively.



6 Conclusion

In this chapter, we have conducted a short survey of existing benchmarking techniques. We have

identified that no existing benchmark evaluate the dynamic performance of database applications. We

then presented in detail the specification of a generic framework for database benchmarking, DEF,

which allows DBMSs’ designers and users to test the performances of a given system in a dynamic

setting. We have also instantiated DEF in an object-oriented context under the name of DoEF, to

illustrate how such specialization can be performed.

DEF is designed to be readily extensible along two axes. First, since this is, to the best of our

knowledge, the first attempt at studying the dynamic behavior of DBMSs, we have taken great care

to make the incorporation of new styles of access pattern change as painless as possible, mainly

through the definition of H-regions. We actually view the DEF software as an open platform that is

available to other researchers for testing their own ideas. The DoEF code we have used in both our

object clustering simulation experiments and our implementation for Platypus and SHORE is freely

available for download.

Second, although we have considered an object-oriented environment in this study with DoEF, we

can also apply the concepts developed in this chapter to other types of databases. Instantiating DEF

for object-relational databases, for instance, should be relatively easy. Since OCB can be quite easily

adapted to the object-relational context (even if extensions would be required, such as abstract data

types or nested tables, for instance), DEF can be used in the object-relational context too.

The main objective of DEF is to allow researchers and engineers to explore the performance of

databases (identify components that are causing poor performance) within the context of changing

patterns of data access. Our experimental results involving dynamic clustering algorithms and real

object stores have indeed demonstrated DoEF’s ability to meet this objective. Within the dynamic

clustering context, two new insights are gained: (1) dynamic clustering algorithms can deal with

moderate levels of access pattern change but performance rapidly degrades to be worse than no

clustering when vigorous styles of access pattern change are applied; and (2) flexible conservative



re-clustering is the key in determining a clustering algorithm’s ability to adapt to changes in access

pattern. In the performance comparison between the real object stores Platypus and SHORE, the use

of DoEF allowed us to identify Platypus’ poor swapping performance.

7 Future Trends

In the past, most research has focused on the static optimization of database systems. As a result,

this is now a very mature area. The next frontier in database optimization is to optimize queries

while taking query patterns into consideration. This leads to the need to evaluate such systems in a

quantitative manner. This study takes the first step in developing a benchmark for this purpose.

An interesting direction for future work is to use DEF to keep on aquiring knowledge about the

dynamic behavior of various commercial and research DBMSs. This knowledge could of course be

used to improve the performance of these systems. Furthermore, comparing the dynamic behavior

of different systems, though an interesting task in itself, may inspire us to develop new styles of

access pattern change. New styles of access pattern change identified in this and other ways may be

incorporated into DEF.

Finally, the effectiveness of DEF at evaluating other aspects of database performance could also

be explored. Data clustering is indeed an important performance optimisation technique, but other

strategies such as buffer replacement and prefetching should also be evaluated.
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