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Abstract
In this study, aminiature artificial compound eye (15mm in diameter) called the curved artificial
compound eye (CurvACE)was endowed for thefirst timewith hyperacuity, using similarmicro-
movements to those occurring in the fly’s compound eye. A periodicmicro-scanningmovement of
only a few degrees enables the vibrating compound eye to locate contrasting objects with a 40-fold
greater resolution than that imposed by the interommatidial angle. In this study, we developed a new
algorithmmerging the output of 35 local processing units consisting of adjacent pairs of artificial
ommatidia. The localmeasurements performed by each pair are processed in parallel with very few
computational resources, whichmakes it possible to reach a high refresh rate of 500Hz. An aerial
robotic platformwith two degrees of freedom equippedwith the active CurvACEplaced over natu-
rally textured panels was able to assess its linear position accurately with respect to the environment
thanks to its efficient gaze stabilization system. The algorithmwas found to perform robustly at differ-
ent light conditions as well as distance variations relative to the ground and featured small closed-loop
positioning errors of the robot in the range of 45mm. In addition, three tasks of interest were per-
formedwithout having to change the algorithm: short-range odometry, visual stabilization, and track-
ing contrasting objects (hands)moving over a textured background.

1. Introduction

According to the definition originally proposed by
Westheimer in 1975 [1] and recently reformulated in
2009 [2]: ‘Hyperacuity refers to sensory capabilities in
which the visual sensor transcends the grain imposed
by its anatomical structure’. In the case of vision, this
means that an eye is able to locate visual objects with
greater accuracy than the angular difference between
two neighboring photoreceptors Δφ. This study pre-
sents the first example of an artificial compound eye
that is able to locate the features encountered with
much greater accuracy than that imposed by its optics

(i.e., Δφ). Based on findings originally observed in fly
vision, we designed and constructed an active version
of the previously described artificial compound eye
CurvACE [3, 4]. Active CurvACE features two proper-
ties usually banned by optic sensor designers because
they impair the sharpness of the resulting images:
optical blurring and vibration. The active visual
principle applied here is based on a graded periodic
back-and-forth eye rotation of a few degrees scanning
the visual environment. Scanning micro-movements
of this kind have been observed in humans [5] and
several invertebrates such as crabs [6], molluscs [7],
and arachnids [8, 9].
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The first micro-scanning sensor based on the peri-
odic retinal micro-movements observed in the fly (for
a review, see [10]) was presented in [11], whereas
recent developments [12–14] have led to the imple-
mentation of bio-inspired vibrating sensors endowed
with hyperacuity. However, hyperacuity has also been
obtained in artificial retinas without using any retinal
micro-scanning processes, based on the overlapping
Gaussian fields of view of neighboring photosensors
(for a review, see [15]). The authors of several studies
have assessed the hyperacuity of an artificial com-
pound eye in terms of its ability to locate a point source
[16], a bar [17], a single line [18] (the bar and the line
both take the form of a stripe in the field of view
(FOV)), an edge [19], and to sense the edge’s orienta-
tion [20]. The robustness of these visual sensors’ per-
formances with respect to the contrast, lighting
conditions, and distance from the object targeted
(contrasting edges or bars) has never been assessed
prior to the present study involving the use of a retinal
micro-scanning approach. However, assuming that
a priori knowledge is available about the targets and
obstacles’ contrast, Davis et al [21] implemented effi-
cient target tracking and obstacle avoidance behaviour
onboard a ground-based vehicle equipped with a
bulky apposition eye consisting of an array of 7
ommatidia.

As Floreano et al [3] have shown, an artificial
curved compound eye can provide useful optic flow
(OF) measurements. In addition, we established here
that an artificial compound eye performing active per-
iodic micro-scanning movements combined with
appropriate visual processing algorithms can also be
endowed with angular position sensing capabilities.
With this visual sensing method, an aerial robot
equipped with active CurvACE was able to perform
short-range visual odometry and track a targetmoving
over textured ground. The bio-inspired approach used
here to obtain hovering behaviour differs completely
from those used in studies involving the use of compu-
ter vision orOFflow.

In this context, it is worth quoting, for example,
two recent studies using binocular vision [22] and
monocular vision [23] to perform hovering without
any drift and visual odometry, respectively. However,
the latency (about 18 ms) of the embedded visual pro-
cessing algorithms used by the latter authors still limits
the reactivity of the supporting aerial robotic platform.
Other strategies combined visual cues with barometric
data to obtain a visual odometer [24] or with an ultra-
sonic range finder to implement a hovering autopilot
[25]. In the case of hovering behaviour, many studies
have been based on the assumption that the robots in
question have previous knowledge of particular fea-
tures present in the environment. Mkrtchyan et al [26]
enabled a robot to hover using only visual cues by fix-
ating three black rectangles, but its altitude was con-
trolled by an operator. Likewise, landing procedures
have been devised, which enabled robots equipped

with initial measurement unit (IMU)s and visual sen-
sors to detect specific geometrical patterns on the
ground [27] and [28]. Bosnak et al [29] implemented
an automatic method of hovering stabilization in a
quadrotor equipped with a camera looking downward
at a specific pattern. Gomez-Balderas et al [30] stabi-
lized a quadrotor by means of an IMU and two cam-
eras, one looking downward and the other one looking
forward. In the latter study, the OF was computed on
the basis of the images perceived when looking down-
ward and the robot’s positionwas determined by using
a known rectangular figure placed on awall, whichwas
detected by the forward-facing camera.

OF has also been used along with IMU measure-
ments to perform particular flight maneuvers such as
hovering [31] and landing [32, 33]. The robot devel-
oped by Carrillo et al [34] rejected perturbations by
integrating the OF with information about the height
obtained via an ultrasonic range finder. In their
experiments, the goal was to follow a path defined by a
contrasting line.

Honegger et al [35] also developed an optical flow
sensor for stabilizing a robotic platform hovering over
a flat terrain, but the performances of this sensor over
a rugged terrain or a slope were not documented.
Along similar lines, Bristeau et al [36] developed a
means to estimate the speed of a quadrotor by com-
bining the speed given by an OF algorithm with that
provided by an accelerometer.

The visual processing algorithm presented here
estimates displacement bymeasuring the angular posi-
tion of several contrasting features detected by active
CurvACE. In this respect, this method differs com-
pletely from those used in previous studies based on
the use of theOF, which are similar to speed estimation
methods.

The active version of the CurvACE sensor and the
fly’s retinal micro-movements are described in
section 2.1, and a model for the vibrating eye, includ-
ing its special optics, is presented in section 2.2. The
visual processing algorithms resulting in hyperacuity
are described in section 3. A complete description of
the implementation of this sensor on a tethered robot
namedHyperRob is given in section 4, and the robotʼs
capability to assess its own linear position relative to
the environment and track a target thanks to the active
CurvACE, based on the novel sensory fusion algo-
rithm developed here, is established in section 5 (see
also section 3.3).

2.Description of the visual sensor: active
CurvACE

2.1. Inspiration from thefly’s visualmicro-scanning
movements
In this study, visual hyperacuity results from an active
process whereby periodic micro-movements are con-
tinuously applied to an artificial compound eye. This
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approach was inspired by the retinal micro-move-
ments observed in the eye of the blowfly Calliphora
(see figure 1(a)). Unlike the fly’s retinal scanning
movements, which result from the translation of the
photoreceptors (see figure 1(b)) in the focal plane of
each individual facet lens (for a review on the fly’s
retinal micro-movements see [10]), the eye tremor
applied here to the active CurvACE by means of a
micro-stepper motor (figure 1(c)) results from a
periodic rotation of thewhole artificial compound eye.
Section 2.3 shows in detail that both scanning
processes lead to a rotation of the visual axis.

Here we describe in detail the active version of the
CurvACE sensor and establish that this artificial com-
pound eye is endowed with hyperacuity, thanks to the
active periodic micro-scanning movements applied to
thewhole eye.

2.2.Modelling the optics
As described in [3], the CurvACE photosensors array
has similar characteristics to the fruitfly eye in terms of
the number of ommatidia (630), light adaptation, the
interommatidial angle (Δφ = 4.2° on average), and a
similar, Gaussian–shaped angular sensitivity function

Figure 1. (a)Head of aCalliphora vomitaria (Picture : J.J. Harrison,Wikimedia commons). (b) Top view of a fly’s head showing the
orbito-tentorialis muscle (MOT, in red) attached to the back of the head (the fixed part : TT) and the base of the retina (themoving
part : RET). TheMOT is one of the twomuscles responsible for the periodic retinal translation (for a review on thefly’s retinalmicro-
movements see [10]).Modifiedwith permission from [37], copyright 1972 Springer. (c) The active CurvACEwith its vibrating
mechanism based on the use of a small steppermotor.

Figure 2. (a) Schematic view of a compound eye, showing the twomain optical parameters of interest: the interommatidial angle Δφ,
defined as the angle between optical axes of two adjacent ommatidia, and the acceptance angle Δρ, defined as the angle at half width of
theGaussian-shapedASF. This particular shape of ASF results from the combination of the airy diffraction pattern and the
geometrical angularwidth of the rhabdomat the nodal point of the lens [38]. The diameter of the facet lenses in themale blowfly
Calliphora ranges from20–40 μm,whereas that of the peripheral rhabdomeres is 1.5–2 μm(see [39] for review). Adaptedwith
permission from [40], copyright 1977 Scientific American Inc. (b) CurvACE sensor and (c) the horizontal ASFsmeasured for each
artificial ommatidium along the equatorial row (red line) (see [3] for further details). Themean value of the interommatidial angle Δφ
obtained in themiddle row (red line) is 4.2° ± 1.17° (SD) and that of the acceptance angle is 4.2° ± 0.56° (SD).
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(ASF). This specific ASF removes ‘insignificant’ con-
trasts at high spatial frequencies.

To replicate the characteristics of its natural coun-
terpart (see figure 2(a)), CurvACEwas designed with a
specific optical layer based on the assembly consisting
of a chirped microlens array (lenslet diameter:
172 μm) and two chirped aperture arrays. In the case
of active CurvACE, the optical characteristics remain
constant during the scanning process.

Each ASF of active CurvACE (figures 2(b) and (c))
can be characterized by the acceptance angle Δρ,
which is defined as the angular width at half of the
maximum ASF. The ASF along 1D ψs ( ) of one Cur-
vACE ommatidium can therefore be written as fol-
lows:

ψ π
πΔρ= − ψ

Δρs e( )
2 ln (2)

(1)4 ln(2)
2

2

where ψ is the angle between the pixel’s optical axis
and the angular position of a point light source.

2.3.Mathematical description of signals generated
by vibrating ommatidia
Figures 3(a) and (b) compare the rotation of the visual
axes resulting from the translation of the retina behind
a fixed lens (e.g., in the case of the fly’s compound eye)
with the rotation of the visual axes resulting from the
rotation of the whole eye (e.g., like the mechanism
underlying the micro-saccades in the human’s camer-
ular eye [41]), respectively. In the active CurvACE, we
adopted the second strategy by subjecting the whole

eye to an active micro-scanningmovement that makes
the eye rotate back and forth.

As shown in figure 3, the retinal micro-scanning
movements are performed by a miniature eccentric
mechanism based on a small stepper motor (Faulha-
ber ADM 0620-2R-V6-01, 1.7 grams in weight, 6 mm
in diameter) connected to an off-centered shaft [42].
This vibrating mechanismmakes it possible to control
the scanning frequency by just setting a suitable motor
speed.

A general expression for the pixel’s output signal is
given by the convolution of the ASF ψs ( )with the light
intensity I of the 1D scene as follows:

∫ψ ψ ψ ψ ψ= −
−∞

+∞
Ph s I d( ) ( ) · ( ) (2)c c

whereψc is the angular position of a contrasting feature
(edge or bar) placed in the sensor’s visual field. For
example, ψI ( ) can be expressed for an edge as follows:

ψ ψ
ψ= <

⩾I
I

I
( )

for 0

for 0
(3)

1

2

⎧⎨⎩
and for a bar:

ψ ψ
ψ= <

⩾I
I L

I L
( )

for 2

for 2
(4)

1

2

⎧⎨⎩
with L thewidth of the bar (expressed in rad).

The micro-scanning movements of the pixels can
be modelled in the form of an angular vibration ψmod
of the optical axes added to the static angular position
ψc of the contrast object (an edge or a bar). The
equations for the two pixels (Ph1 and Ph2) are

Figure 3.Optical axis rotation resulting from (a) amicro-displacement ε of the pixels placed behind afixed lens (e.g., in the case of a
compound eye of the fly) or (b) a rotation of thewhole sensor (e.g., in the case of the activeCurvACE sensor). Themicro-scanning of
active CurvACE is subjected to active periodic rotationalmovements generated by aminiature eccentricmechanism. The angular
vibrationψmod is generated by aminiature steppermotor represented here by an orange shaft and a purple off-centered shaft, which
translates along an elongated hole. The scanning frequency can be easily adjusted by changing the rotational speed of themotor. The
scanning amplitude depends on the diameter of the off-centered shaft.
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therefore:

ψ ψ ψ Δφ= + −Ph t Ph t t( ( )) ( ) ( )
2

(5)c mod1 ⎜ ⎟⎛
⎝

⎞
⎠

ψ ψ ψ Δφ= + +Ph t Ph t t( ( )) ( ) ( )
2

(6)c mod2 ⎜ ⎟⎛
⎝

⎞
⎠

with ψmod obeying the following sinusoidal scanning
law:

ψ π= ( )t A f t( ) · sin 2 · (7)mod mod

With A and fmod describing the amplitude and the
frequency of the vibration, respectively. In the case of a
whole rotation of the eye, this scanning law is easily
achievable by a continuous rotation of the motor with
an off-centered shaft. In the case of a translation of the
pixels behind a lens, the law should be weighted with
the tangent of the ratio between the retinal displace-
ment ε and the focal length f of the lens.

At the end, the photosensor response is a modu-
lated convolution of the light intensity with the Gaus-
sian sensitivity function.

3. Insights into the visual processing
algorithms

In this paper, we reuse the local processing unit (LPU)
presented in [14] and apply the principle to active
CurvACE. An LPU is an elementary pair of photo-
sensors endowed with hyperacuity by means of a
periodic vibration. The LPU is able to locate very
accurately an edge or a bar placed in its small FOV. An
artificial compound eye like CurvACE can provide
several LPU outputs, which can be merged to obtain a
bigger FOV and used as a basis for a higher level visual
processing algorithm. In the following sections, we
describe the different steps of the visual algorithm,

from the pixel processing to the novel fusion of the
LPU’s output signals.

3.1. LPU: fromphotosensors to an accurate edge and
bar location
The LPU defined in figure 4 is the application of
algorithms presented in [13] and [14]. The first paper
([13]) leads to the signal OutputPos resulting from the
difference-to-sum ratio of the demodulated pixel
output signals described by equation (8). The demo-
dulation is realized bymeans of a peak filter that acts as
both a differentiator and a selective filter centered at
the scanning frequency ( =f fp mod ). Then, an absolute

value function cascaded with a low-pass filter smooths
out the pixel’s output signals. The second paper ([14])
explains in detail the edge/bar detection based on the
observed phenomena that the two pixels’ output
signals are in phase in the presence of an edge and in
opposite phase in the presence of a bar. At the output
of the LPU, the signal θi represents the position of the
contrasting feature in the FOV (see equation (9)).

=
−
+Output

Ph Ph

Ph Ph
(8)Pos

1 2

1 2

demod demod

demod demod

θ ψ = Output Output( ) . (9)i c Detector Pos

With OutputDetector equal to (−1) or (1) and θi the
output signal of an LPU (see figure 4).

3.2.Hyperacute localization of contrasting bars and
edges
The characteristic static curves of the active CurvACE
obtained with a contrasting edge and a black bar
2.5 cm in width subtending an angle of °2.86 are
presented infigure 5.

The curve in figure 5(a) has a tangent hyperbolic
profile with respect to the angular position of the edge.
It can be clearly seen by comparing the two curves

Figure 4.Block diagramof the elementary 2-artificial ommatidia LPU integrated into the active CurvACE for locating edges and bars
with great accuracy. The steppermotor (see 1(c) and 3(b)) generates a periodic rotation (green double arrows) of the overall visual
sensor, resulting in the angularmicro-scanning of their visual axes, in keepingwith a sinusoidal lawψ t( )mod (scanning frequency
50 Hz, amplitude about °5 peak to peakwith Δφ = °4.2 and Δρ = °4.2 ). Twoparallel processing pathways (one for edge/bar
localization and one for edge/bar detection)were implemented. The edge/bar localization block gives the local angular positionθi of
an edge or bar placed in the visualfield of two adjacent photosensors. The edge/bar detection block detects the presence of a bar or
edge and triggers the appropriate gain: +1 for edges and−1 for bars. The principle of this detector is described in [14]. The central
frequency fp of the peakfilter is equal to the scanning frequency (50 Hz), whereas the cut-off frequency of the second-order digital
low-pass filter is equal to 10 Hz. Adaptedwith permission from Juston et al [14], copyright 2014 IEEE.
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plotted in figure 5 that the slopes of the characteristic
static curves obtained with a bar and an edge are inver-
ted. A theoretical explanation for the inversion of the
slopes is given in [14]. This inversion justifies the use
of an edge/bar detector in the LPU (see figure 4) to
compensate for it and still be able to distinguish the
direction of themovement.

Moreover, the characteristic curves are indepen-
dent of the ambient lighting condition. Figure 6 shows
that the OutputPos signal remains constant even if the
ambient light varies over about one decade (from 180

to 1280Lux). A peak is visible at each light change and
corresponds to the transient phase during light adap-
tation of the CurvACE photosensors, which lasts only
250 ms. In addition, figure 6 shows that active Cur-
vACE is a genuine angular position sensing device able
to provide the angular position of a contrasting object
placed in its FOV. Indeed, when the scanning is turned
off and on again, the value of the measurement
remained the same. This experiment shows that the
micro-scanning movement allows us to measure the
position of a contrasting object without any drift. A

Figure 5.Characteristic static curves of the signalOutputPos (see figure 4). TheOutputPos signal is plotted versus the angular position of
(a) an edge or (b) a bar of 2.5 cmwidth placed 50 cm in front of an activeCurvACE rotating in °0.016 steps, each lasting 80 ms. The
blue points represent themean response of an LPU, and the blue shaded area represents the standard deviation (STD) of the output.
The characteristic static curve obtainedwith a bar is inverted in comparisonwith that obtainedwith an edge. Bars therefore have to be
distinguished from edges in order to select the appropriate sign of theOutputPos(see figure 4).

Figure 6.TheOutputPos signal, corresponding to the angular position of a contrasting edge, plotted versus time. Active CurvACEwas
subjected to a variation of the ambient lighting condition over about one decade and a forced interruption of the visualmicro-
scanning.

6

Bioinspir. Biomim. 10 (2015) 026002 FColonnier et al



limitation comes here from the contrast, as it cannot
be theoretically higher than 81.8% for an edge because
the auto-adaptative pixel output signal is no longer log
linear for changes of illuminance (in W m2) greater
than one decade (see [3]).

3.3.Merging the output of local pairs of processing
units
To endow a robot with the capability to sense its linear
speed and position, a novel sensory fusion algorithm
was developed using several LPUs in parallel. In this
article, a 2D region of interest (ROI) composed of
8× 5 artificial ommatidia in the central visual field was
used in order to expose several pixels to the same kind
of movements (figures 9(a) and (c)). In other words,
the pattern seen by the sensor during a translation of
the robot is a succession of edges and bars. The
algorithm used here and depicted in figure 7 imple-
ments the connection between the 8× 5 photosensors’
output signals to an array of 7 × 5 LPUs in order to
provide local measurements of edge and bar angular
positions. Then a selection is performed by computing
the local sum S of two demodulated signals Phdemod

obtained from two adjacent photosensors:

= ++ +S Ph Ph (10)n n n n, 1 ( ) ( 1)demod demod

Indeed, as a signalOutputPos is pure noise when no
feature is in the FOV, an indicator of the presence of a
contrast was required. The sum of the demodulated
signals was used here to give this feedback, because we
observed that the contrast is positively correlated with

the sum and the signal-to-noise ratio. Therefore, at
each sampling step, each local sum S is the thresholded
in order to select the best LPU’s outputs to use. All
sums above the threshold value are kept and the others
are rejected. The threshold is then increased or
decreased by a certain amount until 10 local sums have
been selected. The threshold therefore evolves dyna-
mically at each sampling time step. Lastly, the index i
of each selected sum S gives the index of the pixel pair
to process. Thus, the computational burden is drama-
tically reduced. Moreover, this selection helps reduce
the data processing because only the data provided by
the 10 selected LPUs are actually processed by the
micro-controller.

In a nutshell, the sensory fusion algorithm pre-
sented here selects the 10 highest contrasts available in
the FOV. As a result, the active CurvACE is able to
assess its relative linear position regarding its initial
one and its speed with respect to the visual
environment.

It is worth noting that the selection process acts
like a strong non-linearity. The output signal θ fused is
therefore not directly equal to the sum of all the local
angular positions θi. The parallel differentiation cou-
pled to a single integrator via a non-linear selecting
function merges all the local angular positions θi, giv-
ing a reliable measurement of the angular orientation
of the visual sensor within an infinite range. The active
CurvACE can therefore be said to serve as a visual
odometer once it has been subjected to a purely trans-
lational movement (see section 5.1). Mathematically,

Figure 7.Visual processing algorithmDescription of the sensory fusion algorithm to assess the robot’s speedV̄x aswell as its position
X̄ resulting here from a translation of the textured panel with respect to the arbitrary reference position (i.e., the initial position if not
resetting during theflight). The 35 (7 × 5) LPUoutput signals corresponding to the ROI (8 × 5 photosensors) of the active CurvACE
(see figure 9(a)) were processed by the 35 LPUs presented in figure 4.Here, the signal obtained before reaching the discrete integrator,
denoted Sfused, was used to compute the linear speed. This procedure involved scaling the angular data tomillimetric data (gainK) and
normalizing the time

T

1

s
, withTs equal to the sample time of the system. Afirst-order low-pass filter with a cut-off frequency of Hz1.6

limited the noise. The robot’s position X̄ was scaled inmillimeters bymeans of the gainK. The visual processing algorithmpresented
here providesV̄x and X̄ to the robot’s autopilot (seefigure 13).
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the position is given through the three equations as
follows:

∑
Δ θ θ

θ θ Δ

θ θ

= − −

= − +

= − −
=

( )

P t t

t t P

V t
K

Ts
t t

( ) ( 1)

( ) ( 1)
1

10

( ) ( ) ( 1)

(11)

i i i

fused fused

i

i

x fused fused

1

10

sel sel sel

sel

⎧

⎨
⎪⎪⎪

⎩
⎪⎪⎪

As shown in figure 7, the robot’s speed is deter-
mined by applying a low-pass filter to the fused output
signal Sfused (which is the normalized sum of the local
displacement error ΔPisel), whereas the robot’s posi-
tion is determined in the same way as θ fused, with the
gainK.

To sumup, the algorithm developed here sums the
local variation of contrast angular positions in the sen-
sor FOV to be able to give the distance flown with the
assumption that the ground height is known.

4.HyperRob: an aerial robot equippedwith
an hyperacute compound eye

The objective of this part of the study was to endow a
visually controlled robot, named HyperRob, with the
capability to:

• stay at a desired position (reference position) with
respect to the visual environment (a textured panel,
see figure 8)

• return to the reference position even in the presence
of perturbation applied to the robot (lateral dis-
turbance) or the textured panel over which the
robot isflying.

• track visual target placed between the robot and a
textured background environment.

Figure 8 summarizes the four scenarios used to
show the visual stabilization capabilities ofHyperRob.

Sections 2 and 3 presented the visual sensor and
the algorithm we implemented on HyperRob. It is a
twin-rotor robot tethered at the tip of a rotating arm.
The robot was free to rotate around its roll axis and
could thereforemake the arm rotate around its vertical
axis (the azimuth). The robot therefore travelled along
a circular path with a radius of curvature equal to the
length of the arm (1 m). Figure 9 shows the robot
equipped with active CurvACE placed on the experi-
mental testbench.

This section introduces HyperRob and we will see
in section 5.2.1 that the robot will be able to stay at its
initial position due to the vibrating active CurvACE
estimating its linear speed and position, assuming that
its gaze is stabilized.

4.1. Gaze stabilization
In order to determine the robot’s speed and position
accurately, the gaze direction should be orthogonal to
the terrain. But as a simplification, we chose to align it
with the vertical, assuming that the ground is mostly
horizontal. Therefore, the eye has to compensate for
the robot’s roll angle. To this end, the eye is decoupled
from the robot’s body by means of a servo motor with
a rotational axis aligned with the robot’s roll axis. The
gaze control system, composed of an inertial feedfor-
ward control, makes the eye looking always in a
perpendicular direction to themovement during flight
(figure 10). The rotational component introduced by
the rotating arm supporting the robot can be neglected
in this study.

Figure 8.The robotHyperRobflies over a textured panel and stays automatically at a programmed reference position despite lateral
disturbance (a and b) , changes in the ground height (b),movement of the ground (c), or small relief introduced by several objects
placed onto the ground (d).

8

Bioinspir. Biomim. 10 (2015) 026002 FColonnier et al



4.2.Details of the robotHyperRob
HyperRob is an aerial robot with two propellers and a
carbon fiber frame, which includes two DC motors.
Each motor transmits its power to the corresponding
propeller (diameter 13 cm) via a 8 cm long steel shaft
rotating on microball bearings in the hollow beam,
ending in a crown gear (with a reduction ratio of 1/5).
Two Hall effect sensors were used to measure the
rotational speed of each propeller, and hence its thrust,
via four magnets glued to each crown gear. Based on
the differential thrust setpoints adopted, HyperRob

can control its attitude around the roll axis, which is
sensed by a six-axis inertial sensor (here an InvenSense
MPU 6000). The robot’s position in the azimuthal
plane is controlled by adjusting the roll angle. In the
robot, where only the roll rotation is free, only one axis
of the accelerometer and one axis of the rate gyro are
used. As shown in figure 11, active CurvACE is
mounted on a fastmicro-servomotor (MKSDS 92A+)
which makes it possible to control the gaze with great
accuracy ( °0.1 ) and fast dynamics (60° within 70 ms,
i.e. 860°/s). This configuration enables the visual

Figure 9.Experimental setup of the robotHyperRob (a) Active CurvACEwith aROI (inset) composed of only 40 artificial ommatidia
(8 × 5), each photosensor is composed of one pixel and one lens. FOV covers about °33.6 by °20.2 . (Picture provided by courtesy of P.
Psaïla) (b) The robotHyperRob and its active CurvACE sensor. (c) The complete setup consisted of a twin-propeller robot attached to
the tip of a rotating arm. The robot was free to rotate around its roll axis. Arm rotations around the azimuthwere perceived by the
robot as lateral displacements.

Figure 10.Decoupled eye on the roll axis. Three examples of gaze stabilization. Despite the strong roll disturbances applied by hand to
the body, the gaze orientationwas kept vertically aligned by themechanical decoupling provided by a fast servomotor between the
robot’s body and the visual sensor. It can be clearly seen from the sequence of pictures that the yellow line remained horizontal
regardless of the robot’s roll angle (red line).
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sensor to be mechanically decoupled from the body
(see section 4.1). The robot is fully autonomous in
terms of its computational resources and its power
supply (both of which are provided onboard). The
robot alone weighs about 145 g and the robot plus the
armweigh about 390 g.

All the computational resources required for the
visual processing and the autopilot are implemented
on two power lean micro-controllers embedded
onboard the robot. The first micro-controller (Micro-
chip dsPIC 33FJ128GP802) deals with the visual pro-
cessing, whereas the second one (Microchip dsPIC
33FJ128GP804) is responsible for stabilizing the
robot. The twomicro-controllers have a sampling fre-
quency of 500 Hz. The robot’s hardware architecture
is presented in detail infigure 12.

The micro-controller (μC) Vision communicates
with CurvACE via a serial peripheral interface (SPI)

bus and collects the pixel values of the ROI. The signal
Sfused is computed and sent to the μC Control via
another SPI bus. The latter completes the computa-
tion of the position X̄ and the speed V̄x. This solution
was chosen in order to keep the number of data sent
via the SPI bus to a minimum. The μC Control esti-
mates the robot’s attitude on the roll axis via a reduced
complementary filter (inspired by [43]) and controls
the robot’s linear position on the basis of the two visual
measurements (X and Vx see figure 13). The μC Con-
trol then sends the propeller speed setpoints to a cus-
tom-made driver controlling the rotational speed of
each propeller in a closed-loopmode.

4.3. Control
Assuming the robot to be a rigid body and simplifying
the dynamic model for a quad-rotor presented in [44]
in the case of a single roll axis, the robot’s dynamics

Figure 11.Robot description (a)HyperRobmounted at the tip of the arm, leaving it free to rotate around the roll axis andmove along
a circular path in the azimuthal plane. (b) Schematic view of the robot. Four actuators weremounted onboard the robot: twoDC
motors driving the propeller’s rotation are set in the carbon fiber body, one servomotor is used to stabilize the gaze and one stepper
motor is used to produce the eye tremor (vibration). (c) CADview showing the robot equippedwith its visual sensor with a FOVof

°33.6 by °20.2 .ωr1 andωr2 are the two propellers’ rotation speeds,θr is the robot’s roll angle, andθer is the eye-in-robot angle.
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can bewritten as follows:
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where X is the robot’s lateral position, Vx is its lateral
speed,θr is the roll angle,Ωr is the rotational roll speed,
l is the robot’s half span, I is themoment of inertia, δ is
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where cT is the thrust coefficient, and ωr1 and ωr2 are
the right and left propeller speeds, respectively, and

Figure 12.Electronic architecture. The autopilot’s electronics board is composed of twomicro-controllers. The first one is involved in
the visual processing algorithm (dsPIC33FJ128GP802) and the second one (dsPIC33FJ128GP804) controls the robot’s roll and its
linear position. Themicro-controller denoted μCVision communicates with CurvACE and receives the digitized pixel output values
via a SPI bus. The secondmicro-controller, denoted μCControl (dsPIC33FJ128GP804), receives the visual sensor’s output data from
themicro-controller μCVision via an additional SPI bus. The μCControl then sends the propellers’ setpoints to a custom-made
driver including a closed-loop control of the rotational speed of each propeller.

Figure 13.Description of the control loops. The robot’s control system consistsmainly of four nested feedback loops: one for the
lateral position, one for the lateral speedVX, one for the roll angleθr , and one for the rotational roll speedΩr . The propellers’ speeds
ωr1,2 are controlled via an additional local feedback loop. All the controllers are detailed in table 1. TwoHall effect sensors are used to
measure the propeller speed used in the feedback loop controlling the effective thrust. The inertial sensors give a biased rotational
speed Ω̄r and the acceleration Ācc . The active CurvACE sensor produces two visualmeasurements, corresponding to the robot’s
relative position X̄ and its linear speedV̄X (seefigure 7).
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δ δ= ⋆f s( )prop , where fprop(s) and δ
⋆ correspond to the

closed-loop transfer function of the propellers’ speed
and the differential thrust reference, respectively.

As described in figure 13, the autopilot controlling
both the robot’s roll and its position is composed of
four nested feedback loops:

• the first feedback loop controls the robot’s rota-
tional speed by directly adjusting the differential
thrust, and hence the roll torque.

• the second feedback loop yields setpoints on the
previous one for tracking the robot’s reference roll
angle.

• the third feedback loop adjusts the robot’s linear
speed by providing roll angle setpoints.

• the fourth feedback loop controls the robot’s linear
position and yields the reference speed.

In the first and second feedback loops, the roll
angle’s estimation is obtained by means of a reduced
version of a complementary filter described in ([43]).
In the case of HyperRob, since only a 1D filtering
method is required, the attitude estimator becomes:
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where θ̄r is the roll angle calculated from the accel-

erometer measurement Yacc, b̂ is the estimated rate
gyro’s bias, Ω̄r is the rate gyro’s output measurement,

θ̂r is the estimated roll angle, and Ω̂r is the unbiased
rotational speed. Here ka and kb are positive gains
which were selected so as to obtain a convergence time
of 3 s and 30 s for the estimated angle and the
estimated rate gyro’s bias, respectively.

The complementary filter therefore yields the
values of the rate gyro bias, the unbiased roll rotational
speed, and the roll angle.

5. Application to short-range odometry,
visual stabilization, and tracking

In the various experiments performed in this study, a
serial communication with a ground station was used
to record the data provided by the robot. A VICON
motion tracking system was run at the same time to
obtain the ground-truth data. A textured panel was
placed 39 cm below the robot. During the experiment
involving the translation of the panel, as the sensor can
only sense the movement along one direction and the
robot travels along a circular path, the data were
projected in order to obtain a comparable dataset.

Thus, at each time step, we projected the position
vector into the robot frame and took only the
tangential components of the displacement.

In this section, we report on several experiments
which were carried out in order to test the robot’s cap-
ability to perform various tasks. In all these experi-
ments, thanks to the efficient gaze control system
compensating for the robot’s roll, the visually con-
trolled robot experienced a quasi-translational OF eli-
cited by the perturbations applied either to the robot
itself or to the textured panel. In the first experiment,
the sensor played the role of an odometer. The robot
achieved accurate hovering performances despite the
lateral disturbances, as well as an efficient tracking
capability. All these experiments confirmed that the
robot was able to perform robust short-range visual
odometry, i.e., to estimate its linear position before
returning automatically to an arbitrary reference posi-
tion adopted.

5.1. Short-range visual odometry
The fused visual output signal Sfusedprovidedby the active
CurvACEdepends on the visual environment: if there are
no contrasts, the sensorwill not detect any visual cues and
will therefore not be able to specify the robot’s position
accurately. The richer the visual environment is (in terms
of contrasts), the better the position measurement. In
order to compare the output of the sensor with the
ground-truth measurements, three experiments were
conductedunderdifferent visual conditions.

In these experiments, the robot was moved manually
over two different panels under two different ambient
lighting conditions from right to left and back to the initial
position with its gaze stabilization activated. The results
obtained, which are presented in figure 14, are quite simi-
lar for each trip, giving a maximum error of 174mm.
Figure 14 shows that the output in response to a textured
panel and one composed of a single 5 cm wide black bar
was similar. Therefore, assuming the distance to the
ground tobeknown, the activeCurvACEwas able to serve
as a visual odometer by measuring the robot’s position
accurately in theneighbourhoodof its initial position.

5.2. Lateral disturbance rejection
5.2.1. Above a horizontal textured panel
Lateral disturbances were applied by pushing the arm
in both directions, simulating gusts of wind. In
figure 15, it can be seen that all lateral disturbances
were completely rejected within about 5 s, including
even those as large as 40 cm. The dynamics of the robot
could be largely improved by using a robot with a
higher thrust or a lighter arm in order to reduce the
oscillation. Figures 15(b) and (c) show that the robot
was always able to return to its initial position.With its
active eye, the robot can compensate for lateral
disturbance as large as 359 mm applied to its reference
position with a maximum error of only 25 mm, i.e.,
3% of the flown distance. This error is presumably due
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to the selection process, which does not ensure the
selection of the same features in the outward path and on
the way back to the reference position; or maybe the
assumption of a linear approximation of the inverse
tangent function does not hold entirely within the entire
FOV. As a consequence, thanks to the active visual sensor
and its capability to measure the angular position of
contrasting features, the robot HyperRob is highly
sensitive to anymotion and thus can compensate for very
slowperturbation, ranginghere from0 to391mm. s−1.

5.2.2. Above an evenly sloping ground
In the previous experiment, it was assumed that the
ground height must be known to be able to use the
conversion gain in the fused output signal Sfused. The
same experiment was repeated here above a sloping

ground (see figure 16). The robot’s height increased
sharply in comparison with the calibration height. The
robot’s height varied in the range of +/−74 mm and
starts with an offset of +96 mm compared to the
calibration height. As shown in figure 16(b), the
estimation of the traveled distance was always under-
estimated because the robot was always higher than
the calibration height. However, the robot was still
able to return to its starting position with a maximum
error of only 45 mm (time =t 36. 5 s) for a distur-
bance of 210 mm(i.e., 10.5%of theflowndistance).

5.3. Tracking
The robot’s tracking performances are presented in
this subsection. Three different tracking tasks were
tested:

Figure 14.Robustness of the sensor. Comparison between the active CurvACE sensor’smeasurements and the ground-truth position
given by theVICON systemwhen the robotmade a lateralmovement and returned to its initial position. The sensor’s output
remained fairly stable regardless the lighting conditions and structure of the pattern, giving a standard error ranging from2.3 to 7.8%

( = −
−Deviation

Std y x

max x min x

( )

( ) ( )

error i i

i i
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Figure 15. Lateral disturbance rejection over a naturally textured panel (a) Robot’s position (in blue) superimposed on the panel’s
position (in red), bothmeasured by theVICON system. The robot rejected the series of disturbances and returned to its initial position
with amaximumerror of 25 mm in less than 5 s. (b) The visual errorsmeasured by the robot (red) and the VICON (blue)were very
similar.With large disturbances, small errors occurred in the visual estimation of the robot’s positionwithout noticeably affecting the
robot’s capability to return automatically to its starting position. (c) Ground-truthmeasurement of the robot speed error (red curve)
and the visual speed error (blue curve)measured by the robot due to active CurvACE. These two curves show that the robotwas able to
compensate formaximum lateral speed of 391 mm. s−1.
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• tracking a moving textured panel (see
section 5.3.1).

• tracking a moving textured panel with 3D objects
placed on it (see section 5.3.2).

• trackingmoving hands perceived above a stationary
textured panel (see section 5.3.3).

5.3.1. Panel Tracking
In this experiment, the panel wasmovedmanually and
the robot’s reference position setpoint ⋆X was kept at
zero. The robot faithfully followed the movements
imposed on the panel. The few oscillations which
occurred were mainly due to the robot’s dynamics
rather than to visual measurement errors. Each of the
panel’s movements was clearly detected, as shown in
figure 17(b), although a proportional error in the
measurements was sometimes observed, as explained
above.

5.3.2. Tracking amoving rugged ground
In the second test, some objects were placed on the
previously used panel to create an uneven surface. The
robot’s performances on this new surface were similar

to those observed on the flat one, as depicted in
figure 18. The visual error was not as accurately
measured as previously over the flat terrain because of
the changes in the height of the ground. But the robot’s
position in the steady state was very similar to that of
the panel. Themaximum steady-state error at =t 19 s
was only 32 mm .

5.3.3. Toward figure-ground discrimination: hand
tracking
The last experiment consisted of placing two moving
hands between the robot and the panel. Markers were
also placed on one of the hands in order to compare
the hand and robot positions: the results of this
experiment are presented in figure 19. As shown in the
video in the Supplementary Data and in figure 19, the
robot faithfully followed the hands when they were
moving together in the same direction. By comparing
the robot position error seen by the active CurvACE
with the ground-truth error, it was established that the
robot tracked the moving hands accurately with a
maximumestimation error of 129 mm.

Our visual algorithm selects the greatest contrasts
in order to determine its linear positionwith respect to
an arbitrary reference position. Therefore, when the

Figure 16.Disturbances above a sloping ground (a) Picture of the robot above the sloping ground at an angle of °18.5 with respect to
the horizontal. In the case of a300 mmhorizontal displacement, the height increased by100 mm. definitions of the terms height and
shift are also displayed. The robot is subjected to a series of disturbances with amaximumamplitude of200 mm. (b)Horizontal shift
measured by the sensor (blue) and the theoretical one calculated fromVICONdata (red). (c) Vertical distance from the robot to the
panel in comparisonwith the calibration height of 390 mm.
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Figure 17.Tracking a naturally textured panel.When the textured panel wasmovedmanually below the robot,HyperRob
automatically followed themovement imposed by the panel. (a) Tracking of the panel by the robot. The red line corresponds to the
panel’s position and the blue line to the robot’s position, bothmeasured by theVICON system. (b) Comparison between the position
measurement error given by the visual system (in blue) and the ground-truth data (in red) given by theVICON system. The results
show that the robot tracked themoving panel accurately with amaximal position estimation error of 39 mm for a panel translation of
150 mm.

Figure 18.Tracking a rugged groundwith height variations formed by objects A rugged surface including several objects wasmoved
below the robot, which had to follow themovements imposed on the ground. (a) Picture showing the robot’s visual environment
during the test. (b) Tracking of the panel by the robot. The red line corresponds to the panel position and the blue line to the robot’s
position, bothmeasured by theVICON system. (c) Comparison between the positionmeasurement error given by the visual system
(in blue) and the ground-truth error (in red) given by theVICONmeasurements.
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hands were moving above the panel, some stronger
contrasts than those of the hands were detected by the
visual sensor, which decreased the accuracy of its
tracking performances. However, this experiment
showed that the robot is still able to track an object
when a non-uniform background is moving differ-
ently, without having to change the control strategy or
the visual algorithm. The robot simply continues to
track the objects featuring the greatest contrasts.

6. Conclusion

In this paper, we describe the development and the
performances of a vibrating small-scale cylindrical
curved compound eye, named active CurvACE. The
active process referred to here means that miniature
periodic movements have been added in order to
improve CurvACE’s spatial resolution in terms of the
localization of visual objects encountered in the
surroundings. By imposing oscillatory movements
(with a frequency of 50 Hz) with an amplitude of a few
degrees ( °5 ) on this artificial compound eye, it was
endowed with hyperacuity, i.e., the ability to locate an
object with much greater accuracy than that achieved
so far because of the restrictions imposed by the
interommatidial angle. Hyperacuity was achieved here
by 35 LPUs applying the same local visual processing
algorithm across an ROI of active CurvACE consisting
of 8 × 5 artificial ommatidia. The novel sensory fusion
algorithm used for this purpose, which was based on
the selection of the 10 highest contrasts, enables the
active eye (2D-FOV: °32 by °20 ) to assess its displace-
ment with respect to a textured environment.We even
established that this new visual processing algorithm is

Figure 19.Trackingmoving hands above a textured panel In this experiment, the textured panel was kept stationarywhile two hands
weremoving horizontally together between the robot and the panel. (a) Picture of the hands during the experiment conductedwith
VICON.Markers are only required tomonitor the hands’ position. In the video provided in the SupplementaryData, we showed that
the robot’s performances are similar without thosemarkers. (b) Plots of the textured panel’s position (red), the robot’s position
(blue), and the hands’ position (green), allmeasured byVICON. The robot followed themoving hands faithfully over the ground. (c)
Comparison between the errormeasured by the eye (blue), and the ground-truth error provided by the VICON system (green). The
latter is equal to the (Hand_Position)-(Robot_Position).

Table 1.Controllers’ parameters.

Controller
Transfer
Functions Parameters Value

Position controller Kx = −K s0.6x
1

Lateral speed controller τ +K .V
s

s

1V KV=0.7

τ =V
1

0.7

Roll controller θK =θK 0.6

Robot rot. speed
controller

Ω
τ +ΩK . s

s

1 =ΩK 0.06

τ =Ω 0.45

Motor rot. speed
controller

ω
τ +ωK . s

s

1 Kv=0.9

τ =ω 0.05
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a first step toward endowing robots with the ability to
perform figure/ground discrimination tasks. By apply-
ing miniature movements to a stand-alone artificial
compound eye, we developed a visual odometer
yielding a standard error of 7.8%when it was subjected
to quasi-translational movements of 1 m. Moreover,
active CurvACE enabled a robot to hover and return to
a position after perturbations with a maximal error of
2.5 cm for experiments based on a flat terrain, which is
state-of-the-art performance in aerial robotics (see
table 2), although our study is about a tethered robot
flying indoors.

All the solutions adopted in this study in terms of
practical hardware and computational resources are
perfectly compatible with the stringent specifications
applying to low-power, small-sized, low-cost micro-
aerial vehicles (MAVs). Indeed, thanks to active Cur-
vACE, we achieved very accurate hovering flight with
few computational resources (only two 16 bit micro-
controller and few pixels (only 8 × 5). However, the
1D visual scanning presented here should be extended
to a 2D scanning so as to enable free flight, which,
however, would require a completely new mechanical
design. In addition, the architecture of the 2D visual
processing algorithm will have to be revised to make it
compatible with low computational overheads. It is
worth noting that the gaze stabilization reflex imple-
mented onboard the present robot requires very few
computational resources and allows CurvACE to pro-
cess visual information resulting from purely transla-
tional movements. In addition, recent robotic studies
have shown that gaze stabilization can be a useful
means of achieving automatic heading [45] and
vision-based hovering [46]. The MAVs of the future
(e.g., [47]) will certainly require very few

computational resources to perform demanding tasks
such as obstacle avoidance, visual stabilization, target
tracking in cluttered environments, and autonomous
navigation. Developing airborne vehicles capable of
performing these highly demanding tasks will cer-
tainly involve the use of the latest cutting-edge tech-
nologies and bio-inspired approaches of the kind
used here.
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