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2D Robust Magnetic Resonance Navigation of a
Ferromagnetic Microrobot using Pareto Optimality

David Folio and Antoine Ferreira

Abstract—This paper introduces a two-dimensional au-
tonomous navigation strategy of a 750 µm steel microrobot along
a complex fluidic vascular network inside the bore of a clinical
3.0T magnetic resonance imaging (MRI) scanner. To ensure
successful magnetic resonance navigation (MRN) of a micro-
robot along consecutive channels, the design of autonoumous
navigation strategy is needed taking into account the major
MRI technological constraints and physiological perturbations,
e.g. non-negligible pulsatile flow, limitations on the magnetic
gradient amplitude, MRI overheating, susceptibility artifacts un-
certainties, and so on. An optimal navigation planning framework
based on Pareto optimality is proposed in order to deal with this
multiple-objective problem. Based on these optimal conditions,
a dedicated control architecture has been implemented in an
interventional medical platform for real-time propulsion, control
and imaging experiments. The reported experiments suggest that
the likelihood of controlling autonomously untethered 750 µm
magnetic microrobots is rendered possible in a complex two-
dimensional centimeter-sized vascular phantom. The magnetic
microrobot traveled intricate paths at a mean velocity of about
4mms−1 with average tracking errors below 800 µm with limited
magnetic gradients ±15mTm−1 compatible with clinical MRI
scanners. The experiments demonstrate that it is effectively
possible to autonomously guide a magnetic microrobot using a
conventional MRI scanner with only a software upgrade.

Index Terms—Microrobotics, Magnetic Resonance Imaging,
Magnetic Resonance Navigation, Multi-Ojective Planning.

I. INTRODUCTION

M ICROROBOTICS is a promising solution for biomedi-
cal application innovation, including targeted therapies,

diagnosis, drug delivery, minimally invasive surgery, or cells
transportation [1], [2]. To control microrobotic devices within
the human body, magnetic actuation is till now the most
advanced solution [2]. Currently, different concepts have been
proposed using specific magnetic manipulation systems [3],
[4] or upgraded clinical Magnetic Resonance Imaging (MRI)
scanner [5]–[11]. The former usually provides up to 5 degrees
of freedom with great steering accuracy. However, they have
limited medical application as they provide low magnetic
field and require an external vision system. In contrast, the
second approach requires only an upgrade of current software
and/or hardware capabilities of clinical MRI systems. Initially
devoted to medical imaging, MRI scanners are nowadays
investigated to become an assisting tool for navigation control
in vascular networks. In cancer therapy, therapeutic agents
are injected using a magnetic catheter to impose a starting
point for the navigable path of the agents to be located within
an artery. As shown in Fig. 1, to reach a tumor, therapeutic
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Fig. 1. Representation of the Magnetic Resonance Navigation (MRN):
magnetic microrobots are released in artery from a catheter. By correctly
applying magnetic gradients ∇b from the MRI scanner, microrobots follow
an optimal planned path. In tiny vessels, microrobots are broken up and drugs
are released to a targeted area.

microagents are transiting through arteries (cm-wide), nar-
rower arterioles before reaching the tumoral regions accessible
through the capillaries (µm-wide) forming the angiogenesis
network. To achieve such a goal, robust and safe endovascular
navigation presents challenging issues in terms of modeling
and control [8].

Actually, the main research efforts are carried out in the de-
sign of robust and autonomous magnetic resonance navigation
(MRN) strategies easily implementable in clinical MRI scan-
ners. Basically, MRN can be performed using two fundamental
approaches namely, Imaging Gradient Coil (IGC) or Steering
Gradient Coil (SGC). The former consists of upgrading a
clinical MRI scanner with the software only. A breakthrough
in interventional MRI procedures demonstrated that real-time
IGC systems can offer a well-suited environment for the
imaging, tracking, and control of a magnetic microrobot,
which was done with a pig [5] and a rabbit [9]. The sole MRI
software upgrade does not imply any major modifications, and
allows keeping it for conventional operations. In this context,
the MRN relies on the use of gradient coils of the MRI for
imaging and propulsion. By alternating these two sequences
it has been demonstrated that it is possible to guide magnetic
microrobots along a simple path using a clinical MRI scanner
[6], [11]. These successful in vivo experiments pointed out
critical challenges in terms of real-time imaging and tracking,
together with optimal navigation strategy for future therapeutic
applications [10]. Furthermore, the gradients used for the
whole body imaging are relatively low (e.g. < 80mT m−1) for
conventional scanners. In contrast, the SGC implies integrating
additional coils capable to generate higher gradients, typically
more than 300mT m−1 while improving the magnetic steering
and imaging capacities. The key to this innovative system is
the capability to concurrently use powerful insert coils with
the body magnet’s gradient coils. As illustration, the authors
in [12] developed the highest strength insert imaging gradient



coil that allows peak strength values of 600mT m−1 with fast
rise time of 5 ms. Similarly, Martel et al. proposed to improve
the MRI hardware by adding additional electromagnetic coils
[9] delivering gradients of 300mT m−1 allowing MR-imaging
or MR-tracking in a time-multiplexed way. However, such
supplementary gradient inserts lead to a reduction of the
MRI bore, and usually limit the MRN application to human
members or small animals. New versions of ultra-high gradi-
ents scanners for whole body MRN are actually developed.
The possibility to perform MRN within a whole-body MRI
has been recently demonstrated by modifying a Mangetom
Skyra 3T magnet [13]. For these upgraded steering gradient
coil setups, technological constraints related to cooling time
of the steering gradient coils lead to limited duty cycles
of the imaging-propulsion sequences that greatly affects the
robustness and stability of the real-time control loop.

Our approach in this work is to improve the standard IGC-
based MRN strategy in complex phantom vascular models
using a standard clinical MRI scanner without hardware
modifications. Although weaker driving gradient forces are
generated, the propulsion of magnetic microrobot to counteract
strong pulsatile flows or to navigate in small vessels, can be
overcomed by using intra-arterial balloon or upsized magnetic
microcarriers composed of aggregated nanoparticles, as illus-
trated in Fig. 1. Until now, the proposed closed-loop MRN
strategies consider only simple Y-bifurcations [6] or when
more complex phantoms are used, real-time imaging is based
on MR-compatible vision cameras inserted in the MRI bore
[10]. The design of a robust navigation strategy in complex
phantoms should take into account the MRI technological
constraints and physiological perturbations, e.g. non-negligible
pulsatile flow, saturation of magnetic gradient amplitudes,
limited duty cycle of imaging-propulsion sequences and MRI
overheating [7]. To deal with these MRN constraints different
navigation planning approaches have been proposed, such as
using potential fields and the breadth-first search algorithm
[6], or fast marching method (FMM) [14] considering the
centerline [7], the uncertainty [11] or the power efficiency
[15] objectives. However, each proposed navigation strategy
does not solve all above constraints together. That is why,
these aspects should be anticipated at the early navigation
planning stage [15]. In this paper, we address these conflicting
multi-objective issues by proposing a robust and autonomous
navigation design based on a Pareto optimality framework.

The paper is organized as follows.The MRN system with its
basic components (including sensing and actuation modules)
are first introduced in Section II. Then, Section III presents the
optimal navigation planning frameworks that allows dealing
with multiple-objective problems. In Section IV some pre-
liminary experiments are conducted to evaluate the MRN
functionalities capabilities. Based on this preoperative results,
an autonomous 2D MRN on an in vitro vascular phantom
result is presented in Section V, validating the proposed MRN.

II. THEORETICAL BACKGROUND

A. MRI Propulsion
The overall concept of the magnetic resonance navigation

(MRN) relies on the use of a clinical magnetic resonance
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Fig. 2. Representation of the MRI magnetic gradient coils set configuration:
x and y axes are pairs of saddle coils and z-axis are Maxwell coils pair.

imaging (MRI) scanner to both track and propel a therapeutic
agent (termed microrobot). Basically, as depicted in Fig. 2, a
MRI scanner comprises one pair of Helmholtz coils generating
a strong static uniform magnetic field b0, and is aligned to
the symmetry z-axis of the MRI bore. In order to generate
the propulsion force of the microrobot, a magnetic gradient
field in the 3D-space of the MRI bore is generated by two
pairs of Golay coils and one pair of Maxwell coils in an
orthogonal arrangement. The magnetic field b is governed by
the following Maxwell equations:

∇× bg(r) = 0;∇.bg(r) = 0 (1)

This coil configuration is axis-symmetric and generates (at the
center of the MRI bore) a magnetic field given by :

bg =

 −0.5gzx+ gxz

−0.5gzy + gyz

gxx+ gyy + gyy

 (2)

where

∇bg =
(
gx gy gz

)T
=
(
∂bx
∂z

∂by
∂z

∂bz
∂z

)T
(3)

are the linearly independent magnetic gradients. The x, y, z
coordinates originate at the center of the MRI bore where z is
the direction of the bore axis of symmetry. Besides the high
magnetic field, uniform and linear magnetic gradients can be
created within a 40-to-60-cm diameter spherical volume. For
instance, the Magnetom c© Verio 3T is capable to generate an
uniform magnetic field of b0 = 3 T in the z-axis direction,
and a magnetic gradient magnitude up to 45mT m−1 in the
x-y-z-axes directions. Placed in the MRI bore, the magnetic
material volume Vm of a microrobot is subject to a total
magnetic field b = b0 + bg . In such strong magnetic field,
the magnetic material reaches the saturation magnetization
msat = (0, 0,msz)

T , and is mainly aligned with b0, as
bg � b0. In this study, only spherical beads are considered,
and thus, only a magnetic force fm is induced, and is expressed
here as:

fm = Vmmsz∇bg, (4)

Only bg contributes to the force generation since b0 is homo-
geneous and its spatial variation is zero. The equation states



that three orthogonal magnetic forces act on the magnetic
microrobot. This means that magnetic gradients of the MRI
could induce 3-DOF propulsion only in the center of the bore,
within a workspace of approximately 40×40×40cm3.

B. Endovascular Modeling

The modeling of the microrobot immersed in a microfluidic
environment is necessary for the both navigation planning and
control strategies. This modeling is illustrated in Fig. 3, and the
corresponding dynamic model is briefly presented hereafter.
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Fig. 3. Representation of the magnetic microrobot (left) in microfluidic
environment (right) with the applied forces.

Actuated by magnetic gradients ∇bg in a microfluidic
environment, the microrobot dynamics could be expressed as:

(ρV ) v̇ =
∑

f = fm(∇bg) + fExt(v,x) (5)

with ρ, V and v the microrobot density, volume, and ve-
locity respectively. fExt are all external forces such as the
apparent weight (fg), electrostatic (fe), van der Waals (fv)
and hydrodynamic drag (fd) microforces (see Fig. 3). At the
considered scale, and when the microrobot navigates close
to the centerline, it has been shown that the most dominant
external force is the hydrodynamic drag force fd [15], [16].
In such case, a spherical microrobot of radius r will then
experience mainly the magnetic pulling (4), and the drag
forces, that are commonly defined as:

fd = −6πηr · v (6)

where η is the flow viscosity.
Let (v,x)

T denotes the system state vector, defined by
the microrobot velocity v and location x. This position x is
measured thanks to the developed real-time artifact tracking
procedure [11]. The input vector is defined by the magnetic
gradient, that is u = ∇bg . From the above dynamic model
we get the following state-space representation (S∇):

(S∇) =


(

ẋ

v̇

)
= A

(
x

v

)
+ Bu +

(
∆γc
∆γp

)
y = C x + ∆γb

(7)

with

A =

(
0 I2
0 −4.5 η

ρr2 I2

)
; B =

(
0

mszτm
ρ I2

)
; C = 1 (8)

and I2 the identity matrix, and τm = Vm/V the volumetric
magnetization rate.

The system (S∇) models the robot dynamics, and has to be
controlled along a reference trajectory subjected to uncertainty
errors. The terms ∆γc, ∆γp and ∆γb represent the uncertain
parameters related to the influence of operating conditions,

i.e. the external forces fExt affecting the microrobot’s dy-
namics [16], the saturation of the MRI actuator coils [10]
and the 2-D position measurement errors related to MRI
magnetic signature sensing [11], respectively. Because safety
and accuracy are of critical importance, these uncertainties
will have significant influence on the choice of the best path
for MRN procedure. Different works show how to incorporate
uncertainty and state uncertainty into the control framework.
As example, predictive controller [17], adaptive controller [18]
or H∞ controller [19] proved to be efficient as proof of
concept but fail when considering multiple uncertainties in
realistic and complex vascular navigation configurations under
pulsatile flow.

The challenge we discuss in the following section is to
precisely quantify these uncertainties in advance, such as the
best path can be selected in realistic MRN conditions.

III. OPTIMAL MRI-BASED NAVIGATION FRAMEWORK

A. Navigation Planning

1) Problem Statement: A navigation path between a start-
ing point x0 ∈ C to a targeted point x ∈ C, could be defined
as a curve p on the domain C ⊂ Rd as follows:

p : l ∈ [0, 1] 7→ p(l) ∈ C, with x0 = p(0),x = p(1) (9)

where d = 2, 3, 4 . . . is the path state-space dimension, and
l the arc-length parameter. In a Riemann manifold the path
length could be defined from an energy functional weighted
by a metric w : x ∈ C 7→ w(x) ∈ R+ as follows:

Lw(p) =

∫ 1

0

w (p(l)) · ‖ṗ(l)‖ dl (10)

with ‖·‖ the Euclidean norm. Classically, the navigation plan-
ning goal is to find a minimal path (also referred as a geodesic)
that globally minimizes the path length Lw(p), that is:

γ = arg min
p

Lw(p) (11)

The geodesic distance between two points (x0,x) is the length
Lw(γ) wrt. the metric w. In this context, previous studies [11],
[15], [17] have shown that the fast marching method (FMM),
introduced by Sethian [14], offers an interesting framework.

2) Fast Marching Path Planning: In the FMM framework,
the minimum path finding problem (11) is solved through the
computation of the minimal distance map U : C 7→ R+ using
the Eikonal equation:{

||∇U(x)|| = w(x), ∀x ∈ C
U(x0) = 0

(12)

The key issue of the FMM is to define an appropriate metric
w(x) for retrieving a suitable navigation path based on the
desired criteria.

3) Minimal Centerline: A first objective is to design the
metric on spatial consideration. A basic idea is to use a unit
metric, where w1(x) = 1 for all free location in the domain
C, and 0 in forbidden location. Such unit metric computes
from Eq. (10) the Euclidean path arc-length L1 = Lw1

(γ1),
and thus leads to the shortest path. However, this solution



commonly implies contouring the walls. In previous work [17]
the following spatial cost function has been proposed:

wc : x ∈ C 7→ Enhance(x) ∈ R+ (13)

where Enhance(x) is a vesselness enhancement function
designed to give their maximal response in the center of the
thoroughfare. Such filtering technique leads to find the center-
line geodesic γc [17]. In particular, it has been shown that the
microrobot dynamics is less affected by the surface forces (the
contact, electrostatic and van der Waals microforces) when it
navigates close to the centerline [15], [16]. For such objective,
γc is then an optimal solution. However, designed solely on
spatial consideration, the centerline geodesic does not take
into account neither the physiological perturbations, the MRI
technological constraints nor the sensing uncertainties.

4) Minimum-Power Navigation Path: To ensure that a
geodesic is really achievable by the MRN system the navi-
gation path has to reduce the maximum pulling gradients (e.g.
up to 80 mT m−1), the operating time (e.g. ≤ 30 min), and
also maintain the rising temperature of the electromagnetic
coils within operating limits (e.g. ≤ 50 ◦C) [10]. To overcome
such issues, in [15] an anisotropic cost function is proposed
to minimize the energy expenditure, and is expressed as:

wp : (x, f) ∈ C × F 7→ wp(x, f) ∈ R+ (14)

where the anisotropy cost is extended with the vector f of a
field of force F . The proposed idea is to use a classical power
functional expression [15]:

wp(x, f) = arg max
x∈C,∇b∈B

〈f(x,∇b) · v(x)〉 (15)

where 〈·〉 is the inner product of Rd, and f(x,∇b) is the
applied resultant force that embeds the controlled magnetic
gradient ∇b ∈ B. Using model of the system dynamics (7),
the anisotropic metric wp allows considering the major physio-
logical perturbations (e.g. flow viscosity, time-varying pulsatile
flow). Furthermore, the magnetic action set B is designed wrt.
the MRI available magnetic actuation capabilities. The metric
wp allows obtaining a power efficient geodesic γp effectively
feasible by the MRN platform.

5) Planning with MRN Uncertainties: Numerous sources of
uncertainties, such as in MRI data acquisition and processing,
carrier model and position tracking, must be considered in
MRN planning. Otherwise, the microrobot may be trapped in
the wrong bifurcation or cause some unwanted embolies. Ex-
plicitly modeling sensing uncertainties in the planning strategy
is a first main step to robustness [11]. It has been recognized
that it could be defined some maps which describe the quality
of the sensed information obtained at each configuration used
by the system [20], [21]. In previous study [11], the expected
information gain I(x;y) is proposed to design this mapping,
and the corresponding metric is defined by

wb : x ∈ C 7→ I−1(x;y) ∈ R+ (16)

The expected information gain quantifies the microdevice’s
ability to characterize its localization at different positions
x. I(x;y) is computed, given an observed data y, from
the difference in Shannon entropy of the prior and posterior

distributions: I(x;y) = H(x) − H(x|y). The prior entropy
H(x) measures the carrier’s belief of its position x, before
the sensory input y is received. The conditional entropy
H(x|y) denotes the expected entropy change after measure-
ment data y. The computed geodesic γb from the metric
wb (16) maximizes the expected information gain I(x;y), and
thus minimizes the uncertainties along the navigation path.

B. Navigation Planning with Multiple Objectives
Previous proposed solutions provide an optimal naviga-

tion pathway wrt. their corresponding metric. The considered
navigation planning strategy is then a basic single-objective
optimization problem (11). When more than one goal has to
be addressed, the design problem becomes multi-objective. In
this context, a geodesic is commonly obtained from:

γ = arg min
p

{Lw1(p), . . . Lwk(p), . . . Lwn(p)} (17)

As the different metrics wk are usually conflicting, the scalar
concept of ”optimality” does not apply directly in the multi-
objective design. This situation gives rise to the concept of a
Pareto solution, and the use of Pareto optimality. Especially,
a feasible path p? is said to be Pareto optimal for a multi-
objective problem if there are no other feasible path p such
that: Lwk(p?) ≤ Lwk(p), ∀k = 1..n, and Lwk(p?) < Lwk(p)
for at least one k = 1..n. The family of Pareto solutions forms
the so-called Pareto front.

The most widely-used approach for multi-objective opti-
mization is the weighted sum technique (also referred as
scalarization method), where multiple metrics are aggregated
in a single cost function as follows [22]:

wλ =

n∑
k=1

λkwk (18)

If
∑
k λk = 1 and ∀λk ∈ [0, 1] the weighted sum is said

to be a convex combination of cost functions. Any weight
set {λk} generates a single cost function wλ that determines
different Pareto optimal geodesics. In particular, minimizing
(18) is sufficient for Pareto optimality [22]. Testing all possible
values of the weight set would construct the convex hull of the
Pareto front. It can be shown that the navigation path computed
from the single-cost function wλ is a Pareto optimum geodesic
for the original multi-objective problem (17).

However, usually there is no correspondence between a set
{λk} and a geodesic: it is up to the end-user to choose the
appropriate weights. Expert knowledge is then needed to select
the weights while the conditions of the system changed. To
propose a weight set, an idea is to use the utopian objective
(also referred as ideal point) defined by:

L? = inf
p
Lwk(p),∀k = 1..n (19)

Nevertheless, this utopian objective L? is often unattainable
as the costs are conflicting. Next idea is to consider the set
{λk} that generates the closest solution to utopian L?. Such
approach leads to seek for the Pareto optimal compromise
geodesic:

γ̂ = arg min
p,{λk}

‖Lwλ(p)− L?‖ (20)



IV. PREOPERATIVE EXPERIMENTAL RESULTS

A. Experimental Conditions

The experiments are conducted using a clinical Magnetom c©

Verio 3T MRI scanner (Siemens, Germany) providing real-
time capabilities. Magnetic microrobots are made of steel bead
of different sizes. They are placed either in an acrylic box
for sensing characterization, or in a vascular phantom for
MRN evaluation. The phantom is made of two PMMA plates
thermally bonded together, and has been divided into different
channels with multiple bifurcations. The general characteris-
tics are given in table I. The vascular phantom was filled with
deionized water, and placed inside the linear gradient volume
of the MRI bore on the x-z (coronal) plane, as shown in Fig. 4.
The Table II summarizes the relevant parameters considered in
the experiments.
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z
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Fig. 4. Experimental setup that comprises: (a) Magnetom Verio 3T MRI
scanner (Siemens, Germany) with the acrylic box which contains the vascular
phantom (b). The inset (c) illustrates a typical MR-imaging of the phantom.

TABLE I
GEOMETRIC CHARACTERISTICS OF THE VASCULAR PHANTOM.

Size (mm) w (mm) l (mm) Depth (mm)
300× 300 8.1–12.3 30–300 6.0

TABLE II
EXPERIMENTAL CONDITIONS.

Parameter Values
Microrobot radii r 750 µm
(steel ball) density ρ 7850 kgm−3

magnetization msz 1.6× 106 Am−1

Water viscosity η 1.005× 10−3 Pa s

Fig. 5 illustrates the gradient pulse generated during a
propulsion step in the x-direction followed by a slice acqui-
sition using a fast low angle shot (FLASH) sequence. The
propulsion gradient is set to ∇bg = (20, 0, 0)T mT m−1 for
TProp = 640 ms. The acquisition parameters are a repetition
time of Tr = 7.5 ms and echo time of Te = 4.8 ms, with an
image resolution of 256 × 256 and a halfed k-space, leading
to an acquisition time of TAcq = 960 ms.

To magnetically propel the microrobot to its destination,
different control strategies could be considered such as simple
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Fig. 5. Magnetic gradient sequences for propulsion and acquisition during
one time cycle TCycle. The x-y-z magnetic gradient components during
the propulsion (TProp), synchronization (TSync) and acquisition (TAcq)
sequences are reported.

proportional-integral-derivative (PID) [6], adaptive backstep-
ping control schemes [18] or predictive [17]. The capabilities
of the MRI scanner to actuate properly a given magnetic
microrobot are related to different factors. First, the duty
cycle τ =

TProp

TCycle
of the time multiplexing scheme directly

influences the microrobot motion and then the controller
performance. In a previous study [17], we have shown that
an optimum duty cycle is obtained for τ = 40%, which
is similar to the one reported in [6]. The microrobot mag-
netic properties also influence the MRI propulsion capabilities
through the magnetic force given by Eq. (4). Moreover, the
imaging part of the MRI sequence also produces magnetic
gradient pulses which do not necessarily sum up to zero. For
the previous example depicted in Fig. 5, the mean magnetic
gradient values are (31.20, 0, 0)TmT m−1 for the propulsion
phase TProp, whereas during the imaging phase TAcq it was
(−2.49, 0.21, 1.65)TmT m−1. The gradient fields generated
during the sensing phase does not appear negligible. However,
as the imaging sequence does not change significantly during
the overall navigation process, the induced force can be treated
as a constant external perturbation in the control scheme.

B. MRI Sensing Capability

Here, to compute the Shannon entropy H(x|y), we assume
that the sensing process could be modeled by a white bivariate-
Gaussian distribution: N (0,Σy), with zero mean and Σy

the covariance matrix (see [11]). This covariance matrix is
computed from the standard deviation considering:

Σy = diag(σ2
x, σ

2
z) (21)

where σx and σz are the standard deviations along the x and
z-axis respectively. To consider microrobots of any size, it is
necessary to develop an analytical model of the covariance
matrix that fits the measured sensing capability (see [11]).
To do so, Fig. 6 shows a third order polynomial interpolation
fitting suitably the measured standard deviations (circle and
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Fig. 6. Polynomial interpolation of the standard deviations (std) of the MR-
tracking of steel ball microrobots using a FLASH sequence.

square markers) wrt. the microrobot size. It should be noticed
that the standard deviations scale favorably until to reach a
low plateau value when the microrobot size is below 1 mm.

C. MRI Steering Capability Evaluation

To evaluate the MRN propulsion capability, an imaging and
propulsion sole sequence is applied on a spherical micro-
robot with a radius of r = 750 µm. As in Section II-A, the
steering gradient has been set to ∇b = (20, 0, 0)T mT m−1

for TProp = 640 ms. Similarly, the sensing process uses
the same optimized FLASH sequence as it provides a good
compromise in terms of accuracy and acquisition time. Fig. 5
depicts the applied magnetic gradient sequence for propulsion
and acquisition for one cycle time TCycle. Fig. 7 shows the
corresponding velocities of the magnetic microrobot that has
traveled a distance of 243.4 mm during TCycle. Moreover,
during the acquisition step, the velocity of the microrobot
does not appear to be affected by the MR-imaging sequence.
This result demonstrates the effectiveness of the tracking
and propulsion sequence of a magnetic microrobot through
a clinical MRI scanner.

D. Preoperative MRN Planning

1) Single Objective Navigation Planning: The proposed
magnetic resonance navigation (MRN) planning framework
has been first evaluated considering each presented single
objective. More precisely, the goal here is to retrieve the
centerline, γc, power efficient, γp, and the belief, γb, geodesics.
Furthermore, the sensing uncertainty model is designed upon
FLASH sequences as it provides the best sensing capabilities.

Firstly, a highly magnetic stain-less steel bead microrobot
with a radius of r = 750 µm is assumed to navigate in
the vascular phantom filled with water (ie., a static flow),
with the experimental condition parameters summarized in
Table II. The corresponding metric maps (wc , wp and wb)
are calculated and are illustrated in Fig.8. Fig.9a illustrates a
navigation case starting from x03 and ending to x3 locations.
Table III presents the geodesic lengths Lw(γ), computed from
Eq (10), for each navigation path. considering a unit (i.e., that
allows retrieving the Euclidean path arc-length L1), centerline
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Fig. 9. Optimal navigation paths with the centerline (γc), the power efficient
(γp), and the belief (γb) metrics. (a) A steel ball with a radius of r = 750 µm
navigating in a static flow; and (b) a steel ball with a radius of r = 1500 µm
in a continuous flow with a velocity ‖v‖ = 20mms−1.

wc, power wp, and belief wb metrics. As expected, each
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geodesic provides the minimal length with its own metric
against the others objective functions. In the case illustrated
in Fig.9b, the geodesics are calculated when a r = 1500 µm
steel bead microrobot is navigating in presence of a steady
flow (‖v‖ = 20 mm s−1) simulating the arterial blood velocity.
Fig.9b depicts the relevant streamline of this virtual flow. As
expected, solely based on spatial information, the centerline,
wc, metric gives exactly the same solution as the previous
case. In contrast, the belief, γb, and the power efficient, γp,
geodesics provide new solutions. It should be noticed that the
change of the size of the microrobot leads to a change of the
computed information gain which is related to the standard
deviation of the MRI sensing process (see also Fig. 6), to-
gether with a change in its location belief. Actually, when a
larger microrobot is considered the environment uncertainty is
increasing, especially in smaller channels. Considering this,
we investigated experimentally the evolution of the energy
functional Lwb

as function of the microrobot’s size (Fig.10a).
The belief geodesic γb solution scales down favorably for
robot sizes less than 1mm but is strongly limited for robot
sizes bigger than 2mm due to the strong artifact signature.
The circulating fluid flow plays an important role on the power
geodesic, γp. The navigation pathway tends to follow the
circulating flow in order to minimize the energy expenditure.
As illustration, Fig. 10b shows the power efficiency energy
functional, Lwp

with respect to the flow magnitude for different
microrobot sizes. As the robot size scales down, the required
power increases drastically in presence of fluid flow failing to
find a geodesic, γp, solution for flow velocities values greater
than 50 mm s−1. The power efficiency energy functional γp
values are found nearly constant for velocity values ranging
from 10 mm s−1-to-50 mm s−1 for robot sizes greater than
1mm. Finally, the euclidean shortest path shown in Fig.10c
is generally obtained using the centerline efficiency energy
functional, γc, as the corresponding geodesic is less sensitive
to wall effects [15]. In conclusion, optimal navigation path-
ways can be predicted when considering a tradeoff between
the efficiencies of different cost functions according to the
corresponding MRN experimental conditions.

2) Multi-Objective Planning:

TABLE III
THE LENGTHS OF EACH GEODESICS CONSIDERING THE UNIT (w1),

CENTERLINE (wc), POWER (wp) AND BELIEF (wb) METRICS, FOR THE
DIFFERENT CASES SHOWN IN FIG.9.

Cases L1 (mm) Lwc Lwp Lwb

Fig.9a γc 383.621 29.560 21.081 18.152

x03 → x3
γp 472.331 35.567 19.930 21.759

γb 319.869 33.936 20.488 15.425

Fig.9b γc 383.621 29.560 126.164 17.143

x03 → x3
γp 725.456 95.623 45.506 38.384

γb 357.458 43.534 103.567 10.238

a) Bi-objective Optimization: The simplest multi-
objective case is to consider two objectives that have to be
optimized. Using the weighted sum method, the cost functions
are simply aggregated as follows:

wλ = (1− λ)wx + λwy, ∀λ ∈ [0; 1] (22)

with wx and wy one of proposed metric, that is wc, wp or wb

(see also Table IV).
Fig. 12 shows the Pareto front between the considered cost

functions. For the sake of consistent comparison between
objectives, each geodesic length Lw are here normalized. In
particular, a cost of 1 is the worst solution whereas 0 leads
to the best one. Fig. 12a presents the Pareto front related to
the normalized length of geodesics starting from point x01 to
targeted location x1 corresponding to the case (1) in Fig.11.
Each bi-objective problem seems to provide a convex Pareto
front, but with different curvatures. Recalling that all solutions
on the Pareto frontier (the circles in Fig. 12) are optimal
according to the objective wλ (22), one can choose any of
them. These results show that objectives of centerline wc and
belief wb have the most influence against power metric.

Moreover, in the case (2), x02 → x2, illustrated in Fig.11
objective wc provides a different solution than other cost
functions. The distinctive solutions appear clearly in Fig. 12b
for centerline wc vs. belief wb with a jump in the Pareto
front. This gap is due to the fact that the geodesic could
be below (the group {1} in Fig. 12b) or above (the group
{2} in Fig. 12b) the obstacle. For centerline wc vs. power



x1
γc
γp
γb

(1)

γc
γp
γb

(2) x01

x02

x2

Fig. 11. Optimal navigation path with centerline (γc), the power efficient
(γp), and the belief (γb) metrics considering different starting (x01, x02) and
ending (x1, x2) locations

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

B
e
lie
f

B
e
lie
f

Po
w
e
r

Compromise

utopia Centerline Power Centerline
(a)

utopia Centerline Power Centerline

B
e
lie
f

B
e
lie
f

Po
w
e
r

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

gap

0 0.05

0

0.05

0.1
{2}

{1}

gap

{2}
{1}

(b)

Fig. 12. Bi-objective Pareto Front: (left) centerline wc vs. belief wb; (center)
power wp vs. belief wb; and (right) centerline wc vs. power wp objectives,
from (a) x01 to x1 and (b) x02 to x2. Circles depict the Pareto non-
dominated solutions, and the square box the compromise solution wrt. the
utopian solution (diamond).

wp objectives, it is more difficult to characterize the switch
between the solutions. In-depth analysis brings up a gap from
a weight of λ > 0.7, and is illustrated in the zooming inset in
Fig. 12b. This kind of switch is also related to a non-convexity
in the Pareto front. Moreover, as mentioned, among the Pareto
non-dominated solutions, the compromise weight, λ̂, is the
closest to the utopia point (0, 0). Table IV summarizes the
normalized length of the compromise navigation path. These
solutions could offer a suitable choice as it entails minimizing
the difference between potential optimal points.

TABLE IV
NORMALIZED LENGTH OF THE COMPROMISE GEODESIC FOR

BI-OBJECTIVE OPTIMIZATION.

wλ λ̂ Lwc Lwp Lwb

(a) (1− λ)wc + λwb 0.825 0.385 0.859 0.278

x01 → x1 (1− λ)wp + λwb 0.95 0.741 0.088 0.060

(1− λ)wc + λwp 0.855 0.216 0.181 0.495

(b) (1− λ)wc + λwb 0.85 0.010 0.828 0.132

x02 → x2 (1− λ)wp + λwb 0.75 0.220 0.098 0.106

(1− λ)wc + λwp 0.617 0.001 0.002 0.261

b) Three-objective Problems: The three proposed metrics
can be aggregated together as follows:

wλ = (1− λ2)(1− λ1)wc + λ2(1− λ1)wp + λ1wb (23)

with λ1 and λ2 ∈ [0; 1]. When considering more than two
objectives, the non-dominated solutions is the convex hull of
the Pareto optimal surface that is explored as the weight set
{λ1, λ2} is varied. Actually, with more than two objectives
the Pareto frontier is more difficult to handle and to illustrate
easily. The compromise solution is located at λ̂1 = 0.52 and
λ̂2 = 0.95, and provides the following normalized geodesic
length: Lwc

= 0.362, Lwp
= 0.106 and Lwb

= 0.288. The
corresponding navigation path is then the one that minimizes
the geodesic distance to the utopian point, and thus allows to
best fit the three objectives.

3) Discussions: From the multi-objective optimization
problems considering the case Fig.9(a), x01 → x1, it appears
two distinct interpretations. First, the compromise weight λ̂2
is close to 1. It supposes that the centerline metric wc does not
have a great influence in the three-objective problem given in
(23). This interpretation appears to be consistent wrt. results
from bi-objective problems, where the compromise weights λ̂
are also close to 1. From the compromise weights analysis
it appears that the centerline objective has less significance
wrt. the other metrics. Actually, results from single objective
show that globally each geodesic remains not far from the
centerline pathway. Furthermore, this interpretation shows that
the belief objective, wb, is the fully satisfied. Secondly, from
the investigation of the normalized geodesic length at the
compromise weight, λ̂, location, it appears that the power
cost function wp seems satisfied, as it has a low geodesic
length, Lwp

= 0.106. In contrast, centerline objective has the
largest length, Lwc

= 0.362, which could be interpreted by a
lower satisfaction than the other objectives at the compromise
solution. In addition, objectives of power and centerline appear
close to each other, since their compromise solution is close
to the utopia. A similar analysis between objectives of power
and belief allows us to consider that power objective is the
less relevant for the case (1), x01 → x1, shown in Fig.11.
Actually, in the considered multi-objective cases, the magnetic
microrobot navigates in a steady flow, and thereby the drag
force does not induce a significant constraint, particularly
against the uncertainty constraint. In such context, the main
objectives are to satisfy first the metrics of belief, and then
the centerline goals where the fExt can be neglected [15]. The
power metric has a more important impact when the fluid



flow implies significant forces on the microrobot dynamics
(see Fig.9b).

The presence of distinctive solutions while the weight is
varying (such as in the case (2) x02 → x2 depicted in Fig.11)
is related to a non-convexity in the Pareto frontier. It is then
more difficult to fully handle an ideal solution. Especially, the
well-known drawbacks of the weighted sum method (18), are
i) that the optimal solution distribution is not uniform; and ii)
that optimal solutions in non-convex regions are not detected.
More advanced multi-objective optimization techniques have
to be used [22].

V. MAGNETIC RESONANCE NAVIGATION EXPERIMENTS

The proposed MRN framework has been experimentally
validated using the Magnetom c© Verio 3T clinical MRI plat-
form (see Fig. 4). The considered MRN is defined as a motion
around the vascular phantom. A spherical microrobot of radius
r = 750 µm has been introduced into the phantom setup
and placed in the focus of the MRI bore. Propulsion and
sensing MRI sequences are similar to the paragraph IV-C.
As mentioned, uncertainties are here the most significant
constraints. Therefore, the MRN planning is reduced to the
bi-objective problem (22) considering the centerline wx = wc

and belief wy = wb metrics. Moreover, a compromise weight
of λ̂ = 0.825 is used to compute automatically the navigation
path, as it is the one that best meets the two objectives. To
generate a complex pathway, several waypoints are defined in
the vascular-like environment. Then, the magnetic microrobot
has to follow the predefined reference path using a simple
proportional-integral (PI) controller. To guide the microrobot
to follow the reference path the magnetic gradient depicted in
Fig. 13 is generated with the coils of the MRI scanner. For
the sake of clarity only the propulsion gradient sequences are
reported here. As shown in Fig. 14 and in the supplementary
video, the MRN system is able to steer efficiently the micro-
robot along the reference path. First, from its initial position
(xinit) the device has to converge to the reference path. Once
the geodesic is reached, the microrobot remains globally close
to it. These results, with very few user interaction, validate the
proposed framework as a step towards autonomous MRN.

Moreover, let us recall that the beliefs metric wb is a
measurement of the uncertainties on the microrobot tracking.
Hence, wb helps to predict the covariance matrix Σy in the
sensing process. The ellipses in Fig. 14 describe the prediction
of the Σy along the measured position from the sensing
modules. Red ellipse is related to high uncertainty, while blue
ellipse to low uncertainty. Based on the dynamic model (7) (cf.
Section II-B), a Kalman filter (KF) can be used to estimate
the microrobot position. Particularly, in robotics, the KF is
the most suited for tracking, localization, and navigation
problems. Indeed, the KF works best i) with well-defined state
descriptions, where observation and time-propagation models
are well understood; and ii) where all errors are Gaussian
distributions. Fig. 14 also illustrates the measured position and
the KF corrected localization. Errors between the reference
path and measurements, as well as wrt. the KF-tracked position
are presented in Fig. 15. With the MR-tracked measured
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value the average error is 1.249 mm, whereas considering
KF-correction the mean error is 0.851 mm. These results
suggest that the KF correction provides a good estimate of
the microrobot localization thanks to a suitable prediction
of the microrobot’s belief in its location. The microrobot
tracking error appears greater than those considered in the
sensing capability evaluation (cf. paragraph IV-B). Actually,
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the tracking algorithm is here designed upon a template stack
of static artifacts. However, when the magnetic microrobot is
moving, the artifact signature leaves a magnetic remnant of
trail, as shown in Fig. 7c.

In addition, according to the system dynamic model (7) the
KF allows the observation of the entire systems state (v,x)

T

which includes the microrobot velocity v. Fig. 16 shows the
motion of the microrobot computed from the measurements,
the KF-corrected localization and the KF predicted velocity
state. Once again, the use of the system’s model together
with an a priori knowledge of the uncertainty map improves
substantively the MRN efficiency. Therefore, this could be a
first step towards the design of an MRN-based medical SLAM
(simultaneous localization and mapping) approach.

VI. CONCLUSIONS

In this study, an optimal magnetic resonance navigation
frameworks integrated within a clinical MRI scanner are
presented. The basic sensing and actuation modules are first
evaluated to exhibit the MRN system capabilities to track
and magnetically steer through the magnetic field gradient
generated from the coils of a conventional MRI. From preop-
erative MRI data and system models, comprising the sensing
uncertainties and the system dynamics, a robust and optimal
navigation path is planned by addressing multi-objective prob-
lem. A deep analysis of the different objective functions and of
the multi-objective navigation planning problem is presented.
Especially, the weight set could be automatically selected by
considering the compromise solution. The reliable pathway
is then used to efficiently guide a magnetic microrobot to a
targeted location. The overall MRN architecture functionalities
has been experimentally verified using an integrated clinical
MRI system. These experimental realization demonstrate that
it is effectively possible to autonomously guide a magnetic
microrobot using a conventional MRI scanner with only a
software upgrade. Further investigation will address 3D and
in vivo experimental validation.
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