
HAL Id: hal-01446454
https://hal.science/hal-01446454

Submitted on 26 Jan 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

On convergence criteria for incompressible
Navier-Stokes equations with Navier boundary

conditions and physical slip rates
Yasunori Maekawa, Matthew Paddick

To cite this version:
Yasunori Maekawa, Matthew Paddick. On convergence criteria for incompressible Navier-Stokes equa-
tions with Navier boundary conditions and physical slip rates. Mathematical Analysis in Fluid and
Gas Dynamics, Jul 2016, Kyôto, Japan. pp.9-23. �hal-01446454�

https://hal.science/hal-01446454
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


On convergence criteria for incompressible

Navier-Stokes equations with Navier boundary

conditions and physical slip rates

Yasunori Maekawa
Department of Mathematics, Graduate School of Science, Kyoto University

maekawa@math.kyoto-u.ac.jp

Matthew Paddick
Sorbonne Universités, UPMC Univ Paris 06, UMR 7598, Laboratoire

Jacques-Louis Lions
paddick@ljll.math.upmc.fr

Abstract

We prove some criteria for the convergence of weak solutions of the
2D incompressible Navier-Stokes equations with Navier slip boundary
conditions to a strong solution of incompressible Euler. The slip rate
depends on a power of the Reynolds number, and it is increasingly
apparent that the power 1 may be critical for L

2 convergence, as
hinted at in [14].

1 The inviscid limit problem with Navier-slip

boundary conditions

In this brief note, we shed some light on how some well-known criteria for
L2 convergence in the inviscid limit for incompressible fluids work when the
boundary condition is changed. We consider the two-dimensional Navier-
Stokes equation on the half-plane Ω = {(x, y) ∈ R

2 | y > 0},






∂tu
ε + uε · ∇uε − ε∆uε +∇pε = 0

div uε = 0
uε|t=0 = uε

0,
(1)
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and study the inviscid limit problem. This involves taking ε → 0, and the
question of whether the solutions of (1) converge towards a solution of the
formal limit, the Euler equation,







∂tv + v · ∇v +∇q = 0
div v = 0
v|t=0 = v0,

(2)

in presence of a boundary is one of the most challenging in fluid dynamics.
This is because the boundary conditions required for (2) are different to
those for (1). In the inviscid model, there only remains the non-penetration
condition

v · n|y=0 = v2|y=0 = 0, (3)

hence inviscid fluids are allowed to slip freely along the boundary, while
viscous fluids adhere to it when the most commonly used boundary condition,
homogeneous Dirichlet,

uε|y=0 = 0, (4)

is used. As ε goes to zero, solutions of the Navier-Stokes equation are ex-
pected to satisfy the following ansatz,

uε(t, x, y) = v(t, x, y) + V ε

(

t, x,
y√
ε

)

,

where V ε is a boundary layer, such that V ε(t, x, 0) = −v(t, x, 0).
However, the validity of such an expansion is hard to prove, and, in some

cases, such as when v is a linearly unstable 1D shear flow, it is wrong in the
Sobolev space H1, as shown by E. Grenier [3]. General validity results require
considerable regularity on the data. M. Sammartino and R. Caflisch proved
the stability of Prandtl boundary layers in the analytic case [15], and the first
author [9] proved in the case when the initial Euler vorticity is located away
from the boundary. Recently, this has been extended to Gevrey framework
by the first author in collaboration with D. Gérard-Varet and N. Masmoudi
[2]. Precisely, in [2] a Gevrey stability of shear boundary layer is proved when
the shear boundary layer profile satisfies some monotonicity and concavity
conditions. One of the main objectives there is the system







∂tv
ε − ε∆vε + V ε∂xv

ε + vε2∂yV
εe1 +∇pε = −vε · ∇vε ,

div vε = 0 ,
vε|y=0 = 0 , vε|t=0 = vε0 .

(5)

Here V ε(y) = UE(y)−UE(0)+U( y√
ε
), and (UE , 0) describes the outer shear

flow and U is a given boundary layer profile of shear type. In [2] the data is
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assumed to be periodic in x, and the following Gevrey class is introduced:

Xγ,K = {f ∈ L2
σ(T× R+) |

‖f‖Xγ,K
= sup

n∈Z
(1 + |n|)10eK|n|γ‖f̂(n, ·)‖L2

y(R+) < ∞} . (6)

Here K > 0, γ ≥ 0, and f̂(n, y) is the nth Fourier mode of f(·, y). The
key concavity condition on U and the regularity conditions on UE and U are
stated as follows:

(A1) UE , U ∈ BC2(R+), and
∑

k=0,1,2

sup
Y≥0

(1 + Y k)|∂k
Y U(Y )| < ∞.

(A2) ∂Y U > 0 for Y ≥ 0, U(0) = 0, and lim
Y→∞

U(Y ) = UE(0).

(A3) There is M > 0 such that −M∂2
Y U ≥ (∂Y U)2 for Y ≥ 0.

Theorem 1 ([2]). Assume that (A1)-(A3) hold. Let K > 0, γ ∈ [2
3
, 1].

Then there exist C, T,K ′, N > 0 such that for all small ε and vε0 ∈ Xγ,K with
‖vε0‖Xγ,K

≤ εN , the system (5) admits a unique solution vε ∈ C([0, T ];L2
σ(T×

R+)) satisfying the estimate

sup
0≤t≤T

(

‖vε(t)‖Xγ,K′
+ (εt)

1
4‖vε(t)‖L∞ + (εt)

1
2‖∇vε(t)‖L2

)

≤ C‖vε0‖Xγ,K
.

(7)

In Theorem 1 the condition γ ≥ 2
3
is optimal at least in the linear level,

due to the Tollmien-Schlichting instability; see Grenier, Guo, and Nguyen
[4]. More general results, including the case when UE and U depend also on
the time variable, can be obtained; see [2] for details.

The situation remains delicate when the Dirichlet boundary condition (4)
is replaced by (3) plus a mixed boundary condition such as the Navier friction
boundary condition,

∂yu
ε
1|y=0 = aεuε

1|y=0. (8)

This was derived by H. Navier in the XIXth century [12] by taking into
account the molecular interactions with the boundary. To be precise, the
Navier condition expresses proportionality between the tangential part of
the normal stress tensor and the tangential velocity, thus prescribing how
the fluid may slip along the boundary. As indicated, the coefficient aε may
depend on the viscosity. Typically, we will look at

aε =
a

εβ
, (9)
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with a > 0 and β ≥ 0. A previous paper by the second author [14] showed
that nonlinear instability remains present for this type of boundary condition,
in particular for the case of boundary-layer-scale data, β = 1/2, where there
is strong nonlinear instability in L∞ in the inviscid limit. However, the same
article also showed general convergence in L2 when β < 1.

Theorem 2 (Theorem 1.2 in [14]). Let uε
0 ∈ L2(Ω) and uε be the Leray

solution of (1) with initial data uε
0, satisfying the Navier boundary conditions

(3) and (8), with aε as in (9) with β < 1. Let v0 ∈ Hs(Ω) with s > 2, so
that v is a global strong solution of the Euler equation (2)-(3), and assume
that uε

0 converges to v0 in L2(Ω) as ε → 0. Then, for any T > 0, we have
the following convergence result:

sup
t∈[0,T ]

‖uε(t)− v(t)‖L2(Ω) = O(ε(1−β)/2).

This theorem is proved using elementary energy estimates and Grönwall’s
lemma, and it extended results by D. Iftimie and G. Planas [5], and X-P.
Wang, Y-G. Wang and Z. Xin [18]. It is worth noting, on one hand, that
convergence breaks down for β = 1, and on the other, that a comparable
result is impossible to achieve in the no-slip case, since the boundary term
∫

∂Ω
∂yu

ε
1v1 dx cannot be dealt with.

The first remark is important since β = 1 is what we call the “phys-
ical” case, because this was the dependence on the viscosity predicted by
Navier in [12], and because it is indeed the Navier condition that one obtains
when deriving from kinetic models with a certain scaling (see [10] for the
Stokes-Fourier system, and recently [6] extended the result to Navier-Stokes-
Fourier). One purpose of this work is therefore to further explore whether
or not β = 1 is effectively critical for convergence. By using the L2 conver-
gence rate and interpolation, we can obtain a range of numbers p for which
convergence in Lp(Ω) occurs depending on β, which also breaks down when
β = 1. The following extends Theorem 2.

Theorem 3. Let uε
0 ∈ L2(Ω) and uε be the Leray solution of (1) with initial

data uε
0, satisfying the Navier boundary conditions (3) and (8), with aε as

in (9) with β < 1. Let v0 ∈ Hs(Ω) with s > 2, so that v is a global strong
solution of the Euler equation (2)-(3), and assume that uε

0 converges to v0 in
L2(Ω) as ε → 0. Then, for any T > 0, we have the following convergence
result:

lim
ε→0

sup
t∈[0,T ]

‖uε(t)− v(t)‖Lp(Ω) = 0 if 2 ≤ p <
2(1 + 3β)

5β − 1
.

The convergence rate is ε(1−β)/2−(p−2)(1+3β)/4p.
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On the second remark, relating to the Dirichlet case, even if no general
result like Theorem 2 is known, there are necessary and sufficient criteria for
L2 convergence. We sum two of these up in the following statement.

Theorem 4. Let uε
0 ∈ L2(Ω) and uε be the Leray solution of (1) with initial

data uε
0, satisfying the Dirichlet boundary condition (4). Let v0 ∈ Hs(Ω) with

s > 2, so that v is a global strong solution of the Euler equation (2)-(3), and
assume that uε

0 converges to v0 in L2(Ω) as ε → 0. Then, for any T > 0, the
following propositions are equivalent:

a. lim
ε→0

sup
t∈[0,T ]

‖uε(t)− v(t)‖L2(Ω) = 0;

b. lim
ε→0

√
ε

∫ T

0

‖∂yuε
1(t)‖L2(Γκε)

dt = 0, where Γκε = {(x, y) ∈ Ω | y < κε} for

κ smaller than some κ0 ≤ 1 (a variant of T. Kato [7]);

c. lim
ε→0

ε

∫ T

0

∫

∂Ω

(v1∂yu
ε
1)|y=0 dx dt = 0 (S. Matsui [11], Theorem 3).

Regarding the key statement b. in Theorem 4, the original condition
found by Kato [7] was

lim
ε→0

ε

∫ T

0

‖∇uε(t)‖2L2(Γκε)
dt = 0. (10)

This criterion has been refined by several authors: R. Temam and X. Wang
[16], X. Wang [17], J. P. Kelliher [8], and P. Constantin, I. Kukavica, and V.
Vicol [1]. In fact, the argument of [7] provides the inequality

lim sup
ε→0

sup
t∈[0,T ]

‖uε(t)− v(t)‖2L2(Ω)

≤ Ce2
∫ T

0 ‖∇v‖L∞(Ω)dt lim sup
ε→0

ε

∣

∣

∣

∣

∫ T

0

〈∂yuε
1, rot Ṽ

κε〉L2(Ω) dt

∣

∣

∣

∣

.
(11)

Here C is a numerical constant and Ṽ κε(t, x, y) = Ṽ (t, x, y
κε
), with a suffi-

ciently small κ ∈ (0, 1], is the boundary layer corrector used in [7]. Indeed,
Kato’s result relied on the construction of a boundary layer at a different
scale than in the ansatz presented earlier. It involved an expansion like this,

uε(t, x, y) = v(t, x, y) + Ṽ
(

t, x,
y

κε

)

,

thus convergence in the Dirichlet case is governed by the vorticity’s behaviour
in a much thinner layer than the physical boundary layer. The direction from
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b. to a. follows from (11). Meanwhile, Matsui’s result is proved using the
energy estimates.

We will show that Theorem 4 extends ‘as is’ to the Navier boundary
condition case.

Theorem 5. Let uε
0 ∈ L2(Ω) and uε be the Leray solution of (1) with initial

data uε
0, satisfying the Navier boundary conditions (3) and (8) with aε ≥ 0.

Let v0 ∈ Hs(Ω) with s > 2, so that v is a global strong solution of the Euler
equation (2)-(3), and assume that uε

0 converges to v0 in L2(Ω) as ε → 0.
Then, for any T > 0, convergence in L∞(0, T ;L2(Ω)) as in Theorem 2 is
equivalent to the same Kato and Matsui criteria in the sense as in Theorem
4.

Indeed, we will show that (11) is valid also for the case of Navier boundary
conditions (3) and (8). Since the right-hand side of (11) is bounded from
above by

Ce2
∫ T

0 ‖∇v‖L∞(Ω)dt lim sup
ε→0

κ− 1
2 ε

1
2

∫ T

0

‖∂yuε
1‖L2(Ω)dt

≤ Ce2
∫ T

0 ‖∇v‖L∞(Ω)dtκ− 1
2 lim sup

ε→0
‖uε

0‖L2(Ω)T
1
2 .

As a direct consequence, we have

Corollary 1. Under the assumptions of Theorem 4 or 5, we have

lim sup
ε→0

sup
t∈[0,T ]

‖uε(t)− v(t)‖L2(Ω) ≤ Ce
∫ T

0
‖∇v‖L∞(Ω)dt‖v0‖

1
2

L2(Ω)T
1
4 , (12)

for some numerical constant C.

Estimate (12) shows that the permutation of limits

lim
T→0

lim
ε→0

sup
t∈[0,T ]

‖uε(t)− v(t)‖L2(Ω) = lim
ε→0

lim
T→0

sup
t∈[0,T ]

‖uε(t)− v(t)‖L2(Ω)

is justified, and that this limit is zero, which is nontrivial since ε → 0 is a
singular limit. In particular, at least for a short time period but independent
of ε, the large part of the energy of uε(t) is given by the Euler flow v(t).

Initially, we hoped to get a result with a correcting layer which could be
more tailor-made to fit the boundary condition, but it appears that Kato’s
Dirichlet corrector yields the strongest statement. Whenever we change the
ε-scale layer’s behaviour at the boundary, we end up having to assume both
Kato’s criterion and another at the boundary. So this result is actually proved
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identically to Kato’s original theorem, and we will explain why in section 3.
We will also see that Matsui’s criterion extends with no difficulty, but it has
more readily available implications.

Indeed, the Navier boundary condition gives information on the value of
∂yu

ε
1 at the boundary. Assuming that aε = aε−β as in (9), we see that

ε(v1∂yu
ε
1)|y=0 = ε1−β(v1u

ε
1)|y=0.

Simply applying the Cauchy-Schwarz inequality to the integral in the Matsui
criterion and using the energy inequality of the Euler equation, we have

ε

∫ T

0

∫

∂Ω

(v1∂yu
ε
1)|y=0 dx dt ≤ ε1−β ‖v0‖L2(Ω)

∫ T

0

‖uε
1(t)|y=0‖L2(∂Ω) dt. (13)

As the energy inequality for Leray solutions of the Navier-Stokes equation
with the Navier boundary condition shows that

ε1−β

∫ T

0

‖uε
1(t)‖2L2(∂Ω) dt ≤ ‖uε(0)‖2L2(Ω) ,

the right-hand side of (13) behaves like Cε(1−β)/2, and thus converges to zero
when β < 1. The Matsui criterion therefore confirms Theorem 2, without
being able to extend it to the physical case. Once again, the physical slip
rate appears to be critical.

2 Proof of Lp convergence

To prove Theorem 3, we rely on a priori estimates in L∞ and interpolation.
First, since the vorticity, ωε = ∂xu

ε
2−∂yu

ε
1, satisfies a parabolic transport-

diffusion equation, the maximum principle shows that

‖ωε‖L∞((0,T )×Ω) ≤ max(‖ωε|t=0‖L∞(Ω) , aε
−β ‖uε

1|y=0‖L∞((0,T )×∂Ω)) (14)

by the Navier boundary condition (8)-(9). To estimate uε
1 on the boundary,

we use the Biot-Savart law:

uε
1(t, x, 0) =

1

2π

∫

Ω

y′

|x− x′|2 + |y′|2ω
ε(t, x′, y′) dx′dy′.

Let us denote κ(x, x′, y′) the kernel in this formula. We split the integral on

y′ into two parts,
∫ K

0
and

∫ +∞
K

with K to be chosen. On one hand, we have

∣

∣

∣

∣

∫ K

0

∫

R

y′

|x− x′|2 + |y′|2ω
ε(t, x′, y′) dx′dy′

∣

∣

∣

∣

≤ C0K ‖ωε‖L∞((0,T )×Ω) (15)
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by integrating in the variable x′ first and recognising the derivative of the
arctangent function.

On the other, we integrate by parts, integrating the vorticity ωε, so
∫ +∞

K

∫

R

κ(x, x′, y′)ωε(t, x′, y′) dx′dy′

= −
∫ +∞

K

∫

R

uε · ∇⊥
x′,y′κ dx′dy′ +

∫

R

(κuε
1)|y′=K dx′.

The first two terms are easily controlled using the Cauchy-Schwarz inequality:
‖uε(t)‖L2 is uniformly bounded by the energy estimate for weak solutions of
Navier-Stokes, while quick explicit computations show that ‖∇x′,y′κ‖L2 ≤
C/K. Likewise, in the boundary term, the kernel is also O(1/K) in L2(R),
but we must now control the L2 norm of the trace of uε

1 on the set {y′ = K}:
by the trace theorem and interpolation, we have

‖uε
1‖L2({y′=K}) ≤

√

‖uε
1‖L2(Ω) ‖ωε‖L2(Ω),

and both of these are uniformly bounded. Hence, in total,

‖ωε‖L∞((0,T )×Ω) ≤ ‖ωε(0)‖L∞(Ω) + aε−βC0K ‖ωε‖L∞((0,T )×Ω) + aε−β C

K
.

By choosing K ∼ εβ so that aε−βC0K < 1
2
, we can move the second term on

the right-hand side to the left, and we conclude that, essentially,

‖ωε‖L∞((0,T )×Ω) ≤ Cε−2β.

Using the Gagliardo-Nirenberg interpolation inequality from [13], we can
now write that, for p ≥ 2,

‖uε(t)− v(t)‖Lp(Ω) ≤ C ‖uε(t)− v(t)‖1−q
L2 ‖rot (uε − v)(t)‖qL∞ ,

where q = p−2
2p

. By Theorem 2, the first term of this product converges to

zero with a rate ε(1−q)(1−β)/2 when β < 1, while we have just shown that the
second behaves like ε−2qβ, so the bound is

‖uε(t)− v(t)‖Lp(Ω) ≤ Cε(1−β)/2−q(1+3β)/2.

It remains to translate this into a range of numbers p such that this
quantity converges, which happens when q < 1−β

1+3β
. Recalling the value of

q, we get that weak solutions of the Navier-Stokes equation converge in Lp

towards a strong solution of the Euler equation if

2 ≤ p <
2(1 + 3β)

5β − 1
,

and the right-hand bound is equal to 2 when β = 1.
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3 About the Kato and Matsui criteria

The starting point for both criteria is the weak formulation for solutions of
the Navier-Stokes equation.

Notations. If E is a function space on Ω, we denote Eσ the set of 2D vector-
valued functions in E that are divergence free and tangent to the boundary.
Recall that, through the rest of the paper, aε is a non-negative function of
ε > 0 (not necessarily the same form as in (9)).

Definition. A vector field uε : [0, T ] × Ω → R
2 is a Leray solution of the

Navier-Stokes equation (1) with Navier boundary conditions (3)-(8) if:

1. uε ∈ Cw([0, T ], L2
σ) ∩ L2([0, T ], H1

σ) for every T > 0,

2. for every ϕ ∈ H1([0, T ], H1
σ), we have

〈uε(T ), ϕ(T )〉L2(Ω) −
∫ T

0

〈uε, ∂tϕ〉L2(Ω) + εaε
∫ T

0

∫

∂Ω

(uε
1ϕ1)|y=0

+ ε

∫ T

0

〈ωε, rot ϕ〉L2(Ω) −
∫ T

0

〈uε ⊗ uε,∇ϕ〉L2(Ω) = 〈uε(0), ϕ(0)〉L2(Ω),

(16)

3. and, for every t ≥ 0, uε satisfies the following energy equality (in 3D,
this is an inequality):

1

2
‖uε(t)‖2L2(Ω)+εaε

∫ t

0

∫

∂Ω

(|uε
1|2)|y=0+ε

∫ t

0

‖ωε‖2L2(Ω) =
1

2
‖uε(0)‖2L2(Ω) .

(17)

When formally establishing the weak formulation (16), recall that

−
∫

Ω

∆uεϕ =

∫

Ω

(ωε · rot ϕ−∇div uε · ϕ) +
∫

∂Ω

(ωεϕ · n⊥)|y=0,

where n⊥ = (n2,−n1) is orthogonal to the normal vector n. In the flat
boundary case with condition (8) on the boundary, we get the third term of
(16). The differences with the Dirichlet case are two-fold: first, the class of
test functions is wider (in the Dirichlet case, the test functions must vanish
on the boundary), and second, there is a boundary integral in (16) and (17)
due to uε

1 not vanishing there.

We will not go into great detail for the proof of Theorem 5, since it is
virtually identical to Theorem 4. In particular, Matsui’s criterion is shown
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with no difficulty, as only the boundary term in (16), with ϕ = uε − v, is
added in the estimates, and this is controlled as a part of the integral I3 in
equality (4.2) in [11], page 167. This proves the equivalence a.⇔c.

We take more time to show the equivalence a.⇔b., Kato’s criterion. In
[7], Kato constructed a divergence-free corrector Ṽ κε, acting at a range O(ε)
of the boundary and such that v|y=0 = Ṽ κε|y=0, and used ϕ = v − Ṽ κε as
a test function in (16) to get the desired result. We re-run this procedure,
which finally leads to the identity

〈uε(t), v(t)− Ṽ κε(t)〉L2(Ω)

= 〈uε
0, v0〉L2(Ω) − 〈uε

0, Ṽ
κε(0)〉L2(Ω) −

∫ t

0

〈uε, ∂tṼ
κε〉L2(Ω)

+

∫ t

0

〈uε − v, (uε − v) · ∇v〉L2(Ω) − ε

∫ t

0

〈ωε, rot v〉L2(Ω)

+ ε

∫ t

0

〈ωε, rot Ṽ κε〉L2(Ω) −
∫ t

0

〈uε ⊗ uε,∇Ṽ κε〉L2(Ω).

(18)

In deriving this identity, one has to use the Euler equations which v satisfies
and also 〈v, (uε − v) · ∇v〉L2(Ω) = 0. On the other hand, we have from (17),

‖uε(t)− v(t)‖2L2(Ω) = ‖uε(t)‖2L2(Ω) + ‖v(t)‖2L2(Ω) − 2〈uε(t), v(t)− Ṽ κε〉L2(Ω)

− 2〈uε(t), Ṽ κε(t)〉L2(Ω)

= −2εaε
∫ t

0

‖uε
1‖2L2(∂Ω) − 2ε

∫ t

0

‖ωε‖2L2(Ω)

+ ‖uε
0‖2L2(Ω) + ‖v0‖2L2(Ω − 2〈uε(t), Ṽ κε(t)〉L2(Ω)

− 2〈uε(t), v(t)− Ṽ κε(t)〉L2(Ω)

(19)

Combining (18) with (19), we arrive at the identity which was essntially used
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reached by Kato in [7] for the no-slip case:

‖uε(t)− v(t)‖2L2(Ω)

= −2εaε
∫ t

0

‖uε
1‖2L2(∂Ω) − 2ε

∫ t

0

‖ωε‖2L2(Ω) + ‖uε
0 − v0‖2L2(Ω)

− 2〈uε(t), Ṽ κε(t)〉L2(Ω) + 2〈uε
0, Ṽ

κε(0)〉L2(Ω)

+ 2

∫ t

0

〈uε, ∂tṼ
κε〉L2(Ω) + 2ε

∫ t

0

〈ωε, rot v〉L2(Ω)

− 2

∫ t

0

〈uε − v, (uε − v) · ∇v〉L2(Ω)

+ 2

∫ t

0

〈uε ⊗ uε,∇Ṽ κε〉L2(Ω) − 2ε

∫ t

0

〈ωε, rot Ṽ κε〉L2(Ω).

(20)

Let us run down the terms in this equality. The first line is comprised of
negative terms and the initial difference, which is assumed to converge to
zero. The terms on the second and third lines of (20) tend to zero as ε → 0

with the order O((κε)
1
2 ), since the boundary corrector has the thickness

O(κε). Meanwhile, on the fourth line, we have

−2

∫ t

0

〈uε − v, (uε − v) · ∇v〉L2(Ω) ≤ 2

∫ t

0

‖∇v‖L∞‖uε − v‖2L2(Ω),

which will be harmless when we apply the Grönwall inequality later. For the
Navier-slip condition case, a little adaptation is necessary to control the fifth
line,

I :=

∫ t

0

〈uε ⊗ uε,∇Ṽ κε〉L2(Ω).

In the Dirichlet case, the nonlinear integral I is bounded by using the Hardy
inequality, since uε vanishes on the boundary. In our case with the Navier
condition, however, uε

1 does not vanish, so we need to explain this part.

Let us first manage the terms in I which involve uε
2, which does vanish

on the boundary. Recall that Ṽ κε has the form Ṽ (t, x, y
κε
) and is supported

in Γκε = {(x, y) ∈ Ω | 0 < y < κε}, so we write
∣

∣

∣

∣

∫

Ω

(uε
2)

2∂yṼ
κε
2

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫

Γκε

(

uε
2

y

)2

y2∂yṼ
κε
2

∣

∣

∣

∣

∣

≤ C
∥

∥

∥
y2∂yṼ

κε
2

∥

∥

∥

L∞

‖∇uε
2‖2L2(Ω) ,

in which we have used the Hardy inequality. Note that ∂yṼ
κε is of order

(κε)−1, so y2∂yṼ
κε
2 is bounded by Cκε in L∞(Γκε), and we conclude that

∣

∣

∣

∣

∫

Ω

(uε
2)

2∂yṼ
κε
2

∣

∣

∣

∣

≤ Cκε ‖∇uε‖2L2(Ω) . (21)
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Here C is a numerical constant. This is what happens on all terms in [7],
and the same trick works for

∫

Ω
uε
1u

ε
2∂xṼ

κε
2 ; this term is in fact better, since

the x-derivatives do not make us lose uniformity in ε. Using the fact that
‖uε‖L2 is bounded courtesy of the energy estimate (17), we have

∣

∣

∣

∣

∫

Ω

uε
1u

ε
2∂xṼ

κε
2

∣

∣

∣

∣

≤ Cκε‖uε‖L2(Ω) ‖∇uε‖L2(Ω) .

The term
∫

Ω
uε
1u

ε
2∂yṼ

κε
1 is trickier, since the y-derivative is bad for unifor-

mity in ε, and we only have one occurrence of uε
2 to compensate for it. Let

us integrate this by parts: using the divergence-free nature of uε, we quickly
get

∫

Ω

uε
1u

ε
2∂yṼ

κε
1 =

∫

Ω

uε
1∂xu

ε
1Ṽ

κε
1 −

∫

Ω

∂yu
ε
1u

ε
2Ṽ

κε
1

= −1

2

∫

Ω

(uε
1)

2∂xṼ
κε
1 −

∫

Ω

∂yu
ε
1u

ε
2Ṽ

κε
1 .

The second term can be dealt with using the Hardy inequality as above, and
its estimate is identical to (21). The first term, meanwhile, is the same as
the remaining one in I.

To handle
∫

Ω
(uε

1)
2∂xṼ

κε
1 , in which no term vanishes on the boundary, we

proceed using the Sobolev embedding and interpolation. Indeed, we have

∣

∣

∣

∣

∫

Ω

(uε
1)

2∂xṼ
κε
1

∣

∣

∣

∣

≤ 2
∥

∥(uε
1 − v1)

2
∥

∥

L2(Ω)

∥

∥

∥
∂xṼ

κε
1

∥

∥

∥

L2(Ω)
+ 2‖v21‖L2(Ω)‖∂xṼ κε

1 ‖L2(Ω)

≤ C(κε)
1
2‖uε

1 − v1‖2L4(Ω) + Cκε‖v‖2L∞(Ω). (22)

Here we have used that
∥

∥

∥
Ṽ κε
1

∥

∥

∥

L2(Ω)
≤ C(κε)

1
2 , while

‖uε
1 − v1‖2L4(Ω) ≤ C ‖uε

1 − v1‖L2(Ω) ‖uε
1 − v1‖H1(Ω) ,

and so, in total, we conclude that

|I| ≤ C

(

κε ‖∇uε‖2L2(Ω) + κε‖uε‖L2(Ω) ‖∇uε‖L2(Ω)

+ ‖uε − v‖2L2(Ω) + (κε)
1
2‖∇v‖L2(Ω)‖uε − v‖L2(Ω) + κε‖v‖2L∞(Ω)

)

.

(23)

Here C is a numerical constant. Then, by virtue of the identity ‖ωε‖L2(Ω) =
‖∇uε‖L2(Ω), the term Cκε‖∇uε‖2L2(Ω) in the right-hand side of (23) can be

12



absorbed by the dissipation in the first line of (20) if κ > 0 is suifficiently
small.

We come to the final linear term −2ε
∫ t

0
〈ωε, rot Ṽ κε〉L2(Ω) in the fifth line

of (20). Using ωε = ∂xu
ε
2 − ∂yu

ε
1, we have from the integration by parts,

− 2ε

∫ t

0

〈ωε, rot Ṽ κε〉L2(Ω)

= 2ε

∫ t

0

〈∂yuε
1, rot Ṽ

κε〉L2(Ω) + 2ε

∫ t

0

〈u
ε
2

y
, y∂xrot Ṽ

κε〉L2(Ω)

≤ 2ε

∫ t

0

〈∂yuε
1, rot Ṽ

κε〉L2(Ω) + Cκ
1
2ε

3
2

∫ t

0

‖∇uε
2‖L2(Ω).

Collecting all these estimates, we get from (20) that for 0 < t ≤ T ,

‖uε(t)− v(t)‖2L2(Ω)

≤ −2εaε
∫ t

0

‖uε
1‖2L2(∂Ω) − ε

∫ t

0

‖ωε‖2L2(Ω) + ‖uε
0 − v0‖2L2(Ω)

+ C(κε)
1
2 +

∫ t

0

(

C0 + 2‖∇v‖L∞(Ω)

)

‖uε − v‖2L2(Ω)

+ 2ε

∫ t

0

〈∂yuε
1, rot Ṽ

κε〉L2(Ω).

(24)

Here C depends only on T , ‖uε
0‖L2(Ω), and ‖v0‖Hs(Ω), while C0 is a numerical

constant. Inequality (24) is valid also for the no-slip (Dirichlet) case; indeed,
we can drop the negative term−2εaε

∫ t

0
‖uε

1‖2L2(∂Ω). By applying the Grönwall

inequality and by taking the limit ε → 0, we arrive at (11). This is enough
to extend Kato’s criterion to the Navier boundary condition case; the rest
is identical to Kato’s proof in [7]. We have achieved this result by re-using
the Dirichlet corrector because, since the test function ϕ = v− Ṽ κε vanishes
at y = 0, the boundary integral in (16) does not contribute. This does not
feel quite satisfactory. One would have hoped to get criteria by constructing
more appropriate correctors, such as one so that the total satisfies the Navier
boundary condition, but, as we have just mentioned, a boundary integral
appears and it is not clear that we can control it. In fact, this boundary
term is similar to the one in the Matsui criterion, which, as we have proved,
is equivalent to Kato’s. We observe that when considering a corrector which
does not vanish on the boundary, convergence of Navier-Stokes solutions to
Euler solutions happens if and only if both b. and c. are satisfied. It appears
difficult to get refinements of criteria for L2 convergence in the inviscid limit
problem according to the boundary condition.
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