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Résumé

The covariant derivative of the 4-components electromagnetic potential in a flat Minkowski space-
time is split into its antisymmetric and symmetric parts. While the former is well known to describe
the electromagnetic field, we show that the latter describes the associated particles. When symmetry
principles are applied to the invariants in operations of the Poincaré group, one finds equations which
describe the structure of the particles. Both parts of the tensor unify the concept of matter-wave duality.
Charge and mass are shown to be associated to the potential.

1 Introduction.

When Born and Infeld published their work[1] on the foundations of non linear electromagnetism in
the year 1934, their aim was to describe the electron and more generally the physical world from a purely
electromagnetic theory. At that time, quantum mechanics was already developed but these authors wrote
in the introduction of their article that it was in opposition to the ideas sustaining their work. The study
which is developed here was motivated by the fact that both theories are not opposed, in fact they are com-
plementary, simply because quantum mechanics is linear in the Hilbert space. Nonlinear electromagnetism
has never been abandoned since[2] and led to interesting applications in cosmology [3]. The following work
presents a broader view of the subject : instead of starting from the electromagnetic field, the corresponding
potential in a flat Minkowski space is considered. The fundamental object is the covariant derivative of this
potential. The antisymmetric part is the well known electromagnetic tensor. The symmetric part can be
diagonalized and when constraints resulting from symmetry operations are applied to its invariants, one
finds an equation for the potentials. Its solutions reveal a concentration of energy around the origin which
corresponds to the structure of particles. An essential result is the explanation of the wave-matter duality
which naturally arises from the intermingled parts of the tensor. We describe these calculations below and
give examples of solutions and applications.

2 Frame of the theory.

The theory is based on few ingredients :
1- A point M is defined in the flat Minkowski spacetime 1 by its 4 coordinates xi where x0 = ct and

x1,2,3 = x, y, z in the cartesian frame with an origin O. The associated vector
−−→
OM = xi e⃗i is defined with

respect to the orthonormalized basis e⃗i . We choose the metric η = (+,−,−,−), the common dimension is
length.
2- To each point is associated an electromagnetic potential Ai where A0 = ϕ/c, is the usual scalar potential
and A1,2,3 = Ax, Ay, Az are the components of the vector potential.
3- The fundamental tensor is taken to be the covariant derivative 2 (the gradient tensor) of Ãi :

aij =
∂Ãi

∂xj
− Γm

ij Ãm . (1)

It is simpler to use the cartesian basis first where Christoffel’s symbols Γm
ij cancel. When this tensor is split

into its symmetric and antisymmetric parts, one is led to study the role of both. The latter part is the usual

1. Einstein summation convention is used. Upper and lower indices respectively refer to contravariant and covariant com-
ponents.

2. aij is the covariant form
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field tensor on which classical electromagnetism is based. We name the former the particle tensor and the
following development is essentially devoted to the study of some of its properties.
4- We divide the potential into two parts : the first describes an isolated particle while the second describes
the space in which it is embedded. This second part originates from the fundamental noise : this field has
random properties, it is also isotropic and it can be represented by a diagonal tensor the modulus of which
can be used as a reference for the amplitude of Ai. The following study will essentially be concerned by the
isolated particle.
5- The next ingredient is the Poincaré group of coordinates transformations. We will associate the transfor-
mations of the Poincaré group to the idealized isolated single entity (field/particle), or cluster of entities,
which can be characterized by similar properties, such as a given velocity, a symmetry of rotation or trans-
lation. The field tensor and the particle tensor do not mix in a coordinate change and their invariants are
the fundamental quantities which will provide the description of the system.
We describe below how a fundamental equation can be deduced from these ingredients. The solutions are the
components of the 4-potential. These components are mixed together in a non-linear way to form invariants
of the system. One of this invariant is related to the density of energy. We give illustrations for a series of
spherically symmetric solutions. An application of the theory to make the link with Maxwell’s equations is
finally given with use of the principle of least action. Here, the elementary electric charge is shown to be a
characteristic of only a single type of solution.

3 The fundamental tensor.

3.1 Notation.

The electromagnetic potential (4-vector)Ai is defined by its contravariant components in the direct space.
We will write the covector Ã in the reciprocal space. Its components are : Ã0,1,2,3 = ϕ/c,−Ãx,−Ãy,−Ãz .

The dimension of Ã and A is that of an ordinary electric potential (MLT−1Q−1). The scalar product is a
Lorentz invariant :

|A|2 = AiÃi = ηkm ÃmÃk = ηkm AmAk = (ϕ/c)2 − Ã2
x − Ã2

y − Ã2
z = (ϕ/c)2 −Ax2 −Ay2 −Az2 . (2)

The components of the potential vector [Ai] (tensor type (0,1)) and the covector [Ãi] (type (1,0)) have
different signs.
Our fundamental object is the covariant derivative written in a cartesian frame :

[aij ] = D[Ã] =


ϕ,t ϕ,x ϕ,y ϕ,z

−Ãx,t −Ãx,x −Ãx,y −Ãx,z

−Ãy,t −Ãy,x −Ãy,y −Ãy,z
−Ãz,t −Ãz,x −Ãz,y −Ãz,z

 . (3)

This is the standard matrix representation of D[Ã] where the first index in aij = ∂Ãi/∂x
j is the line index

and the second the column index.
We have used the compressed notation for the partial derivatives in the cartesian frame :

ϕ,t ≡ ∂(ϕ/c)

c∂t
, ϕ,x ≡ ∂ϕ/c

∂x
, ϕ,y ≡ ∂ϕ/c

∂y
, ϕ,z ≡ ∂ϕ/c

∂z

Ãx,t ≡ ∂Ãx

c∂t
, Ãx,x ≡ ∂Ãx

∂x
, Ãx,y ≡ ∂Ãx

∂y
, Ãx,z ≡ ∂Ãx

∂z
(4)

and the same for the derivatives of Ãy and Ãz.

3.2 The field and the particle tensors.

[aij ] can be split into its symmetric and antisymmetric parts 3 :

[aij ] = [s(ij)] + [f[ij]] (5)

3. This splitting makes sense for covariant or contravariant tensors because their symmetry remains invariant in a coordinate
change. This property does not apply to mixed tensors.
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with :

sij =
1

2
(aij + aji) and : f(ij) =

1

2
(aij − aji) (6)

The antisymmetric part is explicitly written :

[fij ] = 0.5


0 ϕ,x + Ãx,t ϕ,y + Ãy,t ϕ,z + Ãz,t

−Ãx,t − ϕ,x 0 −Ãx,y + Ãy,x −Ãx,z + Ãz,x
−Ãy,t − ϕ,y −Ãy,x + Ãx,y 0 −Ãy,z + Ãz,y
−Ãz,t − ϕ,z −Ãz,x + Ãz,x −Ãz,y + Ãy,z 0

 . (7)

apart the factor 0.5, [fij ] is the transpose of the standard electromagnetic field tensor :

[Fij ] =


0 Ex/c Ey/c Ez/c

−Ex/c 0 −Bz By

−Ey/c Bz 0 −Bx

−Ez/c −By Bx 0

 . (8)

The electric (Ex, Ey, Ez) and magnetic (Bx, By, Bz) fields are defined from the derivatives of the 4-potential
covector components :

Ex/c = −∂Ãx

c∂t
− ∂ϕ/c

∂x
, Ey/c = −∂Ãy

c∂t
− ∂ϕ/c

∂y
, Ez/c = −∂Ãz

c∂t
− ∂ϕ/c

∂z
. (9)

and :

Bx =
∂Ãz

∂y
− ∂Ãy

∂z
, By =

∂Ãx

∂z
− ∂Ãz

∂x
, Bz =

∂Ãy

∂x
− ∂Ãx

∂y
. (10)

The identity : ∂flm/∂xk + ∂fmk/∂x
l + ∂fkl/∂x

m = 0 , when developed, leads to the first set of Maxwell
equations.

The symmetric part of [aij ] is :

[sij ] = 0.5


2ϕ,t ϕ,x − Ãx,t ϕ,y − Ãy,t ϕ,z − Ãz,t

−Ãx,t + ϕ,x −2Ãx,x −Ãx,y − Ãy,x −Ãx,z − Ãz,x
−Ãy,t + ϕ,y −Ãy,x − Ãx,y −2Ãy,y −Ãy,z − Ãz,y
−Ãz,t + ϕ,z −Ãz,x − Ãz,x −Ãz,y − Ãy,z 2Ãz,z

 . (11)

We will name [sij ] the ”particle tensor” to balance [fij ] which is the field tensor.

As a conclusion of this introductory section, we note that in traditionnal[6] or modern textbooks[7] the
study of electromagnetism generally begins by a definition of fields. The electromagnetic potential is defined
later. However, in [8], the potentials are first defined and then the field is introduced from the expression of
the force this potential exerts on a charged particle. Both ways are equivalent as long as we are interested in
Fij (or fij) only. Starting the theory from [aij ] is clearly more general and agrees with the Aharanov-Bohm
effect which shows that potentials are more fundamental than fields. The tensor [sij ] is absent from standard
electromagnetism. It is replaced by phenomenological quantities like the electric charge Q. An objective of
our work was to discover if there is a relation between them and the components of [sij ].

3.3 The Lagrangian of Electromagnetism.

Standard electromagnetism is based on the use of the field tensor fij and the principle of least action
applied to the Lagrangian 1/4µ0 f ij fij . It is thus necessary to consider a similar Lagrangian which takes
the particle part into account :

L =
1

4µ0
aij aij , (12)

One sees that the contracted product aij aij can be split into two parts, one of them being the standard
tensor of energy of the electromagnetic field :

aij aij =
(
sij + f ij

)
(sij + fij) = sij sij + f ij fij , (13)
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If we use the general expression (3) for [aij ], the Lagrangian writes 4 :

ȦL =
1

4µ0

(
ϕ2
,t +Ax2

,x +Ay2,y +Az2,z −Ax2
,t −Ay2,t −Az2,t

+Ax2
,y +Ay2,x +Ax2

,z +Az2,x +Ay2,z +Az2,y − ϕ2
,x − ϕ2

,y − ϕ2
,z

)
, (14)

One can thus divide L into two parts :
-the part which characterizes the ”particle” :

Lp =
1

4µ0

(
ϕ2
,t +Ax2

,x +Ay2,y +Az2,z + 0.5(Ax,y +Ay,x) + 0.5(Ax,z +Az,x)
2

+0.5(Ay,z +Az,y)
2 − 0.5(Ax,t − ϕ,x)

2 − 0.5(Ay,t − ϕ,y)
2 − 0.5(Az,t − ϕ,z)

2
)

, (15)

- and the part which characterizes the ”field” :

Lf =
1

2µ0

(
(Ax,y −Ay,x)

2 + (Ax,z −Az,x)
2 + (Ay,z −Az,y)

2

−(Ax,t + ϕ,x)
2 − (Ay,t + ϕ,y)

2 − (Az,t + ϕ,z)
2
)
=

1

2µ0

(
B2 − (E/c)2

)
, (16)

The associated tensor of moments is :

[M ij ] =
∂L
∂aij

= 2


ϕ,t −ϕ,x −ϕ,y −ϕ,z

−Ãx,t Ãx,x Ãx,y Ãx,z

−Ãy,t Ãy,x Ãy,y Ãy,z
−Ãz,t Ãz,x Ãz,y Ãz,z

 . (17)

Application of the operator ∇ to [M ij ]T gives Lagrange’s equations :

∂ϕ,t

c∂t
− ∂Ãx,t

∂x
− ∂Ãy,t

∂y
− ∂Ãz,t

∂z
= 0 . (18)

Permuting the order of integration gives :

∂

c∂t

(
ϕ,t − ∂Ãx,x − ∂Ãy,y − ∂Ãz,z

)
= 0 . (19)

One finds an equation which expresses that the Lorentz gauge is a constant. We will come back this equation
later.
The second equation is :

−∂Ãx,t

c∂t
+

∂Ãx,x

∂x
− ∂Ãy,y

∂y
− ∂Ãz,z

∂z
= 0 . (20)

This is the d’Alembert equation for the component Ãx (see eq.(29)). The last 2 equations give the same
result for the other components.
One sees that this Lagrangian does not give Maxwell’s equations with sources as one could have expected.
We will use another Lagrangian for this purpose. However, this examination of this Lagrangian will be useful
in the following.

4 Diagonalization of the symmetric part.

A symmetric tensor can be diagonalized which means that the 10 components of sij are reduced to 4
in the eigenbasis : these are the components of a 4-pseudo-vector which will characterize the particle. The
diagonalization process generally brings an element Ãi,j into Āi,j −Γm

ij Ām in the new system of coordinates

where only diagonal elements with i = j survive. It can be done in few essential steps 5 :

4. Here the distinction between A and Ã does not matter.
5. Operations of the Poincaré group are : continuous translation in space or time (changing the origin of space or time

does not change the result of an experiment (this is the invariance our everyday life is based on !), continuous rotations of
coordinates in space, Lorentz transformations connecting two uniformly moving frames of coordinates (boosts), parity and
time-reversal transformations.
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1- A Lorentz boost brings the reference frames of the observer and the particle together.
2- A translation of axis brings the origins at the same point.
3- A transformation of axis in the geometrical space brings the eigensystem. If the particle is described by
an ellipsoid, a rotation brings it on its principal axis. The following study will be restricted to this case.
We will now work on the hypothesis that a cartesian frame exists in which the tensor is diagonal. This
hypothesis will allow the description of the particles and the diagonalization process can be reversed to
obtain a rotated, translated or boosted tensor which will represent various physical situations.
The diagonalized [sij ] writes :

[sij ] =


Φ̇,t 0 0 0

0 −Ãx,x 0 0

0 0 −Ãy,y 0

0 0 0 −Ãz,z

 . (21)

the different quantities are written in boldface characters to stress the fact that they belong to the eigen-
system of coordinates. Here, space and time become independent variables.
Non diagonal elements of (11) nullify in this system which leads to the relations :

−Ãx,t + Φ̇,x = 0 , −Ãy,t + Φ̇,y = 0 , −Ãz,t + Φ̇,z = 0

Ãy,x + Ãx,y = 0 , Ãz,x + Ãx,z = 0 , Ãz,y + Ãy,z = 0 . (22)

The first set of equations can be written :

∂
−→
Ã

∂t
=

−−→
gradΦ (23)

An equivalent equation can be written with the components of the vector :

∂
−→
A

∂t
= −

−−→
gradΦ (24)

The electric field is defined from Ã, it becomes in the eigensystem :

E⃗ = −∂
−→
Ã

∂t
−
−−→
gradΦ = −2

∂
−→
Ã

∂t
= −2

−−→
gradΦ (25)

The magnetic field nullifies in this system.

5 The fundamental equation of electromagnetic particles.

We are interested now in the invariants associated to a coordinate transformation. The mixed tensors
associated to aij , sij and fij are obtained with the use of the rising operator ηkm : aij = ηimamj . These
tensors are defined in the direct space (they need only contravariant components of the potential and the
coordinates) and they are characterized by a conservation of their trace and their determinant in a coordinate
change : these are two of the four invariants which are the coefficients of the associated characteristic
polynomial.
One has :

[sij ] =


Φ,t 0 0 0
0 Ax,x 0 0
0 0 Ay,y 0
0 0 0 Az,z

 . (26)

Its invariants I1, I2, I3, I4 are :

I1 = Φ,t + Ȧx,x + Ȧy,y + Ȧz,z

I2 = Φ,t(Ȧx,x + Ȧy,y + Ȧz,z) + Ȧx,x Ȧy,y + Ȧx,x Ȧz,z) + Ȧy,y Ȧz,z)

I3 = Ȧy,y Ȧz,z)(Φ,t + (Ȧx,x) + Φ,t(Ȧx,x(Ȧy,y + Ȧz,z))

I4 = Φ,t Ȧx,x Ȧy,y Ȧz,z (27)
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I1 is the trace T , I4 is the determinant of [sij ].

Let us focus our attention on the trace T = I1. This is the 4-divergence of Ai, it is a scalar density 6.
Expression T = div[A] = Invariant has been obtained in the cartesian frame, but this is a tensor equation
which equally applies to any system of coordinates where Christoffel coefficients generally occur.

When the expression I1 is fully developed, one sees that it is the Lorentz gauge when T = 0. In a
cartesian frame of reference :

T =
∂Ai

∂xi
=

∂ϕ

c2∂t
+

∂Ax

∂x
+

∂Ay

∂y
+

∂Az

∂z
=

∂ϕ

c2∂t
+ divA⃗ , (28)

Anticipating on the following results, we will see that one has effectively I = 0.
The trace of [aij ] being the same as that of [sij ], one concludes that the Lorentz gauge expresses the
invariance of the trace of the covariant derivative of the 4-potential in a Poincaré transforma-
tion.
Another fundamental equation can be derived from T if one applies the d’Alembert operator 2 = ηmn∂n∂m
to [Ai] :

2[Ai] =
∂2ϕ/c

c2∂t2
−△A⃗ = 0 , (29)

△ is the Laplacian in the geometrical space.
If we now use the invariance of T with respect to the origin of coordinates (space and time) together
with eqs.( 23) in the eigenspace, we obtain the fundamental equation which will give the structure of the
electromagnetic particles :

∂T
c∂t

=
∂

c∂t

(
∂Φ/c

c∂t
+ divA⃗

)
= 0 , (30)

The order of derivation can be commuted which gives :

∂2(Φ/c)

c2∂t2
+

∂

∂x

∂Ax

c∂t
+

∂

∂y

∂Ay

c∂t
+

∂

∂z

∂Az

c∂t
= 0 , (31)

and using :

∂
−→
A

∂t
= −

−−→
gradΦ (32)

one gets :
∂2(Φ/c)

c2∂t2
− ∂2(Φ/c)

∂x2
− ∂2(Φ/c)

∂y2
− ∂2(Φ/c)

∂z2
= 0 , (33)

Let us take as an hypothesis that Φ varies sinusoidally in time with an angular frequency [5] ω. Its
amplitude Φ0 obeys an Helmholtz equation :

ω2

c2
Φ0 +∆Φ0 = 0 , (34)

Solutions Φ0
i of (34) are well known and are used in the following section. A general solution will thus

be a linear combination of them. The sign of Φ0
i and its amplitude is undetermined yet. One should keep

in mind that these calculations have been done with the contravariant components of the potential vector
(ϕ/c,Ax, Ay, Az) : An equivalent relation of (23)can be written with the covariant components :

∂
−→
Ã

∂t
=

−−→
gradΦ (35)

where
−→
Ã is the potential covector.

The goal of these calculations was to explore some properties of the symmetric part of the fundamental
tensor. Up to now, we have reached several important consequences :
- A particular basis t,x,y, z exists. This basis can be named the eigenbasis of the particle in which the
particle tensor [rij ] is represented only by 4 quantities along the diagonal which define a 4-pseudo-vector.

- The invariance of the trace of aij leads (without any calculation) to the Lorentz gauge (divergence of this

6. When T will be multiplied by a scalar capacity such as a 4-volume, the product will be a true scalar.
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4-pseudo-vector).
- Application of symmetries leads to a wave-type equation for the scalar potential. Solutions of this equation
will describe the structure of the particles.
- The fundamental tensor in the eigenbasis is the basic tool which will permit to study later the dynamics
of different systems in stationary or moving frames.

6 Electromagnetic particles.

6.1 Expressions of the potentials.

Solutions Φ0
i of eq.(34) , are proportional to the products of spherical Bessel functions jn(x) with spherical

harmonics Y m
ℓ (θ, ϕ), where x = ωr/c , r being the radial coordinate (note the different typography between

this x and the coordinate x). These solutions offer a way to classify electromagnetic particles. We consider
solutions which are invariant in time reversal. The characteristic function of a particle is basically described
by the formulas :

ϕn(x, θ, ϕ) ∝ ± jn(x) Y
m
ℓ (θ, φ) cosωt for n even, (36)

and :
ϕn(x, θ, ϕ) ∝ ± jn(x) Y

m
ℓ (θ, φ) sinωnt for n odd, (37)

The behavior of jn(x) in the vicinity of x = 0 is :

jn(x) −→
x→0

xn

1.3.5..(2n+ 1)
, (38)

The solutions remain finite when x → 0. Only the scalar potential of the fundamental one (n=0) is maximum
at x = 0 where the others vanish (one can say that they are ”hollow”). A general solution can be split into
even or odd parts. Both types remain invariant in the transformation ωn → −ωn.
The asymptotic behavior of even solutions j0(x) , j2(x) , J4(x).... when x is large is ± sin x/x . For odd solu-
tions it is ± cos x/x. However, the sign of successive solutions is alternated which results in the cancellation
of a sum like j2p + j2(p+1) far from the origin.
Now we will focus our attention on solutions with spherical symmetries (ℓ = 0) . These solutions will be
labelled by n.
Let us introduce the proportionality factors An in order to have explicit expressions for a future use. These
factors represent two physical quantities : the absolute value of the potential difference and a fundamental
dimension which is [An] = ML2T−2Q−1 in the standard nomenclature.
Potentials for solution Jn are (contravariant components) :

ϕn

c = ±An

c Jn cosωnt
An = ∓ An

c J ′
n sinωnt

for n even and
ϕn

c = ±An

c Jn sinωnt
An = ± An

c J ′
n cosωnt

for n odd. (39)

An(x, t) is deduced 7 from ϕn(x, t) using eq (23). The potential vector is purely radial for this spherically-
symmetric solution. The first three solutions are :
Fundamental solution J0 :

ϕ0/c = ± A0

c

sin x

x
cosωt

A0(x, t) = ∓A0
1

c

[
cos(x)

x
− sin(x)

x2

]
sinωt ,

Solution J1 :

ϕ1/c = ± A1

c

(
−cos x

x
+

sin x

x2

)
sinωt

A1(x, t) = ±A1
1

c

(
2 cos(x)

x2
+ sin(x)(1/x− 2/x3)

)
cosωt ,

7. The relation : ∂/∂r = kn ∂/∂(knr) = ωn/c ∂/∂x is used.
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Solution J2 :

ϕ2/c = ± A2

c

(
3− x2

x3
sin x− 3 cos x

x2

)
cosωt

A2 = ∓A2

c

[(
4

x2
− 9

x4

)
sin x +

(
9

x3
− 1

x

)
cos x

]
sinωt ,

One should note that the spatial part of the solution is a Bessel function which can be expressed as products
of the oscillating functions sin x and cos x with polynomials P (1/x).This property can be used to show that
each solution is the sum of an incoming and an outcoming wave.

6.2 System invariants.

Once the solutions are obtained in the spherical coordinate system, their study is simpler in this system.
The standard relations between the coordinates x, y, z of a point M in the cartesian system and its spherical
coordinates v = (r, θ, ϕ) in the geometrical space are :

x = r sin θ cosφ , y = r sin θ sinφ , z = r cos θ , (40)

The local spherical coordinates system at M is built from the tangent vectors : ∂
−−→
OM/∂v. In this basis, the

components of a vector V⃗ can be written V 1, V 2, V 3. The spatial metric tensor is :

[gij ] =

 1 0 0
0 r2 0
0 0 r2 sin2 θ

 and [gij ] =

 1 0 0
0 1/r2 0
0 0 1/(r2 sin2 θ)

 (41)

However, it is more comfortable to work in the physical basis where the basis vectors are normalized because
here, the components have the same dimension and the metric tensor contains only 1 in the diagonal.
Relations between the components are :

V r = V 1 , V θ = r V 2 , V ϕ = r sin θ V 3 . (42)

The fundamental tensor is :

[âij ] =
∂Ai

∂uj
+ Γi

jmAm , (43)

where âij is the element i, j of the tensor, Ai = (ϕ/c,Ar, Aθ, Aϕ) , uj = (ct, r, θ, ϕ) and Christoffel’s

coefficient Γi
jm are expressed in this system. In this section we will be interested only in solutions with

spherical symmetry, i.e., solutions characterized by ℓ = 0 where Aθ and Aϕ nullify. The fundamental tensor
writes under its two forms in the normalized physical basis :

[âij ] =


ϕ,t ϕ,r 0 0

−Ãr,t −Ãr,r 0 0

0 0 − Ãr

r 0

0 0 0 − Ãr

r

 and [âij ] =


ϕ,t ϕ,r 0 0
Ar

,t Ar
,r 0 0

0 0 Ar

r 0

0 0 0 Ar

r

 (44)

In this basis the metric tensor is ηij = (1,−1,−1,−1) on the diagonal and all elements âij (and âij) have
the same dimension.
The electromagnetic particles and the associated fields can be described by the invariants of [âij ]. As sym-
metric (particle) and antisymmetric (field) parts of [âij ] do not mix in a coordinate change, they have also
their own invariants.
The splitting of [âij ] into ([ŝij ]) and ([f̂ij ]) gives for the symmetric (particle) part :

[ŝij ] =
1

2


2ϕ,t ϕ,r − Ãr,t 0 0

−Ãr,t + ϕ,r −2Ãr,r 0 0

0 0 −2 Ãr

r 0

0 0 0 −2 Ãr

r

 =


ϕ,t 0 0 0

0 −Ãr,r 0 0

0 0 − Ãr

r 0

0 0 0 − Ãr

r

 (45)
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Eq.(35) (ϕ,r = Ãr,t) can be used to verify that [ŝij ] is diagonal in the spherical system of coordinates. The
associated field tensor is :

[f̂ij ] =
1

2


0 ϕ,r + Ãr,t 0 0

−Ãr,t − ϕ,r 0 0 0
0 0 0 0
0 0 0 0

 =


0 ϕ,r 0 0

−ϕ,r 0 0 0
0 0 0 0
0 0 0 0

 =
1

2


0 −Er,t/c 0 0

Er,t/c 0 0 0
0 0 0 0
0 0 0 0

 (46)

which shows that the field is purely radial electric : as we already know, the magnetic field vanishes in the
eigensystem of the particle.

6.3 Invariants.

We will now express the invariants associated to each solution. Let us write them for the spherically
symmetric solutions Jn . The mixed tensor [âij ] is :

[âij ] =


ϕ,t ϕ,r 0 0
Ar

,t Ar
,r 0 0

0 0 Ar

r 0

0 0 0 Ar

r

 (47)

[âij ] is characterized by 4 invariants which are :

I1 = ϕ,t +Ar
,r + 2

Ar

r
(48)

I2 =
A2

r

r2
+ ϕ,tA

r
,r − ϕ,rA

r
,t + 2

Ar

r
(ϕ,t +Ar

,r)

I3 = 2
Ar

r
(ϕ,rA

r
,t − ϕ,tA

r
,r)−

A2
r

r2
(ϕ,t +Ar

,r)

I4 =
Ar2

r2
(ϕ,tA

r
,r − ϕ,rA

r
,t) (49)

A physical interpretation of these invariants is obtained from their dimension : a term like a2ij/µ0 is a density
of energy. It follows that I2 is proportional to a density of energy and I4 to the square of it.
Splitting [âij ] = [ŝij ] + [f̂ij ] into its symmetric and antisymmetric parts gives the 4 invariants associated to
[ŝij ] :

Is1 = ϕ,t +Ar
,r + 2

Ar

r
(50)

Is2 =
A2

r

r2
+ ϕ,tA

r
,r + 2

Ar

r
(ϕ,t +Ar

,r)

Is3 = 2
Ar

r
(ϕ,tA

r
,r +

A2
r

r2
(ϕ,t +Ar

,r)

Is4 =
Ar2

r2
(ϕ,tA

r
,r) (51)

There is a single field invariant :

If2 =
(
ϕ,r −Ar

,r

)2
= (E/c)

2
(52)

We will now compute these expressions for solutions (39). Explicit formulas for even solutions are :

An

r
= −An ωn

c2
J ′
n

x
sinωnt (53)

ϕ,t = −An ωn

c2
Jn sinωnt (54)

ϕ,r =
An ωn

c2
J ′
n cosωnt (55)

Ar,r = −An ωn

c2
J ′′
n sinωnt (56)

Ar,t = −An ωn

c2
J ′
n cosωnt (57)
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J ′
n is the symbol for the derivative of Jn with respect to x (one has x = knr = ωn/c r) and J ′′

n for the second
derivative.
One verifies that the trace I1 = 0 because J ′′

n + 2J ′
n/x + Jn = 0 is the equation for the spherical Bessel

function when ℓ = 0 (Lorentz gauge).
We will now integrate I2, I3 and I4 over the whole space-time. The spatial volume element is : dv =
r2 dr sin θ dθ dφ and r varies from 0 to infinity, θ from 0 to π and φ from 0 to 2π.
ϕ and Ar being oscillating functions of time, on sees that the integrated value of I3 over time vanishes. The
integral of I2 over space diverges.
Invariant I4 deserves a special attention because its integral converges. Its dimension showed that it is
proportional to the square of a density of energy. One can thus associate a density of energy to it with the
use of an ad hoc constant including µ0 as in the case of the preceding Lagrangian L = 1/4µ0 aij aij and a
reference of density 8 . I4 can be developped :

I4 =
1

r2
(Anωn)

4

c8
J ′2
n sin2 ωnt

(
−Jn J ′′

n sin2 ωnt− J ′2
n cos2 ωnt

)
(58)

The mean value of I4 over a period of time is :

Ī4 = − 1

r2
(Anωn)

4

c8
J ′2
n

∫ 2π/ωn

0

sin2 ωnt
(
−Jn J ′′

n sin2 ωnt− J ′2
n cos2 ωnt

)
=

1

r2
π

4

(Anωn)
4

c8
J ′2
n

(
3Jn J ′′

n + J ′2
n

)
(59)

Ī4 is an invariant of [âij ] and contains a part Īs4 which is an invariant of [ŝij ] and another part Īf4 related
to the field :

Īs4 =
1

r2
π

4

(Anωn)
4

c8
J ′2
n (3Jn J ′′

n) (60)

Īf4 =
1

r2
π

4

(Anωn)
4

c8
J ′4
n (61)

Integration over space gives :

Wn =

∫ ∞

0

r2 dr

∫ π

0

sin θ dθ

∫ 2π

0

dϕ Ī4 (62)

= π2 A4
nω

3
n

c7

∫ ∞

0

dx
(
3Jn J ′2

n J ′′
n + J ′4

n

)
= π2 A4

nω
3
n

c7

∫ ∞

0

dx
∂

∂x
(Jn J ′3

n ) = 0 . (63)

The integral vanishes because Jn and J ′
n vanish for x → ∞ and either Jn or J ′

n nullifies at x = 0.
Wn contains two parts : the first is the integrated Īs4 , the invariant of the symmetric part [ŝij ] :

Wp(n) = 3π2 A4
nω

3
n

c7

∫ ∞

0

dx Jn J ′2
n J ′′

n (64)

This part is thus associated to the energy of the particle.
The other part can be named the ”field part” :

Wf(n) = π2 A4
nω

3
n

c7

∫ ∞

0

dx J ′4
n (65)

One obtains the same formula for odd solutions.
Wn = 0 implies that Wp(n) and Wf(n) are equal with opposite signs.
It is important to note that if a solution Jn is replaced by a linear combination F =

∑
n anJn , the same

formula (62)occurs.

The following curves describe the densities Īs4 and Īf4 vs x for a series of solutions. There is a peculiarity
for n = 1, the term J1 J ′2

1 J ′′
1 /r

2 in I4 (eq.(59))goes to infinity when r → 0 : When x = kr → 0, one has
the limit :

1

r2
J ′4
1 → 1

r2

(
1

81
− 2x2

135
+ ...

)
(66)

8. such as ~ωn/r30 , r
3
0 being a volume of reference.
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While the density of energy diverges near r = 0, its integral Wf(n) remains finite and is concentrated around
the origin.
One observes a concentration of the density of energy Īs4 of the particle around the origin for n = 0 and
n = 1. Other solutions have a hollow character and one notes also their spreading and their decrease when
n increases. However, the horizontal and vertical scales of these curves are not the same, they depend upon
An and ωn and the comparison between them cannot be done at this stage.
Figures 1-12 display these quantities for the solutions J0, J1, J2, J3, J10 and J11. One observes a concentration
of Wp(n) around the origin for J0 and J1, and an hollow character of the other structures. One notes also
their spreading and their decrease when n increases. One notes also some oscillating character with a change
of sign which implies that the energy can become imaginary. For J1, we have illustrated the evolution of
the energy inside a sphere of radius x instead of Īf4 .

Figure 1 – Fundamental solution J0 : Field invariant Īf4
(arbitrary units).

Figure 2 – Fundamental solution J0 : Particle invariant Īs4
(arbitrary units).

Figure 3 – Solution J1 : Evolution of the electric energy
around the origin. (arbitrary units).

Figure 4 – Solution J1 : Particle invariant Īs4 (arbitrary
units).

Invariants depend upon x (or r, the distance to the center). However , Īs4 , when integrated over the
whole space, becomes a number which is a characteristics of the particle. Is

4 is a quantity proportional to
the square of the energy of the particle. In the eigensystem, this energy is purely potential, it follows that
its integral is thus relaed to the particle rest-mass. The following table shows this integral for solutions J0,
J1, J2, J6, J10 and J11 . Ratios Wp(n)/Wp(0) are also given, when amplitudes An and frequencies ωn are
equal (which is certainly not the case for real particles). The decrease of this ratio when n increases is very
fast, showing that particles become lighter and lighter when n increases.

6.4 Gauge Invariants.

The trace (eq.28) :

I =
∂ϕ

c2∂t
+ divA⃗ , (67)
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Figure 5 – Solution J2 : Field invariant Īf4 (arbitrary units).
Figure 6 – Solution J2 : Particle invariant Īs4 (arbitrary
units).

Figure 7 – Solution J3 : Field invariant Īf4 (arbitrary units).
Figure 8 – Solution J3 : Particle invariant Īs4 (arbitrary
units).

is gauge invariant. I does not change when ϕ/c is replaced by ϕ/c− ∂V/c∂t and A⃗ by A⃗+
−−→
gradV provided

the scalar function V obeys Lorentz’s condition :

∂2V
c2∂t2

−△V = 0 . (68)

This is exactly eq.(33) for the scalar potential ϕ. It follows that if (ϕ0/c, A⃗0) is a solution,

ϕ1/c = ϕ0/c− ∂(ϕ0/c)/c∂t , A⃗1 = A⃗0 +
−−→
grad(ϕ0/c) , (69)

is also a solution This is an example of the application of the gauge invariance. A second example is given
by a plane wave :

V = V0 ei(ωt±kr) , (70)

which obeys eq.(68) as well.

7 Far field behavior of the solutions.

The far field is defined from the relation x ≫ 1, or r ≫ 1/k. In this region, the derivatives of (sinx)/x
and (cosx)/x are approximated by cosx/x and − sinx/x respectively. The scalar potential contains the
spherical Bessel functions Jn(x). It follows that even functions behave like sinx/x, with a plus or minus
sign following the parity of n : J2n → (−1)n sinx/x. A sum of two successive solutions nullifies in far field
if they have the same amplitude.

The longitudinal part of the potential vector contains the functions ∂(jn(x))/∂x and thus A
(n)
r behaves

like cosx/x with a + or - sign.
The transversal component Aθ does not contain any terms in 1/x = 1/kr, only higher order terms. It follows
that the potential vector becomes longitudinal 9 far from the particle.

9. One should say, ”almost longitudinal”, it remains terms in 1/(kr)2 and higher powers
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Figure 9 – Solution J4 : Field invariant Īf4 (arbitrary units).

Figure 10 – Solution J4 : Particle invariant Īs4 (arbitrary
units).

Figure 11 – Solution J11 : Field invariant Īf4 (arbitrary
units).

Figure 12 – Solution J11 : Particle invariant Īs4 (arbitrary
units).

The far field even solutions are :

Φ(J2p(x))

c
∝ (−1)p

c

ω

sinx

x
Y m
2p (θ, ϕ) e

imϕ cos(ωt)

A(J2p(x)) ∝ −(−1)p
c

ω

cosx

x
Y m
2p (θ, ϕ) e

imϕ sin(ωT ) , (71)

The electromagnetic field can thus be expressed in the long range, far from the particle. The electric field
is radial, it writes :

Er = −2
∂Φ

∂r
∝ −2k

∂jn(kr)

∂(kr)
Y m
n (θ, ϕ) cos(ωT ) , (72)

with ∂jn(kr)/∂kr = ± cosx/x or ± sinx/x following the solution Jn. However, as it will be seen in the
next section, Er is not the ”static” field of standard electrostatics.

The magnetic field is expressed by B⃗ =
−→
rot ⃗̃A and vanishes in the eigensystem of coordinates.

The far-field tensor for a + sign even solution is approximated by :

[âij ] ≈
An ωn

c2


− sin x

x sinωnt
cos x
x cosωnt 0 0

− cos x
x cosωnt

sin x
x sinωnt 0 0

0 0 cos x
x sinωnt 0

0 0 0 cos x
x sinωnt

 (73)

This tensor is very simple and can be used to study the interaction of two particles separated by a large
distance x where little pieces of spherical waves are plane waves. For both even or odd solutions, the field
is a combination of a progressive outcoming and incoming spherical wave because :

sinx/x cosωt =
1

2x
(sin(ωt+ x)− sin(ωt− x)) for even solutions, (74)
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Table 1 – Integrated Invariant Is
4 .

Solution J0 J1 J2 J6 J10 J11
Wp(n) 0.5905957 0.15212 0.0231833 0.00157 0.000396 0.0002985
ratio 1 3.88 25.47 577 1491 1978

and :

cosx/x sinωt =
1

2x
(sin(ωt+ x) + sin(ωt− x)) for odd solutions, (75)

8 Application of the least action principle.

The second set of Maxwell equations relates the field to its sources. The aim of this section is to show
that while the field is described by its tensor (antisymmetric part of [aij ]), the source terms originate from
its coupling with the particle part (the symmetric part of [aij ]). The relations between these components
are obtained by an application of the principle of least action. These relations are Maxwell equations, they
are obtained from Lagrange equations.

8.1 Electrostatics.

Standard theory of electromagnetism begins by a study of the laws of electrostatics where fields and
potentials are independent of time. This is in contrast with the above expressions where they depend upon
time and space through the sine or cosine rapidly varying functions. We have noted before that the typical
frequency of an electromagnetic particle is about 1020 Hz, the order of magnitude of a typical wavelength
being a picometer. It is clear that an ordinary experiment has no access to these quantities. We thus define
the electrostatic potential to be the root mean square of ϕ/c. It can be expressed in terms of solutions (39).
For example :

ϕn

c
=

An

c
Jn cosωnt =

An

c
(P (1/x) sin x +Q(1/x) cos x) cosωnt , (76)

where P (1/x and Q(1/x are polynomials of 1/x which reduce to 1/x in the far field. It follows that the
ordinary electrostatic potential V is :

V = RMS (ϕ) = An
1

x
, (77)

and the electrostatic field :

Eel. = −∂ϕ

∂r
= − ω

c
An

1

x2
, (78)

This formula expresses the connection between the semi-phenomenological electrostatic field and the poten-
tials. The fields Eel. and Er = −∂Ãr/∂t− ∂ϕ/∂r are both radial.

8.2 Lagrangian.

The principle of least action will be used now in order to recover Maxwell equations. The elementary
action is Ldv where L is the lagrangian density and dv the elementary volume. One has dv =

√
ηdτ where√

η is the square root of the absolute value of the determinant of the metric tensor.
√
η is a scalar density,

dτ = dx0dx1dx2dx3 is a scalar capacity. The product of both gives a true scalar dv, invariant in a coordinate
transformation. As the action is invariant, L has also to be an invariant. A first try, as we have seen before
in section 3.3 is aij aij/(4µ0). It corresponds to the choice done in standard electromagnetism where it
leads to the second set of Maxwell equations if source terms, the phenomenological charges and currents,
are included. Here we would like to explore another expression for L which does not need such terms.
The simplest choice for L is the determinant of the tensor of the particle embedded in its surrounding noise :

L =
1

µ0

√
|aij + a0ηij | , (79)

where aij = ηikakj is the basic mixed tensor and a0 a constant having the dimension of a potential over
a length. The factor 1/µ0 and the square root are necessary for dimension constraints. The first reason
which led us to add this diagonal supplementary term is the expression used by Born and Infeld[10] who
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introduced the metric to ”represent the space” in their fundamental tensor. Considering only the far field
of a single particle at a given point (far from the center of the particle) cannot correspond to a real,
physical situation where this field has an amplitude much smaller than the surrounding noise created by
the multitude of other particles of the universe. One difference between this noisy floor (or ceiling !) and
the particle field is the incoherence of the former and the coherence of the latter. The classical description
of noise belongs to stochastic electromagnetism where it is considered to be a superposition of random
fields. This superposition is homogeneous, isotropic and stationary (independant of coordinates ct, x, y, z)
with a random phase. Far from a particle, the modulus of the scalar and vectorial potentials are equal
(|An/(cx)|). Adding all these characteristics together, one arrives at the representation of the noise by
a0η

i
j . Consequences of the interaction of noise and particles will not be analyzed here, let us only say that

bare particles and particles dressed by noise may have different properties in the same way dressed or bare
atoms have (Lamb shift).
We will thus use the determinant :

D =

∣∣∣∣∣∣∣∣
a0 + ϕ,t ϕ ,x ϕ,y ϕ,z

Ax
,t a0 +Ax

,x Ax
,y Ax

,z

Ay
,t Ay

,x a0 +Ay
,y Ay

,z

Az
,t Az

,x Az
,y a0 +Az

,z

∣∣∣∣∣∣∣∣ . (80)

The expression for the developed determinant contains terms which are products containing 0, 1, 2, 3 or
4 derivatives of the potential of the particle. It follows that it is very different in the vicinity of the origin
(the center of the particle) where amplitudes of the potentials are huge with respect to a0 and far from it
where they are small and where terms of order 3 and 4 can be neglected as compared to the others. We will
consider first the far field case where equations are linear.

8.3 Linear case.

In this case, products containing 3 or 4 potential derivatives are neglected in the expression of D which
reduces to :

D ≈ a40+a30
(
ϕt +Ax

,x +Ay
,y +Az

,z

)
+a20

{
−Ax

,yA
y
,x −Ax

,zA
z
,x −Ay

,zA
z
,y +Ax

,xA
z
,z +Ax

,xA
y
,y +Ay

,yA
z
,z

+Ax
,xϕt +Ay

,yϕt +Az
,zϕt −Ax

,tϕx −Ay
,tϕy −Az

,tϕz

}
. (81)

One can see now that the introduction of the surrounding noise in D is necessary as it allows to classify
the terms following their magnitude, which is impossible otherwise.

Lagrange equations can be written now, taking into account that L does not depend explicitly of Aj

(only its derivatives) :
∂

∂xj

(
∂L

∂(∂Ai/∂xj)

)
= 0 , (82)

L does not depend explicitely on xj which gives :

∂

∂xj

(
∂D

∂(∂Ai/∂xj)

)
= 0 , (83)

This expression introduces the moments M j
i :

M j
i =

∂L
∂Ai

j

, (84)

The tensor [M j
i ] is obtained at lowest orders :

[M j
i ] =
a30 + a20(A

x
,x +Ay

,y +Az
,z) −a20A

x
,t −a20A

y
,t −a20A

z
,t

−a20ϕ,x a30 + a20(ϕ,t +Ay
,y +Az

,z) −a20A
y
,x −a20A

z
,x

−a20ϕ,y −a20A
x
,y a30 + a20(ϕ,t +Ax

,x +Az
,z) −a20A

z
,y

−a20ϕ,z −a20A
x
,z −a20A

y
,z a30 + a20(ϕ,t +Ay

,y +Ax
,x)


. (85)
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The set of Maxwell equations is obtained from the ”product”∇jM j
i = ∇jMT i

j where :

∇j = (∂/c∂t, ∂/∂x, ∂/∂y, ∂/∂z)).
For each value of i, we have to take the divergence of a 4-vector. Taking into account that a0 is a constant
whose derivatives vanish, these equations are :
- For i = 1 :

∂

c∂t

(
Ax

,x +Ay
,y +Az

,z

)
− ∂ϕ,x

∂x
− ∂ϕ,y

∂y
− ∂ϕ,z

∂z
= 0 (86)

which can be written :

∂

∂x

(
∂Ax

c∂t
− ∂ϕ/c

∂x

)
+

∂

∂y

(
∂Ay

c∂t
− ∂ϕ/c

∂y

)
+

∂

∂z

(
∂Az

c∂t
− ∂ϕ/c

∂z

)
= 0 (87)

This equation can be rewritten with the components of the covector in order to introduce the components
of the electric field :

0 =
∂

∂x

(
−∂Ãx

c∂t
− ∂ϕ/c

∂x

)
+

∂

∂y

(
−∂Ãy

c∂t
− ∂ϕ/c

∂y

)
+

∂

∂z

(
−∂Ãz

c∂t
− ∂ϕ/c

∂z

)

=
1

c
divE⃗

This result is the first Maxwell equation without sources.

- For i = 2 one obtains :

− ∂

c∂t
Ax

,t +
∂

∂x
(Ay

,y +Az
,z + ϕ,t)−

∂Ax
,y

∂y
−

∂Ax
,z

∂z
= 0 (88)

After rearranging terms and introducing covectors, one gets :

0 =
∂

c∂t

(
∂ϕ/c

∂x
− ∂Ax

c∂t

)
+

∂

∂y

(
∂Ay

∂x
− ∂Ax

∂y

)
+

∂

∂z

(
∂Az

∂x
− ∂Ax

∂z

)
=

∂

c∂t

(
∂ϕ/c

∂x
+

∂Ãx

c∂t

)
− ∂

∂y

[−→
rotÃ

]
z
+

∂

∂z

[−→
rotÃ

]
y

=
∂

c∂t
(Ex/c) +

∂By

∂z
− ∂Bz

∂y
(89)

This result, combined with those obtained with i = 3 and 4, leads to the usual Maxwell equation :

rotB⃗ =
1

c2
∂Ex

∂t
(90)

We arrive at the conclusion that the linear form of Maxwell equations results from the truncation of the
Lagrangian. Keeping the non-linear terms leads to supplementary terms, i.e., the source terms. This is what
we compute in the next section.

8.4 Non-linear terms.

This section is devoted to the calculation of the charge associated to an electromagnetic particle. The idea
is that the non-linear part of the Lagrangian, which was neglected in the preceding section, is responsible
for a source term in equation (86) or in Gauss’s law divE = ρ/ϵ0. The charge should thus be computed
from an integration over space-time of this equation. As this integration is more easily done in the spherical
system of coordinates, it is this system which will be used now.
The non-linear determinant which appears in the Lagrangian is expressed in the spherically symmetric case
in the noisy environment :

D =

∣∣∣∣∣∣∣∣
a0 + ϕ,t ϕ,r 0 0
Ar

,t a0 +Ar
,r 0 0

0 0 a0 +
Ar

r 0

0 0 0 a0 +
Ar

r

∣∣∣∣∣∣∣∣ =
(
a0 +

Ar

r

)2 [
(a0 + ϕ,t)(a0 +Ar

,r)− ϕ,rA
r
,t

]
(91)
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One is thus led to split D into two parts D = D1 +D2 :

D1 = a40 + a30

(
2
Ar

r
+ ϕ,t +Ar

,r

)
+ a20

(
Ar2

r2
+ ϕ,tA

r
,r − ϕ,rA

r
,t + 2

Ar

r
(ϕ,t +Ar

,r)

)
(92)

D1 leads to linear Maxwell equations in the far field region as in the preceding section. The second part is
the nonlinear part :

D2 = a0

(
2
Ar

r
(ϕ,tA

r
,r − ϕ,rA

r
,t) +

Ar2

r2
(ϕ,t +Ar

,r)

)
+

Ar2

r2
(ϕ,tA

r
,r − ϕ,rA

r
,t) (93)

We are interested in rewriting the first Maxwell equation. We thus need the moments :

p11 =
∂D
∂ϕ,t

= a20(A
r
,r + 2Ar/r) +

[
a0

(
2
Ar

r
Ar

,r +
Ar2

r2

)
+

Ar2

r2
Ar

,r

]
+ a30 (94)

p21 =
∂D
∂Ar

,t

= −a20 ϕ,r +

[
−a02

Ar

r
ϕ,r −

Ar2

r2
ϕ,r

]
(95)

The nonlinear parts are put between braces. Now we use the expression of the divergence of a vector
−→
U in

the spherical coordinates of the geometrical space :

div
−→
U =

1

r2
∂(r2Ur)

∂r
+

1

r

∂(Uθ)

∂θ
+

1

r sin θ

∂(Uϕ)

∂ϕ
+

cos θ

r sin θ
Uθ , (96)

which shows that the operators we need in ∇j are : ∇j = ∂/c∂t , 1/r2 ∂(r2Ur)/∂r.
Maxwell’s equation is :

a20
∂

c∂t

(
Ar

,r + 2Ar/r
)
− a20

r2
∂

∂r
(r2ϕ,r) =

− ∂

c∂t

[
a0

(
2
Ar

r
Ar

,r +
Ar2

r2

)
+

Ar2

r2
Ar

,r

]
+

1

r2
∂

∂r

(
2r a0 Arϕ,r +Ar2 ϕ,r

)
(97)

The l.h.s. is clearly a20divE⃗/c expressed in the spherical system. Now it is time to compare this expression

with the standard Maxwell’s equation which links divE⃗ with the density of charges ρ :

divE⃗ = − c

a20

∂

c∂t

[
a0

(
2
Ar

r
Ar

,r +
Ar2

r2

)
+

Ar2

r2
Ar

,r

]
+

c

a20

1

r2
∂

∂r

(
2r a0 Arϕ,r +Ar2 ϕ,r

)
=

ρ

ϵ0
(98)

One thus obtain a relation between the phenomenological quantity ρ and the potential. One sees that it can
be used to obtain the elementary charge Q.

8.5 The elementary electric charge.

Equation (98), is a function of space with a sinusoidal time dependance. We will write ρ = |ρ| sinωt and
compute the elementary charge with an integration over space.
For this purpose, let us use the preceding odd solutions (39) :

ϕn

c
=

An

c
Jn(x) sinωnt

An =
An

c
J ′
n(x) cosωnt

in (98). Details of calculations follow :

a0

(
2
Ar

r
Ar

,r +
Ar2

r2

)
= a0 cos

2 ωnt
(Anωn)

2

c4

(
2
J ′
n

x
J ′′
n +

J ′2
n

x2

)
Ar2

r2
Ar

,r =
(Anωn)

3

c6
J ′2

n

x2
J ′′
n cos3 ωnt (99)
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and :

− c
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∂

c∂t
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(
2
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r
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r2

)
+

Ar2

r2
Ar

,r

]
=

− c

a20

{
a0

2ωn

c
sinωnt cosωnt
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2

c4

(
2
J ′
n

x
J ′′
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3

c6
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n

x2
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n

3ωn

c
cos2 ωnt sinωnt

}
(100)

The second part of the equation gives :

c

a20

1

r2
∂
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(
2r a0 Arϕ,r +Ar2 ϕ,r

)
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c

a20
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J ′3
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)
(101)

The mean value over a period of time of the modulus of ρ/ϵ0 = |ρ|/ϵ0 sinωnt is :

|ρ|/ϵ0 = − c

a20

{
−1

2

(Anωn)
3

c6
J ′2

n

x2
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(
1

2
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nωn

c4
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n

)
(102)

This charge density can be integrated over space to give the total charge :

|Q|/ϵ0 =

∫ ∞

0

r2dr

∫ π

0

sin θdθ

∫ 2π

0

dφ |ρ|/ϵ0 = 4π

∫ ∞

0

r2dr |ρ|/ϵ0 . (103)

These integrals are easy to compute :
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4πc
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c4
|J ′3
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(104)

=
4π

a20

A3
n ωn

c3
J ′3

n(0) . (105)

It remains the value of J ′3
n at the origin only, as J ′3

n nullifies at infinity. However, the only value of n for

which J ′3
n(x = 0) ̸= 0 is n = 1 and J ′

1(x = 0) = 1/3) (see formula (38)). One arrives at the conclusion
that the charge of an electromagnetic particle is characteristic of the solution n = 1. In other
words, a particle is charged if its representative potential

∑
Jn contains the solution J1. The consequence

is fundamental : a non-charged particle can exist but is unable to interact with an electromagnetic field. It
is very tempting to associate such particles to the mystery of the black matter.
One obtains the simple formula which relates the charge to the potential :

|Q|
ϵ0

=
4π

27a20

(
A1

c

)3

ω1 , (106)

Each term in the r.h.s. of the equation 10 has a physical meaning :
- a20 is the modulus square of the vacuum noise,
- A1 is the amplitude of the vector potential of the solution n = 1 at the center of the particle and
- ω1 is the pulsation corresponding to that solution.
It is important to remember that if a solution Jn is replaced by a linear combination F =

∑
n anJn , the

same formula (104)occurs, which means that if a particle is charged, its potentials necessarily contain J1.
It means also that a charge is necessarily a multiple of J1.
One should also note that our choice of the Lagrangian is not the only one which leads to this result : a
function of L like a+ bLc does the job.
We have thus shown in this section that the electric charge is related to the electromagnetic potential : the
electric charge is no longer a phenomenological quantity, it belongs now to the properties of this potential.

10. Note the dimension of this equation : M L3 T−2 Q−1.
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9 Conclusion.

This article has presented an introduction to the study of electromagnetic particles based on an extension
of Born and Infeld’s ideas. The theory is completely classical : Minkowski’s space-time is full of a something
called an ”electromagnetic potential”. Its 16 partial derivatives are the components of its gradient tensor
which is the fundamental entity at each point. This tensor describes an ”electromagnetic landscape”. Its
antisymmetric part contains the usual field tensor whose components are the basic fields of standard classical
electromagnetism. The symmetric part is the particle tensor. Both parts are intrinsically mingled together
but their symmetric or antisymmetric character makes them to remain separated in a coordinate change
which explains why this symmetric part has been ignored and replaced by phenomenological quantities.
These tensors are characterized by invariants under transformations belonging to the Poincaré group. The
symmetric part can be diagonalized which leads to an equation whose solutions are the components of
the 4-potential. We have given here the distribution of the squared density of energy around the origin
which describe the particle and the field aspect of some solutions. We have tried to connect standard
electromagnetism to our calculations : Non-linear Maxwell equations are recovered from an application of
the principle of least action to a Lagrangian corresponding to an invariant for a particle embedded in noise.
This Lagrangian is not the standard Lagrangian of usual electromagnetism and resembles more to that
used in[1]. One of this equation shows that the elementary charge Q is associated to a single solution which
means that a charged particle should at least contain this solution. While the starting point of our study
was very simple (inclusion of the symmetric part of the tensor), some conclusions are quite surprising : the
existence of non-charged particles which are looked for to explain black matter in cosmology is a striking
example. It is clear that the properties of several solutions put together have to be studied now, a first
goal being the identification with the electron, the muon and the tau families. Our study has voluntary
been limited to the static aspect of a particle, a landscape of a desert with a steady hill or mountain which
expresses itself by a longitudinal vibration around. Several chapters can be foreseen among which the study
of the stability under the influence of the fundamental noise, together with the study of birth and death of
particles themselves. Non-standard hypothesis have been made in the course of this work : Among them we
have associated a high frequency to the oscillating field-particle : implications of this hypothesis are also,
interesting to develop. Applications to the study of two-body or many-body problems are also fundamental
for the exploration of atoms and nuclei as well as the description of collisions. Up to now, we have not found
any counter-argument against this theory which allows some confidence in its future developments.

Références

[1] M. Born and L. Infeld, Proc. R. Soc. London A 1934, 144 p.425-451.

[2] R. Kerner, A.L. Barbosa and D.V. Galt’tsov, Topics in Born-Infeld electrodynamics, AIP xconference
proceedings Vol. 589 (2001).

[3] V. Denisov, I.P. Denisova, S.I. Svertilov, Dokadly Akademii Nauk, (2001), 380, p.325.

[4] A. S. Eddington, The Mathematical Theory of Relativity, Cambridge at the University Press (1923) .

[5] ω is supposed to be too high to be directly measured : for instance ω ≥ 1020 rd/s. See the discussion in
[9] . In this view, pure electrostatic, or time-independant fields do not exist : measurements exhibit only
mean values taken over a laps of time enormous with respect to 2π/ω. It follows that de Broglie wave-
length λ = h/p = h/mv corresponds to a Doppler shift (ω/2π v/c). One thus obtain ω/2π = mc2/h.
For the electron, it corresponds to a frequency ω/2π = 1.235 1020 Hz. This hypothesis implies that
frequency measurements detect only beatings between the frequency emitted by the moving electron
and the floor frequency noise emitted by the other (almost static) electrons. Results obtained in self-
interference particle experiments are not opposed to this view : the particle interferes with its image
given by the experimental device.

[6] J.D. Jackson, Classical Electrodynamics, 2nd Edition (1975), John Wiley and sons, New York, ISBN
0-471-43132-X

[7] D.J. Griffiths, Introduction to Electrodynamics, Pearson New International Edition, 4th Edition(2016),
ISBN 978-93-325-5044-5 .
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