
HAL Id: hal-01446341
https://hal.science/hal-01446341v1

Preprint submitted on 30 Jan 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

From Discrete Event Simulation to Discrete Event
Specified Systems (DEVS)
Bernard P Zeigler, Alexander Muzy

To cite this version:
Bernard P Zeigler, Alexander Muzy. From Discrete Event Simulation to Discrete Event Specified
Systems (DEVS). 2017. �hal-01446341�

https://hal.science/hal-01446341v1
https://hal.archives-ouvertes.fr

From Discrete Event Simulation to Discrete Event Specified Systems (DEVS)

Bernard P. Zeigler* and Alexander Muzy**

*Arizona Centre for Integrative Modeling and Simulation and RTSync, Potomac, MD 20854, USA.
e-mail: zeigler@rtsync.com

**CNRS, I3S, Université Côte d’Azur, 06900 Sophia Antipolis, France.
email: alexandre.muzy@cnrs.fr

Abstract: In this presentation we discuss the evolution of simulation from its origin in design of computer
and communication systems based on event routines, to the conceptualization of the objects under study
as systems, to the behavior generation of DEVS models representing a wide variety of cyber-physical
forms. Indeed, the history of computer simulation programming languages parallels, and is intertwined
with, the evolution of programming concepts from hardware-dependent binary scripts to successively
more abstract model-based generic frameworks.

Keywords: Discrete Event Dynamic Systems, Discrete Event System Specification, Systems theory.

1. INTRODUCTION

It is some sixty years after the first use of a form of digital
simulation appeared that we roughly identify as event-
oriented simulation. At its advent, it was mainly thought to be
distinct from classical simulation in being a form of
programming associated with the recent introduction of the
digital computer and applied to operational research
problems. In contrast, classical simulation was taken to be a
form of numerical solution applicable to physics and related
sciences whose speed could be greatly increased with
mechanical rather than hand calculation. The distinctive trend
of computational science is the continual trend toward greater
abstraction and identification of the true underlying
commonalities and distinctions between apparently different
phenomena. This trend is realized in the evolution of
concepts relating to event-oriented simulation that transpired
since its inception and which forms the core of the historical
perspective on discrete event simulation that we present here.

The abstraction we adopt in the session presentation was first
introduced a decade after event-oriented simulation. We will
elaborate on the concept of "system" as defined by Wymore1
(1967) as a basis for unifying various forms of discrete and
continuous simulation. Briefly, Theory of Modeling and
Simulation (1976) defined the Discrete Event System
Specification (DEVS) formalism as a specification for a
subclass of Wymore systems that could capture all the
relevant features of the models underlying event-oriented
simulations; In contrast, Discrete Time Systems Specification
(DTSS) and Differential Equation System Specification
(DESS) specify distinct subclasses of Wymore systems – the

1 Others like Zadeh (Zadeh and Desoer, 1963), Klir (Klir and Elias,
2002), and Arbib (1970) had similar definitions.

first, as a basis for discrete time models (including those
specified by finite automata and cellular automata); the
second to represent the continuous models underlying
classical numerical solvers.
2. EARLY HISTORY

While K.D. Tocher was not the first to practice event-oriented
simulation, he appears to be the first to conceive discrete
events as the right abstraction to characterize the models
underlying the techniques that he and others were adopting in
the mid-1950s. According to Hollocks (2008), Tocher’s core
idea was of a system consisting of individual components, or
‘machines’, progressing as time unfolds through ‘states’ that
change only at discrete ‘events’. Indeed, DEVS took this idea
one step further using the set theory of logicians and
mathematicians [(Whitehead and Russel, 1910), Bourbaki
(1930)] and its use by Wymore (1967).

In the presentation, we summarize the history of discrete
event simulation (now using Tocher’s characterization)
beginning with Monte Carlo sampling and the limitations of
analytic queueing analysis. These forerunners lead to
machine language coding, attempts to handle specific real
systems, and eventually to general purpose tools: General
Simulation Program (GSP) (Reitment, 1988) (later General
Purpose Systems Simulator (GPSS) (Schriber 1974)), A
General Activity Simulation Program (GASP) (Kiviat, 1963)
and SIMSCRIPT (Markowitz et al., 1963) in the USA,
Simple universal language (SIMULA) (Dahl and Nygaard,
1967) in Norway, and GSP (Tocher, 1967) and Control and
Simulation Language (CSL) (Buxton and Laski, 1969) in the
United Kingdom. The modeling strategies behind these
programming languages became encapsulated in the concept
of world views: event scheduling, activity scanning, and
process-interaction (Lackner, 1964). Zeigler (1984)
characterized these world views showing that they could all

http://www.rand.org/pubs/papers/P2864.html
http://www.rand.org/pubs/papers/P2864.html

be represented as subclasses of DEVS thus also suggesting its
universality for discrete event models including those or
other representations such as Timed Automata and Petri Nets.
Also at the same time the distinction between modular DEVS
(components interacting through their inputs/outputs) and
non-modular (components being able to change others state
in a non-encapsulated way) DEVS was made showing that
the world views all fit within the non-modular category.
Moreover, while the modular class was shown to be
equivalent to that of the non-modular one, it better supported
the impending concepts of modularity, object orientation, and
distributed processing on the software engineering horizon.

3. FRAMEWORK FOR SIMULATION AND DEVS

3.1 Modeling and Simulation Framework (MSF)

The modeling and simulation framework (MSF) presents
entities and relationships of a model and its simulation. The
MSF separates models from simulators as entities that can be
conceptually manipulated independently and then combined
in a relation which defines correct simulation. The
Experimental Frame defines a particular experimentation
process, e.g., Latin hypercube sampling for yielding model
outcome measurements in accordance with specific analysis
objectives. The MSF helps clarify many of the issues
involved in such activities. Mismatch between the
simulation’s time management policy and the model’s time
advance approach creates significant errors (such as in
temporal ordering of events) in even the simplest Modeling
and Simulation (M&S). The MSF underlies the DEVS
Simulation Protocol which provides provably correct
simulation execution of DEVS models thereby obviating
the errors well as throwing light on the source of such
conflicts in non-DEVS compliant simulations.

3.2 DEVS Formalism

A DEVS model is a system-theoretic concept specifying
inputs, states, outputs, similar to a state machine (Mittal and
Risco Martin, 2013). Critically different however, is that it
includes a time-advance function that enables it to represent
discrete event systems, as well as hybrids with continuous
components (Nutaro, 2011) in a straightforward platform-
neutral manner. In the presentation we will discuss these
points:

 DEVS formalizes what a model is, what it must contain,
and what it doesn’t contain (experimentation and
simulation control parameters are not contained in the
model).

 DEVS is universal and unique for discrete event system
models: any system that accepts events as inputs over
time and generates events as outputs over time is
equivalent to a DEVS: its behavior and structure can be
described by such a DEVS.

 DEVS-compliant simulators execute DEVS models
correctly, repeatably, and efficiently. Closure under
coupling guarantees correctness in hierarchical
composition of components.

 DEVS models can be simulated on multiple different
execution platforms, including those on desktops (for
development) and those on high-performance platforms,
such as multi-core processors (Muzy et al., 2016).

3.3 DEVS Simulation Protocol

The DEVS Simulation Protocol (Zeigler and Sarjoughian,
2013) is a general distributed simulation protocol that
prescribes specific mechanisms for:

• declaring the participants in the simulation
(component models = federates)

• declaring how federates exchange data

• executing an iterative cycle that

– controls how time advances (time
management)

– determines when federates exchange
messages (data exchange management)

– determines when federates do internal state
updating (state update management)

The protocol guarantees correct simulation in the sense that,
if the federates are DEVS models then the federation is also a
well-defined DEVS coupled model. Distinct from the High
Level Architecture (an IEEE standard for distributed
simulation), the DEVS protocol prescribes specific time, data
exchange, and state update management processes.
Moreover, hese benefits do not imply undue performance
degradation. The Parallel DEVS Simulation Protocol
provides close to the best possible performance except
possibly where activity is very low or coupling among
components is very small (Zeigler and Nutaro, 2015). There
are numerous implementations of DEVS simulators (see the
list by Wainer, 2012). In particular ADEVS (Nutaro 2008,
2011) is also distinguished by its support for both discrete
event and continuous dynamic systems, both of which are
simulated within the DEVS framework (Nutaro, 2014),
(Nutaro and Sarjoughian, 2014). This gives it the capability
to simulate, within the MSF, the interactions of sub-systems
characterized by discrete event dynamics (e.g.,
communication networks and command as well as control
systems) and continuous, physical dynamics (e.g., the
trajectories of ballistic missiles and their interceptors).

4. TIMELINE HISTORY OF DEVS DEVLOPMENTS

A brief historical retrospective, time-sequenced in Figure 1, is
presented on developments including refinements,

elaborations, and extensions of the DEVS formalism with
associated references.

Figure 1. Timeline for DEVS Developments

DEVS as a formalism for simulation-related modeling was
defined by Zeigler in the late 1960s and tied to the emerging
system theoretic ideas of that period especially to the
formulations of (Wymore, 1967) but also to those of
(Mesarovic, 1964) and (Arbib, 1970). We sometimes refer to
that original formulation as Classic DEVS in
contradistinction to the later reformulation known as Parallel
DEVS twenty years later. Parallel DEVS removed the
requirement for sequential execution of events, allowing
simultaneous sending and receiving of inputs and outputs
among components. Accordingly the basic atomic model of
Classic DEVS was extended to enable the modeler to
determine how the model reacts to collections of multiple
inputs as well as other concomitant extensions of the basic
structure. In the period between the appearances of Classic
and Parallel DEVS certain inherent features of DEVS were
elaborated in the literature such as: a) the modularity enabled
by its incorporation of external event inputs, b) the
hierarchical construction enabled by its closure under
coupling property that is inherited from systems concepts,
and c) its connection to the System Entity Structure. The
latter represents an excursion beyond classical systems
concepts with an ontological mean of expressing model
compositions and their alternatives that can be pruned to meet
simulation objectives. Also in the 1990s the general system
theoretic basis of DEVS and its formulation as a co-equal
system specification with differential equation systems was
explicitly demonstrated with the definition of the
DEV&DESS specification (Praehofer, 1991) that formalizes
the hybrid combination of discrete events and differential
equations. Allowing models to change their internal structure
in DEVS was an important extension greatly opening up the
realm of possibilities for modeling of modern technological
systems. The ability to express computational approaches to
differential equation systems was instantiated by the
Quantized State Systems in DEVS (Kofman and Junco,
2001) and Generalized DEVS (Giambiasi et al., 2001)
extensions. These developments and others were
systematically elucidated in the second edition of Theory of
Modeling and Simulation in 2000 (Zeigler et al., 2000). This
volume has been instrumental in stimulating DEVS-based
research and developments throughout the world and in many
disciplines as evidenced in the over 5000 citations it has

received. A few of the subsequent developments in theory
(proof of DEVS universality) and practice (the combination
of DEVS and Modelica software packages for industrial
strength simulation) are suggested in Figure 1.

5. RELATION TO OTHER DEDS FORMALISMS

The universality of DEVS representation implies that
arbitrary discrete event dynamic systems, such as expressed
as Timed Automata (Dacharry and Giambiasi, 2008) or Petri
Nets (Vangheluwe, 2000), can be advantageously represented
as DEVS models. Furthermore, such DEVS models provide a
basis for the design of event-based logic control showing
how classical process control can be readily interfaced with
rule-based symbolic reasoning systems (Zeigler, 1989).

6. DEVS TODAY

A representative sample of current research and development
in DEVS is listed below (Bisgambiglia, 2016):

 Theory
o Extension of the System Entity Structure for

Hierarchical Abstraction
o Formal Model-Checking Methods and DEVS
o DEVS M&S of Multilayered Social Networks
o Multicomponent Formulation of DEVS
o Verification and Validation (Zeigler and Nutaro,

2016)
 Applications

o Parallel Simulation of DEVS Spiking Neurons
o DEVS Smart Phone Simulation
o DEVS Encoding into Timed Petri Nets for

Hardware Implementation
o Multicomponent DEVS for Multi-agent

Systems
 Simulation and Optimization

o DEVS Architecture for Simulation-based
Optimization

o Optimization of DEVS Distributed Simulations
o Reproducibility of High Performance Stochastic

Simulations

 DEVS Development Environments
o VLE-Virtual Lab Environment2

o MS4 Me3

o DEVSimPy4

o GRADES (Graph-based and RAndom DiscrEte-
event Simulator)5

o PythonDEVS6

o ProDEVS: Petri Net encoding of DEVS (Vu et
al., 2015)

o fwkDEVS: OO-Framework for DEVS
(Bisgambiglia. 2016)

7. THEORY DEVELOPMENT FUTURE
PROGNOSTICATION

Finally, we mention particular research relating to DEVS that
aims at integrating basic systems foundations (with iterative
specification) and adding Dynamic Structure Systems (Muzy
and Zeigler, 2014), Markov and probabilistic systems
modeling in DEVS (Zeigler et al., 2016) and pseudorandom
simulations (Muzy et al., 2016).

8. ACKNOWLEDGEMENT

The authored gratefully acknowledge the help received from
Gwynn Thayer and Jennifer Baker of the North Carolina
State University Libraries, Special Collections Research
Center for their indispensable help in searching the audio
scripts of the Computer Simulation Archive for the origins of
the term “discrete event”.

REFERENCES

Aribib, M.A, (1970). Theories of Abstract Automata,
McGraw Hill.

Bisgambiglia. P.A. (2016). Les journées DEVS
francophones : Théorie et Applications / Workshop
http://www.reseau-devs.org/jdf-2016.

Bourbaki, N. (1930). Wikipedia,
https://en.wikipedia.org/wiki/Nicolas_Bourbaki.

Buxton JN and Laski JG (1969). Control and simulation
language. Comput J 5: 194–199.

Chow, A.(1996). Parallel DEVS: A Parallel, Hierarchical
Modular Modeling Formalism and its Distributed Simulator,
Transactions of the SCS, Vol 13, #2, pp. 55-68.

2 Available at: http://www.vle-project.org/, last connection: 02/11/2016.
3 Available at: http://ms4systems.com, last connection: 02/11/2016.
4 Available at: http://devsimpy.univ-corse.fr/attachment/481281/, last con-
nection: 02/11/2016.
5 Available at: https://redmine.i3s.unice.fr/projects/compsys, last
connection: 02/11/2016.
6 Available at: http://msdl.cs.mcgill.ca/projects/projects/DEVS/, last
connection: 02/11/2016.

Dacharry, H., & Giambiasi, N. (2008). DEVS and timed
automata for the design of control systems, Nova Science
Publishers, 193-222.

Fujimoto, R.M. (1999). Parallel and Distribution Simulation
Systems (1st ed.). John Wiley & Sons, Inc.

Garzia, R.F. , Garzia, M.R. and Zeigler, B.P. (1986). Discrete
event simulation", IEEE Spectrum, pp. 32-36,.

Giambiasi, N., Escude, B. and Ghosh, S. (2001). GDEVS: A
Generalized Discrete Event Specification for Accurate
Modeling of Dynamic Systems. ISADS 2001: pp. 464-469a

Hollocks, B.W. (2008). Intelligence, innovation and integrity-
KD Tocher and the dawn of simulation, available at:

 http://www.themedfomscu.org/media/elip/jos200815a.pdf .

Hwang, M.H. (2001). Taxonomy of DEVS subclasses for
standardization, TMS-DEVS pp. 152-159,

Kiviat P.J. (1963). GASP—A General Activity Simulation
Program. Applied Research Laboratory, US Steel
Corporation, Monroeville, PA.

Klir, G. J. and Elias, D. (2002). Architecture of Systems
Problem Solving (2 ed.). Da Capo Press, Inc.

Kofman, E. and Junco, S. (2001). Quantized-state systems: a
DEVS Approach for continuous system simulation,
Transactions of The SCS,Volume 18, # 1, pp. 2-8.

Lackner, M. R. (1964). Digital Simulation and System
Theory, (SDC Document No. SP-1612), System
Development Corp. Santa Monica, Calif., April 6.

Markowitz H.M., Hausner B. and Karr H.W. (1962).
Simscript: The simulation programming language. Rand
Corporation Report, Rm-3310, Cambridge, MA.

Mesarovic, M. D. (1964). Foundations for a general systems
theory. Views on General Systems Theory, 1-24.

Mital, S., Risco Martin, J. L. (2013). Netcentric System of
Systems Engineering with DEVS Unified Process, CRC
Press.

Muzy, A. and Zeigler, B.P. (2014). Specification of dynamic
structure discrete event systems using single point
encapsulated control functions, International Journal of
Modeling, Simulation, and Scientific Computing (IJMSSC)
Vol. 5, Issue 3, 1450012.

Muzy A., Lerasle M., Grammont F., Dao V.T., Hill D.R.C.
(2016). Parallel and pseudorandom discrete event system
specification vs. networks of spiking neurons: Formalization
and preliminary implementation results, accepted for
publication in International Conference on High Performance
Computing & Simulation (HPCS) conference.

http://www.themedfomscu.org/media/elip/jos200815a.pdf
http://d.lib.ncsu.edu/computer-simulation/about
http://msdl.cs.mcgill.ca/projects/projects/DEVS/
https://redmine.i3s.unice.fr/projects/compsys
http://devsimpy.univ-corse.fr/attachment/481281/
http://www.vle-project.org/

Nance R.E. (1996). A history of discrete-event simulation
programming languages. In: Bergin TJ and Gibson RJ (eds).
History of Programming Languages Vol. II ACM Press and
AddisonWesley Publishing Company: New York, pp 369–
427.

Nutaro, J. (2008). On constructing optimistic simulation
algorithms for the discrete event system specification. ACM
Transactions on Modeling and Computer Simulation, 19(1),
pp. 1-21.

Nutaro, J. (2011). Building Software for Simulation: Theory
and Algorithms with applications in C++. Wiley.

Nutaro, J. (2014). An extension of the OpenModelica
compiler for using Modelica models in a discrete event
simulation, SIMULATION, December; vol. 90, 12: pp. 1328-
1345.,

Nutaro, J. and Sarjoughian, H. S. (2004). Design of
Distributed Simulation Environments: A Unified System-
Theoretic and Logical Processes Approach. SIMULATION
80(11), pp 577-589.

Nutaro, J., Kuruganti, P. T., Protopopescu, V. and Shankarm
M. (2012). The split system approach to managing time in
simulations of hybrid systems having continuous and discrete
event components. SIMULATION 88(3), pp. 281-298.

Nygaard K. and Dahl O. (1978). The development of the
SIMULA languages. ACM SIGPLAN Notices 13: 245–272.

Praehofer, H. (1991). System Theoretic Formalisms for
Combined Discrete-Continuous System Simulation. Int. J.
Gen. Sys., 19(3): p. 219-240.

Reitman J. (1988). A concise history of the ups and downs of
simulation. In: Abrams M, Haigh P and Comfort J (eds).
Proc. of the 1988 Winter Simulation Conference—San Diego.
IEEE: Piscataway, NJ, pp 1–6.

Shaffer, A.R. (2012). The Value of Modeling and Simulation
for the Department of Defense M&S Journal, pp 2-3

Schriber, T, (1974). Simulation using GPSS. Wiley. ISBN
9780471763109.

Tocher KD (1967). PLUS/GSP III Specification. United
SteelCompanies Ltd, Department of Operational Research,
Sheffield.

Steiniger, A. and Uhrmacher, A.M. (2016). Intensional
Couplings in Variable-Structure Models: An Exploration
Based on Multilevel-DEVS. ACM Trans. Model. Comput.
Simul. 26, 2, 27 pages.
DOI=http://dx.doi.org/10.1145/2818641.

Vangheluwe, H. L. (2000). DEVS as a common denominator
for multi-formalism hybrid systems modelling. In Computer-
Aided Control System Design, 2000. CACSD 2000. IEEE
International Symposium on Computer-Aided Control System
Design, 129-134.

Vu, L. H., Foures, D., & Albert, V. (2015). ProDEVS: an
Event-Driven Modeling and Simulation Tool for Hybrid
Systems using State Machines. In Simutools 2015 Eighth EAI
International Conference on Simulation Tools and
Techniques, Brussels, Belgium, No. 8, 29-37.

Wainer, G.A. (2012). Available at:
http://www.sce.carleton.ca/faculty/wainer/standard/tools.htm

WG - HLA Evolved Working Group (2010). Modeling and
Simulation High Level Architecture, IEEE 1516–2010, The
Institute of Electrical and Electronics Engineers, .

Whitehead, A.N. and Russell, B. (1910). Principia
mathematica 1 (1 ed.), Cambridge: Cambridge University
Press, JFM 41.0083.02

Wymore, A.W. (1967). Mathematical Theory of Systems
Engineering: The Elements, Wiley/

Zadeh, L.A. and Desoer, C.A. (1963). Linear System Theory,
The State Space Approach, MrGraw Hill.

Zeigler, B.P. and Sarjoughian, H.S. (2013). Guide to
Modeling and Simulation of Systems of Systems Springer.

Zeigler, B.P., Praehofer, H., & Kim, T.G. (2000). Theory of
Modeling and Simulation (2nd ed.). Academic Press.

Zeigler, B.P. (1987). Hierarchical, Modular Discrete Event
Models in an Object Oriented Environment, Simulation J.,
vol. 49, no. 5, pp. 219-230.

Zeigler, B.P. (1976). Theory of Modelling and Simulation,
Wiley.

Zeigler, B.P. (1984). Multifaceted Modelling and Discrete
Event Simulation, Academic Press.

Zeigler, B.P. (1984). System-theoretic representation of
simulation models, IIE Transactions, pp. 19-34.

Zeigler, B.P. (1989). DEVS representation of dynamical
systems: EventBased Intelligent Control, Proc. of the IEEE,
vol. 77, no. 1, pp. 72-80.

Zeigler, B. P. and Sarjoughian, H. S. (2013). DEVS
Simulation Protocol. In Guide to Modeling and Simulation of
Systems of Systems, Springer London, pp. 105-124.

Zeigler, B.P. Nutaro J. and Seo, C. (2015). What’s the Best
Possible Speedup Achievable in Distributed Simulation:
Amdahl’s Law Reconstructed, DEVS TMS, SpringSim.

http://dx.doi.org/10.1145/2818641

Zeigler, B.P. and Nutaro J. (2016). Towards a Framework for
More Robust Validation and Verification of Simulation
Models for Systems of Systems, Journal of Defense
Modeling and Simulation: Applications, Methodology,
Technology, Vol. 13(1) 3–16 2015 DOI:
10.1177/1548512914568657.

Zeigler, B.P. Nutaro J. and Seo, C. (2016). Combining DEVS
and Model-Checking: Concepts and Tools for Integrating
Simulation and Analysis, to appear in Int. J. Process
Modeling and Simulation. Special Issue on: "New Advances
in Simulation and Process Modelling: Integrating New
Technologies and Methodologies to Enlarge Simulation
Capabilities".

