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Abstract: In this presentation we discuss the evolution of simulation from its origin in design of computer 
and communication systems based on event routines, to the conceptualization of the objects under study 
as systems, to the behavior generation of DEVS models representing a wide variety of cyber-physical 
forms. Indeed, the history of computer simulation programming languages parallels, and is intertwined 
with, the evolution of programming concepts from hardware-dependent binary scripts to successively 
more abstract model-based generic frameworks.

Keywords: Discrete Event Dynamic Systems, Discrete Event System Specification, Systems theory.

1. INTRODUCTION

It is some sixty years after the first use of a form of digital 
simulation  appeared  that  we  roughly  identify  as  event-
oriented simulation. At its advent, it was mainly thought to be 
distinct  from  classical  simulation  in  being  a  form  of 
programming associated with the recent introduction of the 
digital  computer  and  applied  to  operational  research 
problems. In contrast, classical simulation was taken to be a 
form of numerical solution applicable to physics and related 
sciences  whose  speed  could  be  greatly  increased  with 
mechanical rather than hand calculation. The distinctive trend 
of computational science is the continual trend toward greater 
abstraction  and  identification  of  the  true  underlying 
commonalities and distinctions between apparently different 
phenomena.  This  trend  is  realized  in  the  evolution  of 
concepts relating to event-oriented simulation that transpired 
since its inception and which forms the core of the historical 
perspective on discrete event simulation that we present here.

The abstraction we adopt in the session presentation was first 
introduced a decade after event-oriented simulation. We will 
elaborate on the concept of "system" as defined by Wymore1 
(1967) as a basis for unifying various forms of discrete and 
continuous  simulation.  Briefly,  Theory  of  Modeling  and  
Simulation (1976)  defined  the  Discrete  Event  System 
Specification  (DEVS)  formalism  as  a  specification  for  a 
subclass  of  Wymore  systems  that  could  capture  all  the 
relevant  features  of  the  models underlying  event-oriented 
simulations; In contrast, Discrete Time Systems Specification 
(DTSS)  and  Differential  Equation  System  Specification 
(DESS) specify distinct subclasses of Wymore  systems – the 

1 Others like Zadeh (Zadeh and Desoer, 1963), Klir (Klir and Elias, 
2002), and Arbib (1970) had similar definitions.

first,  as  a  basis  for  discrete  time  models  (including  those 
specified  by  finite  automata  and  cellular  automata);  the 
second  to  represent  the  continuous  models  underlying 
classical numerical solvers. 
2.  EARLY HISTORY 

While K.D. Tocher was not the first to practice event-oriented 
simulation,  he  appears  to  be  the  first  to  conceive  discrete 
events as the  right  abstraction  to  characterize  the  models 
underlying the techniques that he and others were adopting in 
the mid-1950s.  According to Hollocks (2008),  Tocher’s core 
idea was of a system consisting of individual components, or 
‘machines’, progressing as time unfolds through ‘states’ that  
change only at discrete ‘events’. Indeed, DEVS took this idea 
one  step  further  using  the  set  theory  of  logicians  and 
mathematicians  [(Whitehead  and  Russel,  1910),  Bourbaki 
(1930)]  and its use by Wymore (1967).

In  the  presentation,  we  summarize  the  history  of  discrete 
event  simulation  (now  using  Tocher’s  characterization) 
beginning with Monte Carlo sampling and the limitations of 
analytic  queueing  analysis.  These  forerunners  lead  to 
machine  language  coding,  attempts  to  handle  specific  real 
systems,  and  eventually  to  general  purpose  tools:  General 
Simulation Program (GSP) (Reitment, 1988) (later  General 
Purpose  Systems  Simulator  (GPSS)  (Schriber  1974)),  A 
General Activity Simulation Program (GASP) (Kiviat, 1963) 
and  SIMSCRIPT  (Markowitz  et  al.,  1963)  in  the  USA, 
Simple  universal  language (SIMULA) (Dahl  and  Nygaard, 
1967) in Norway, and GSP (Tocher,  1967) and Control and 
Simulation Language (CSL) (Buxton and Laski, 1969) in the 
United  Kingdom.  The  modeling  strategies  behind  these 
programming languages became encapsulated in the concept 
of  world  views:  event  scheduling,  activity  scanning,  and 
process-interaction  (Lackner,  1964).   Zeigler  (1984) 
characterized these world views showing that they could all 
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be represented as subclasses of DEVS thus also suggesting its 
universality  for  discrete  event  models  including  those  or 
other representations such as Timed Automata and Petri Nets. 
Also at the same time the distinction between modular DEVS 
(components  interacting  through  their  inputs/outputs)  and 
non-modular (components being able to change others state 
in a non-encapsulated way) DEVS was made showing that 
the  world  views  all  fit  within  the  non-modular  category. 
Moreover,  while  the  modular  class  was  shown  to  be 
equivalent to that of the non-modular one, it better supported 
the impending concepts of modularity, object orientation, and 
distributed processing on the software engineering horizon.

3.  FRAMEWORK FOR SIMULATION AND DEVS

3.1 Modeling and Simulation Framework (MSF)

The  modeling  and  simulation  framework  (MSF) presents 
entities and relationships of a model and its simulation. The 
MSF separates models from simulators as entities that can be 
conceptually manipulated independently and then combined 
in  a  relation  which  defines  correct  simulation.  The 
Experimental  Frame  defines  a  particular  experimentation 
process,  e.g.,  Latin hypercube sampling for yielding model 
outcome measurements in accordance with specific analysis 
objectives.  The  MSF  helps  clarify  many  of  the  issues 
involved  in  such  activities.  Mismatch  between  the 
simulation’s time management policy and the model’s time 
advance  approach  creates  significant  errors  (such  as  in 
temporal ordering of events) in even the simplest Modeling 
and  Simulation  (M&S).  The  MSF  underlies  the  DEVS 
Simulation  Protocol  which  provides  provably  correct 
simulation  execution  of  DEVS models thereby obviating 
the  errors  well  as  throwing  light  on  the  source  of  such 
conflicts in non-DEVS compliant simulations.

3.2 DEVS Formalism

A DEVS  model  is  a  system-theoretic  concept  specifying 
inputs, states, outputs, similar to a state machine (Mittal and 
Risco Martin,  2013).  Critically different however, is that it 
includes a time-advance function that enables it to represent 
discrete event systems,  as well  as  hybrids  with continuous 
components  (Nutaro,  2011)  in  a  straightforward  platform-
neutral  manner.  In  the  presentation  we  will  discuss  these 
points: 

 DEVS formalizes what a model is, what it must contain, 
and  what  it  doesn’t  contain  (experimentation  and 
simulation control  parameters  are not  contained  in  the 
model).

 DEVS is universal and unique for discrete event system 
models:  any system that  accepts events as  inputs over 
time  and  generates  events  as  outputs  over  time  is 
equivalent to a DEVS: its behavior and structure can be 
described by such a DEVS. 

 DEVS-compliant  simulators  execute  DEVS  models 
correctly,  repeatably,  and  efficiently.  Closure  under 
coupling  guarantees  correctness  in  hierarchical 
composition of components.

 DEVS models  can  be  simulated  on  multiple  different 
execution  platforms,  including  those  on  desktops  (for 
development) and those on high-performance platforms, 
such as multi-core processors (Muzy et al., 2016).

3.3 DEVS Simulation Protocol 

The  DEVS  Simulation  Protocol  (Zeigler  and  Sarjoughian, 
2013)  is  a  general  distributed  simulation  protocol  that 
prescribes specific mechanisms for:

• declaring  the  participants  in  the  simulation 
(component models = federates)

• declaring how federates exchange data

• executing an iterative cycle that

– controls  how  time  advances  (time 
management)

– determines  when  federates  exchange 
messages (data exchange management)

– determines when federates do internal state 
updating (state update management)

The protocol guarantees correct simulation in the sense that, 
if the federates are DEVS models then the federation is also a 
well-defined DEVS coupled model. Distinct from the High 
Level  Architecture  (an  IEEE  standard  for  distributed 
simulation), the DEVS protocol prescribes specific time, data  
exchange,  and  state  update management  processes. 
Moreover,  hese  benefits  do  not  imply  undue  performance 
degradation.  The  Parallel  DEVS  Simulation  Protocol 
provides  close  to  the  best  possible  performance  except 
possibly  where  activity  is  very  low  or  coupling  among 
components is very small (Zeigler and Nutaro, 2015). There 
are numerous implementations of DEVS simulators (see the 
list by Wainer,  2012). In particular ADEVS  (Nutaro 2008, 
2011) is  also distinguished by its  support  for both discrete 
event  and continuous dynamic systems,  both of  which  are 
simulated  within  the  DEVS  framework  (Nutaro,  2014), 
(Nutaro and Sarjoughian, 2014). This gives it the capability 
to simulate, within the MSF, the interactions of sub-systems 
characterized  by  discrete  event  dynamics  (e.g., 
communication  networks  and  command as  well  as  control 
systems)  and  continuous,  physical  dynamics  (e.g.,  the 
trajectories of ballistic missiles and their interceptors).

4. TIMELINE HISTORY OF DEVS DEVLOPMENTS

A brief historical retrospective, time-sequenced in Figure 1, is 
presented  on  developments  including  refinements, 



elaborations,  and  extensions  of  the  DEVS formalism with 
associated references.

Figure 1. Timeline for DEVS Developments

DEVS as a  formalism for simulation-related modeling was 
defined by Zeigler in the late 1960s and tied to the emerging 
system  theoretic  ideas  of  that  period  especially  to  the 
formulations  of  (Wymore,  1967)  but  also  to  those  of 
(Mesarovic, 1964) and (Arbib, 1970). We sometimes refer to 
that  original  formulation  as  Classic  DEVS  in 
contradistinction to the later reformulation known as Parallel 
DEVS  twenty  years  later.  Parallel  DEVS  removed  the 
requirement  for  sequential  execution  of  events,  allowing 
simultaneous  sending  and  receiving  of  inputs  and  outputs 
among components. Accordingly the basic atomic model of 
Classic  DEVS  was  extended  to  enable  the  modeler  to 
determine  how the  model  reacts  to  collections  of  multiple 
inputs as well as other concomitant extensions of the basic 
structure.  In the period between the appearances of Classic 
and Parallel DEVS certain inherent features of DEVS were 
elaborated in the literature such as: a) the modularity enabled 
by  its  incorporation  of  external  event  inputs,  b)   the 
hierarchical  construction  enabled  by  its  closure  under 
coupling  property that  is  inherited  from systems  concepts, 
and  c)  its  connection  to  the  System Entity  Structure.  The 
latter  represents  an  excursion  beyond  classical  systems 
concepts  with  an  ontological  mean  of  expressing  model 
compositions and their alternatives that can be pruned to meet 
simulation objectives. Also in the 1990s the general system 
theoretic  basis  of DEVS and its  formulation as a  co-equal 
system specification with differential  equation systems was 
explicitly  demonstrated  with  the  definition  of  the 
DEV&DESS specification (Praehofer, 1991) that formalizes 
the  hybrid  combination  of  discrete  events  and  differential 
equations. Allowing models to change their internal structure 
in DEVS was an important extension greatly opening up the 
realm of possibilities for modeling of modern technological 
systems. The ability to express computational approaches to 
differential  equation  systems  was  instantiated  by  the 
Quantized  State  Systems  in  DEVS  (Kofman  and  Junco, 
2001)  and  Generalized  DEVS  (Giambiasi  et  al.,  2001) 
extensions.  These  developments  and  others  were 
systematically elucidated in the second edition of Theory of 
Modeling and Simulation in 2000 (Zeigler et al., 2000). This 
volume  has  been  instrumental  in  stimulating  DEVS-based 
research and developments throughout the world and in many 
disciplines  as  evidenced  in  the  over  5000  citations  it  has 

received.  A few of the subsequent  developments  in  theory 
(proof of DEVS universality) and practice (the combination 
of  DEVS  and  Modelica  software  packages  for  industrial 
strength simulation) are suggested in Figure 1. 

5. RELATION TO OTHER DEDS FORMALISMS

The  universality  of  DEVS  representation  implies  that 
arbitrary discrete event dynamic systems, such as expressed 
as Timed Automata (Dacharry and Giambiasi, 2008) or Petri 
Nets (Vangheluwe, 2000), can be advantageously represented 
as DEVS models. Furthermore, such DEVS models provide a 
basis  for  the  design  of  event-based  logic  control  showing 
how classical process control can be readily interfaced with 
rule-based symbolic reasoning systems (Zeigler, 1989). 

6. DEVS TODAY

A representative sample of current research and development 
in DEVS is listed below (Bisgambiglia, 2016):

 Theory
o Extension  of  the  System  Entity  Structure  for 

Hierarchical Abstraction
o Formal Model-Checking  Methods and DEVS
o DEVS M&S of Multilayered Social Networks 
o Multicomponent Formulation of DEVS 
o Verification and Validation (Zeigler and Nutaro, 

2016)
 Applications 

o Parallel Simulation of DEVS Spiking Neurons
o DEVS Smart Phone Simulation
o DEVS  Encoding  into  Timed  Petri  Nets  for 

Hardware Implementation
o Multicomponent  DEVS  for  Multi-agent 

Systems
 Simulation and Optimization

o DEVS  Architecture  for  Simulation-based 
Optimization

o Optimization of DEVS Distributed Simulations
o Reproducibility of High Performance Stochastic 

Simulations



 DEVS Development Environments
o VLE-Virtual Lab Environment2

o MS4 Me3

o DEVSimPy4

o GRADES (Graph-based and RAndom DiscrEte-
event Simulator)5

o PythonDEVS6

o ProDEVS: Petri Net encoding of DEVS (Vu et 
al., 2015)

o fwkDEVS:  OO-Framework  for  DEVS 
(Bisgambiglia. 2016)

7.  THEORY  DEVELOPMENT  FUTURE 
PROGNOSTICATION

Finally, we mention particular research relating to DEVS that 
aims at integrating basic systems foundations (with iterative 
specification) and adding Dynamic Structure Systems (Muzy 
and  Zeigler,  2014),  Markov  and  probabilistic  systems 
modeling in DEVS (Zeigler et al., 2016) and pseudorandom 
simulations (Muzy et al., 2016).
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