Bernard P Zeigler
email: zeigler@rtsync.com

Alexander Muzy
email: alexandre.muzy@cnrs.fr

From Discrete Event Simulation to Discrete Event Specified Systems (DEVS)

Keywords: Discrete Event Dynamic Systems, Discrete Event System Specification, Systems theory

In this presentation we discuss the evolution of simulation from its origin in design of computer and communication systems based on event routines, to the conceptualization of the objects under study as systems, to the behavior generation of DEVS models representing a wide variety of cyber-physical forms. Indeed, the history of computer simulation programming languages parallels, and is intertwined with, the evolution of programming concepts from hardware-dependent binary scripts to successively more abstract model-based generic frameworks.

INTRODUCTION

It is some sixty years after the first use of a form of digital simulation appeared that we roughly identify as eventoriented simulation. At its advent, it was mainly thought to be distinct from classical simulation in being a form of programming associated with the recent introduction of the digital computer and applied to operational research problems. In contrast, classical simulation was taken to be a form of numerical solution applicable to physics and related sciences whose speed could be greatly increased with mechanical rather than hand calculation. The distinctive trend of computational science is the continual trend toward greater abstraction and identification of the true underlying commonalities and distinctions between apparently different phenomena. This trend is realized in the evolution of concepts relating to event-oriented simulation that transpired since its inception and which forms the core of the historical perspective on discrete event simulation that we present here.

The abstraction we adopt in the session presentation was first introduced a decade after event-oriented simulation. We will elaborate on the concept of "system" as defined by Wymore 1 (1967) as a basis for unifying various forms of discrete and continuous simulation. Briefly, Theory of Modeling and Simulation (1976) defined the Discrete Event System Specification (DEVS) formalism as a specification for a subclass of Wymore systems that could capture all the relevant features of the models underlying event-oriented simulations; In contrast, Discrete Time Systems Specification (DTSS) and Differential Equation System Specification (DESS) specify distinct subclasses of Wymore systems -the 1 Others like Zadeh [START_REF] Zadeh | Linear System Theory, The State Space Approach[END_REF], [START_REF] Klir | Architecture of Systems Problem Solving[END_REF][START_REF] Klir | Architecture of Systems Problem Solving[END_REF]Arbib (1970) had similar definitions. first, as a basis for discrete time models (including those specified by finite automata and cellular automata); the second to represent the continuous models underlying classical numerical solvers. 2. EARLY HISTORY While K.D. Tocher was not the first to practice event-oriented simulation, he appears to be the first to conceive discrete events as the right abstraction to characterize the models underlying the techniques that he and others were adopting in the mid-1950s. According to Hollocks (2008), Tocher's core idea was of a system consisting of individual components, or 'machines', progressing as time unfolds through 'states' that change only at discrete 'events'. Indeed, DEVS took this idea one step further using the set theory of logicians and mathematicians [(Whitehead and Russel, 1910), [START_REF] Bourbaki | Wikipedia[END_REF]] and its use by [START_REF] Wymore | Mathematical Theory of Systems Engineering: The Elements[END_REF].

In the presentation, we summarize the history of discrete event simulation (now using Tocher's characterization) beginning with Monte Carlo sampling and the limitations of analytic queueing analysis. These forerunners lead to machine language coding, attempts to handle specific real systems, and eventually to general purpose tools: General Simulation Program (GSP) (Reitment, 1988) (later General Purpose Systems Simulator (GPSS) [START_REF] Schriber | Simulation using GPSS[END_REF])), A General Activity Simulation Program (GASP) [START_REF] Kiviat | GASP-A General Activity Simulation Program[END_REF] and SIMSCRIPT (Markowitz et al., 1963) in the USA, Simple universal language (SIMULA) (Dahl and Nygaard, 1967) in Norway, and GSP [START_REF] Tocher | PLUS/GSP III Specification[END_REF] and Control and Simulation Language (CSL) [START_REF] Buxton | Control and simulation language[END_REF] in the United Kingdom. The modeling strategies behind these programming languages became encapsulated in the concept of world views: event scheduling, activity scanning, and process-interaction [START_REF] Lackner | Digital Simulation and System Theory[END_REF].

Zeigler (1984) characterized these world views showing that they could all be represented as subclasses of DEVS thus also suggesting its universality for discrete event models including those or other representations such as Timed Automata and Petri Nets. Also at the same time the distinction between modular DEVS (components interacting through their inputs/outputs) and non-modular (components being able to change others state in a non-encapsulated way) DEVS was made showing that the world views all fit within the non-modular category. Moreover, while the modular class was shown to be equivalent to that of the non-modular one, it better supported the impending concepts of modularity, object orientation, and distributed processing on the software engineering horizon.

FRAMEWORK FOR SIMULATION AND DEVS

Modeling and Simulation Framework (MSF)

The modeling and simulation framework (MSF) presents entities and relationships of a model and its simulation. The MSF separates models from simulators as entities that can be conceptually manipulated independently and then combined in a relation which defines correct simulation. The Experimental Frame defines a particular experimentation process, e.g., Latin hypercube sampling for yielding model outcome measurements in accordance with specific analysis objectives. The MSF helps clarify many of the issues involved in such activities. Mismatch between the simulation's time management policy and the model's time advance approach creates significant errors (such as in temporal ordering of events) in even the simplest Modeling and Simulation (M&S). The MSF underlies the DEVS Simulation Protocol which provides provably correct simulation execution of DEVS models thereby obviating the errors well as throwing light on the source of such conflicts in non-DEVS compliant simulations.

DEVS Formalism

A DEVS model is a system-theoretic concept specifying inputs, states, outputs, similar to a state machine (Mittal and Risco Martin, 2013). Critically different however, is that it includes a time-advance function that enables it to represent discrete event systems, as well as hybrids with continuous components [START_REF] Nutaro | Building Software for Simulation: Theory and Algorithms with applications in C++[END_REF] in a straightforward platformneutral manner. In the presentation we will discuss these points:

 DEVS formalizes what a model is, what it must contain,
and what it doesn't contain (experimentation and simulation control parameters are not contained in the model).  DEVS is universal and unique for discrete event system models: any system that accepts events as inputs over time and generates events as outputs over time is equivalent to a DEVS: its behavior and structure can be described by such a DEVS.

 DEVS-compliant simulators execute DEVS models correctly, repeatably, and efficiently. Closure under coupling guarantees correctness in hierarchical composition of components.  DEVS models can be simulated on multiple different execution platforms, including those on desktops (for development) and those on high-performance platforms, such as multi-core processors [START_REF] Muzy | Parallel and pseudorandom discrete event system specification vs. networks of spiking neurons: Formalization and preliminary implementation results[END_REF].

DEVS Simulation Protocol

The DEVS Simulation Protocol (Zeigler and Sarjoughian, 2013) is a general distributed simulation protocol that prescribes specific mechanisms for:

• declaring the participants in the simulation (component models = federates) • declaring how federates exchange data

• executing an iterative cycle that controls how time advances (time management) determines when federates exchange messages (data exchange management) determines when federates do internal state updating (state update management)

The protocol guarantees correct simulation in the sense that, if the federates are DEVS models then the federation is also a well-defined DEVS coupled model. Distinct from the High Level Architecture (an IEEE standard for distributed simulation), the DEVS protocol prescribes specific time, data exchange, and state update management processes. Moreover, hese benefits do not imply undue performance degradation. The Parallel DEVS Simulation Protocol provides close to the best possible performance except possibly where activity is very low or coupling among components is very small [START_REF] Zeigler | What's the Best Possible Speedup Achievable in Distributed Simulation: Amdahl's Law Reconstructed[END_REF]. There are numerous implementations of DEVS simulators (see the list by [START_REF] Wainer | [END_REF]. In particular ADEVS [START_REF] Nutaro | On constructing optimistic simulation algorithms for the discrete event system specification[END_REF][START_REF] Nutaro | Building Software for Simulation: Theory and Algorithms with applications in C++[END_REF] is also distinguished by its support for both discrete event and continuous dynamic systems, both of which are simulated within the DEVS framework [START_REF] Nutaro | An extension of the OpenModelica compiler for using Modelica models in a discrete event simulation[END_REF], (Nutaro and Sarjoughian, 2014). This gives it the capability to simulate, within the MSF, the interactions of sub-systems characterized by discrete event dynamics (e.g., communication networks and command as well as control systems) and continuous, physical dynamics (e.g., the trajectories of ballistic missiles and their interceptors).

TIMELINE HISTORY OF DEVS DEVLOPMENTS

A brief historical retrospective, time-sequenced in Figure 1, is presented on developments including refinements, elaborations, and extensions of the DEVS formalism with associated references.

Figure 1. Timeline for DEVS Developments DEVS as a formalism for simulation-related modeling was defined by Zeigler in the late 1960s and tied to the emerging system theoretic ideas of that period especially to the formulations of [START_REF] Wymore | Mathematical Theory of Systems Engineering: The Elements[END_REF] but also to those of [START_REF] Mesarovic | Foundations for a general systems theory[END_REF](Arbib, 1970). We sometimes refer to that original formulation as Classic DEVS in contradistinction to the later reformulation known as Parallel DEVS twenty years later. Parallel DEVS removed the requirement for sequential execution of events, allowing simultaneous sending and receiving of inputs and outputs among components. Accordingly the basic atomic model of Classic DEVS was extended to enable the modeler to determine how the model reacts to collections of multiple inputs as well as other concomitant extensions of the basic structure. In the period between the appearances of Classic and Parallel DEVS certain inherent features of DEVS were elaborated in the literature such as: a) the modularity enabled by its incorporation of external event inputs, b) the hierarchical construction enabled by its closure under coupling property that is inherited from systems concepts, and c) its connection to the System Entity Structure. The latter represents an excursion beyond classical systems concepts with an ontological mean of expressing model compositions and their alternatives that can be pruned to meet simulation objectives. Also in the 1990s the general system theoretic basis of DEVS and its formulation as a co-equal system specification with differential equation systems was explicitly demonstrated with the definition of the DEV&DESS specification [START_REF] Praehofer | System Theoretic Formalisms for Combined Discrete-Continuous System Simulation[END_REF] that formalizes the hybrid combination of discrete events and differential equations. Allowing models to change their internal structure in DEVS was an important extension greatly opening up the realm of possibilities for modeling of modern technological systems. The ability to express computational approaches to differential equation systems was instantiated by the Quantized State Systems in DEVS [START_REF] Kofman | Quantized-state systems: a DEVS Approach for continuous system simulation[END_REF] and Generalized DEVS [START_REF] Giambiasi | GDEVS: A Generalized Discrete Event Specification for Accurate Modeling of Dynamic Systems[END_REF] extensions. These developments and others were systematically elucidated in the second edition of Theory of Modeling and Simulation in 2000 [START_REF] Zeigler | Theory of Modeling and Simulation[END_REF]. This volume has been instrumental in stimulating DEVS-based research and developments throughout the world and in many disciplines as evidenced in the over 5000 citations it has received. A few of the subsequent developments in theory (proof of DEVS universality) and practice (the combination of DEVS and Modelica software packages for industrial strength simulation) are suggested in Figure 1.

RELATION TO OTHER DEDS FORMALISMS

The universality of DEVS representation implies that arbitrary discrete event dynamic systems, such as expressed as Timed Automata [START_REF] Dacharry | DEVS and timed automata for the design of control systems[END_REF] or Petri Nets [START_REF] Vangheluwe | DEVS as a common denominator for multi-formalism hybrid systems modelling[END_REF], can be advantageously represented as DEVS models. Furthermore, such DEVS models provide a basis for the design of event-based logic control showing how classical process control can be readily interfaced with rule-based symbolic reasoning systems [START_REF] Zeigler | DEVS representation of dynamical systems: EventBased Intelligent Control[END_REF].

DEVS TODAY

A representative sample of current research and development in DEVS is listed below [START_REF] Bisgambiglia | Les journées DEVS francophones : Théorie et Applications / Workshop[END_REF] Finally, we mention particular research relating to DEVS that aims at integrating basic systems foundations (with iterative specification) and adding Dynamic Structure Systems [START_REF] Muzy | Specification of dynamic structure discrete event systems using single point encapsulated control functions[END_REF], Markov and probabilistic systems modeling in DEVS (Zeigler et al., 2016) and pseudorandom simulations [START_REF] Muzy | Parallel and pseudorandom discrete event system specification vs. networks of spiking neurons: Formalization and preliminary implementation results[END_REF].

ACKNOWLEDGEMENT

The authored gratefully acknowledge the help received from Gwynn Thayer and Jennifer Baker of the North Carolina State University Libraries, Special Collections Research Center for their indispensable help in searching the audio scripts of the Computer Simulation Archive for the origins of the term "discrete event".

 :

	 DEVS Development Environments	
		o VLE-Virtual Lab Environment 2	
		o MS4 Me 3		
		o DEVSimPy 4		
		o GRADES (Graph-based and RAndom DiscrEte-
		event Simulator) 5	
		o PythonDEVS 6	
		o ProDEVS: Petri Net encoding of DEVS (Vu et
		al., 2015)		
		o fwkDEVS:	OO-Framework	for	DEVS
		(Bisgambiglia. 2016)	
	7.	THEORY	DEVELOPMENT		FUTURE
	PROGNOSTICATION		
					 Theory
					o Extension of the System Entity Structure for
					Hierarchical Abstraction
					o Formal Model-Checking Methods and DEVS
					o DEVS M&S of Multilayered Social Networks
					o Multicomponent Formulation of DEVS
					o Verification and Validation (Zeigler and Nutaro,
					2016)
					 Applications
					o Parallel Simulation of DEVS Spiking Neurons
					o DEVS Smart Phone Simulation
					o DEVS Encoding into Timed Petri Nets for
					Hardware Implementation
					o Multicomponent DEVS for Multi-agent
					Systems
					 Simulation and Optimization
					o DEVS Architecture for Simulation-based
					Optimization
					o Optimization of DEVS Distributed Simulations
					o Reproducibility of High Performance Stochastic
					Simulations

Available at: http://www.vle-project.org/, last connection: 02/11/2016.

Available at: http://ms4systems.com, last connection: 02/11/2016.

Available at: http://devsimpy.univ-corse.fr/attachment/481281/, last connection: 02/11/2016.

5 Available at: https://redmine.i3s.unice.fr/projects/compsys, last connection: 02/11/

2016. 6 Available at: http://msdl.cs.mcgill.ca/projects/projects/DEVS/, last connection: 02/11/2016.