
HAL Id: hal-01446290
https://hal.science/hal-01446290

Submitted on 25 Jan 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Considering Human’s Non-Deterministic Behavior and
his Availability State When Designing a Collaborative

Human-Robots System
Thibault Gateau, Caroline Ponzoni Carvalho Chanel, Lee Mai-Huy, Frédéric

Dehais

To cite this version:
Thibault Gateau, Caroline Ponzoni Carvalho Chanel, Lee Mai-Huy, Frédéric Dehais. Considering Hu-
man’s Non-Deterministic Behavior and his Availability State When Designing a Collaborative Human-
Robots System. IEEE/RSJ International Conference on Intelligent Robots and Systems, Oct 2016,
Daejeon, South Korea. pp. 4391-4397. �hal-01446290�

https://hal.science/hal-01446290
https://hal.archives-ouvertes.fr


 

Any correspondence concerning this service should be sent to the repository 

administrator: staff-oatao@listes-diff.inp-toulouse.fr 

 

Open Archive TOULOUSE Archive Ouverte (OATAO)  
OATAO is an open access repository that collects the work of Toulouse researchers and 
makes it freely available over the web where possible.  

This is an author-deposited version published in: http://oatao.univ-toulouse.fr/ 
Eprints ID: 16561 

To cite this version: Gateau, Thibault and Ponzoni Carvalho Chanel, Caroline and Mai-
Huy, Lee and Dehais, Frédéric Considering Human’s Non-Deterministic Behavior and his 
Availability State When Designing a Collaborative Human-Robots System. (2016) In: 
IEEE/RSJ International Conference on Intelligent Robots and Systems, 9 October 2016 - 
14 October 2016 (Daejeon, Korea, Republic Of). 
 
Official URL: http://dx.doi.org/10.1109/IROS.2016.7759646 



Considering Human’s Non-Deterministic Behavior and his Availability
State When Designing a Collaborative Human-Robots System

Thibault Gateau1, Caroline P. Carvalho Chanel1, Mai-Huy Le1 and Frédéric Dehais1

Abstract— The objective of this study is to design a human-
robots system that takes into account the non-deterministic
nature of the human operator’s behavior. Such a system is
implemented in a proof of concept scenario relying on a
(MO)MDP decision framework that takes advantage of an
eye-tracker device to estimate the cognitive availability of
the human operator, and, some human operator’s inputs to
deduce where he is focusing his attention. An experiment
was conducted with ten participants interacting with a team
of autonomous vehicles in a Search & Rescue scenario. Our
results demonstrate the advantages of considering the cognitive
availability of a human operator in such a complex context and
also the interest of using such a decisional framework that can
formally integrate the non-deterministic outcomes which model
the human behavior.

I. INTRODUCTION

Autonomous Air Vehicles (AAVs) systems are increas-
ingly becoming more “autonomous” in achieving tasks in a
variety of operational contexts (e.g. border security, inspec-
tion of hazardous areas, military operations). Despite these
technical advances, the human is “still vital” [1] to operate
these automated systems, as stated by regulation authorities.
Generally, the role of the human operator is to supervise the
achievement of the mission, to take over during failure, and
to make appropriate tactical and ethical decisions [2].

However, AAVs safety reports state that the human factors
issues were involved in 80% of mishaps [3]. A deep analysis
of these accidents reveals that they usually involve human-
automated systems interactions deficiencies rather than hu-
man errors per se. In fact, the developments of AAVs
were generally achieved without taking into account the
integration of the human operators [4]: the human operator
is commonly considered as a providential agent to take over
when the artificial systems fail to adapt [5]. The complexity
of theses systems reduces the human operator’s abilities to
take immediate and appropriate actions [6], especially after
long periods of inactivity while monitoring AAVs by a user
interface [7], [8]. In addition, poor user interface design
and careless implementation of authority sharing confuse
the human operator when mental workload exceeds human
capacity [9], resulting in poor human-system performance
[10]. One has to consider that this topic is getting critical
as research efforts are currently oriented on the control of
multiple AAVs by one (or few) human operator(s) [11], [?].
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A promising avenue to deal with these issues is to consider
that robot and human abilities are complementary and are
likely to provide better performance when joined efficiently
than when used separately. This approach, known as mixed-
initiative [12] defines the role of the human and of the
artificial agents according to their recognized skills. A key
issue in designing such mixed-initiative interactions is to
implement a decision system. This latter defines the role and
the authority of human and artificial agents, while estimating
the capabilities of the human, the robotic agent’s status, and
the achievement of the mission. Therefore, a first step is to
implement methods and tools that can assess the “cognitive
state” of the human operator. Many researches have been
achieved in order to implement physiological or neuro-
physiological based inference systems to deduce cognitive
limitations (eg. [13], [14]) in order to dynamically adapt
human-robot interactions [10]. Despite these previous works,
more research is still needed to improve their reliability due
to intra and inter-individual differences. For instance, eye-
tracking techniques appear to be suitable in assessing the
human operator’s cognitive state in the context of a human-
AAVs interaction. Desktop eye-trackers can be easily set up
below the user’s interface and allow the measurement of the
operator’s eye movement. Many metrics can be collected
in real time (for a review see [15]) to estimate cognitive
impairment such as attentional tunneling [16], attentional
confusion [17] or drowsiness [18].

The main idea of considering human operator’s cognitive
state is to merge such measurements with the states of the
robots as well as the level of achievement of the mission. A
decisional policy needs to be set up to manage the dynamics
of the human-AAVs interactions, and possibly the AAVs’
behavior. On one hand, decision-making systems can be
governed by a plan [19] to handle human-robot teaming
scenarios using classical planning approaches. The drawback
of such solutions is the impossibility to consider uncertainties
on actions, partial observable states or potentially non-
deterministic behavior of the human operator. On the other
hand, the decision-making system can be driven by a policy
resulting from the resolution of a (Partially Observable)
Markov Decision Process ((PO)MDP) [20], where the two
types of agents, human or artificial, may face unexpected
situations during the mission or having a partial observation
of the state. These outcomes can be modeled as probabilistic
effects of actions and as a probabilistic observation function
respectively. In this sense, a framework has been proposed
[21], which is able to adapt itself to the user’s intention,
getting feedback from the user in terms of satisfaction. A



different way to manage interactions using POMDPs has
been studied for assisting persons with dementia during
hand-washing [22]. Nikolaidis et al. (2015) [23] proposed a
MOMDP framework where the human is seen as a partially
observable state variable in a joint action context involving
a human and a robot that automatically learns the human’s
specific behavior. In another example [24], a decomposi-
tion - between the state vector of the robot considered
as fully observable while the operator’s cognitive state is
considered as partially observable - is explored to model the
mixed-initiative framework as a Mixed Observability Markov
Decision Process (MOMDP) [25]. However, this relevant
work does not evaluate experimentally the human operator’s
behavior once integrated in such a system and the study only
provides simulations results.

In this paper, we propose to model and to experimentally
evaluate a scenario involving a team composed of AAVs
and a human operator. The decisional policy is driven by a
MOMDP model that aims to take into account the human’s
inputs and measures about his cognitive state in order to
adapt the AAV’s decision autonomy and so optimize the per-
formance of the team. To the best of the authors’ knowledge,
such experimental evaluation has never been addressed yet.
The main contribution of this work consists in:
(1) Including the human’s cognitive state in the mis-
sion planning model, i.e considering the human’s cognitive
availability in the model to obtain a policy which drives the
mixed-initiative process. The human cognitive’s availability
is derived from basic eye-tracking metrics and is also used
in the on-line state estimation process, which provides ap-
propriate actions for the whole system.
(2) Handling imperfections of the state transition function
in the planning model, using an adapted decision model
framework. The human operator’s behavior is not determin-
istic. For instance, the reaction time can depend on the person
solicited and on the context in which the person evolved. We
propose therefore to take advantage of a decision framework
that handles such uncertainties as probabilistic actions effects
and as probabilistic observation function, and to apply such
a decision framework to the system (AAVs and human
operator). To this end, the (MO)MDP represents an elegant
framework to manage such a decision problem.
(3) Building a proof of concept scenario tested in a
well controlled experiment based on a collaborative mission
including one human operator and AAVs.

The paper is organized as follows: first we present the
materials and methods used in our study case. Next, the
collaborative human-AAVs mission problem is formalized
based on a MOMDP framework. After, the experimental
protocol, metrics and the results obtained are presented.
Finally we conclude this paper by discussing future works.

II. EXPERIMENTAL SCENARIO

Humans are generally confronted to concurrent tasks while
performing system supervision. In this sense, the human
operator was confronted to a dual-task paradigm in the
scenario proposed. The first task, defined as Search & Rescue

task, consisted of a classical search and rescue mission [26].
The human operator had to collaborate with autonomous
artificial agents to perform target identifications by means
of an user interface as shown on the left side of Figure 1.
The second task, defined as Short-Term Item Memorization
task, consisted of a series of digits that the human operator
had to memorize and report via the user interface as shown
on the right side of Figure 1.

It was expected that the volunteers to have a lower
performance when achieving both tasks than when achieving
each of them separately.

A. Search & Rescue Task

Targets appeared on the simulation screen (the upper part
of the AAVs monitoring interface on Fig. 1). A starting point
base was defined for the team of AAVs that must: (1) visit
target location; (2) take pictures of the target; (3) identify
the target; (4) bring the target back to the base if it was a
human or a material; (5) avoid bringing back targets that are
neither human nor material.

Drones could request help from the human operator for
target identification, according to the decisional policy com-
puted (Cf. Section III-B.8). A request to the operator was
materialized using a yellow bounding box visual effect on
the target, in the simulation screen. For the human operator,
the identification task was emulated by a dot counting,
depending on the target’s real nature (the lower part of Search
& Rescue task interface - Fig. 1). The identification picture
was available for a limited time on the screen, depending on
the decisional policy, adding some time-pressure to the task
[11], and also to avoid instant target identification, subitizing
behaviors were refrained by using more than six dots [27].

B. Short-term Item Memorization Task

A key executive function when operating complex systems
is the working memory [13]. In this sense, we chose to
design a well know task, the digit span task, to measure
Working Memory (WM) storage and update capacity [28].
The volunteers were instructed to retain digits displayed on
half of a 21 inches gray screen (on the right part, resolution

Search & Rescue
Task

Short-Term Item 
Memorisation Task

Fig. 1. Screen-shot of the participant’s view of the dual task experimental
setup.



1680x1050), via a script written in Python 2.7.3. Volunteers
were asked to use a visual keypad to enter the sequence
of seven digits using a mouse cursor, 500 ms after the last
digit was presented. A visual keypad was preferred to refrain
participant to look outside the screen while entering his
response.

A series of digits (i.e. a trial) started with a 13 second-
cross fixation. A variable stimulus onset asynchrony (SOA)
of 1, 2, or 3 seconds extended the presentation of the fixation
cross. Each digit was presented during 500 ms at a rate of 500
ms (i.e. an inter-stimulus interval of 500 ms). A trial ended
after a 8 seconds response window. Therefore, a trial lasted
30 seconds in average. The complete task was composed of
20 trials and was designed to last in average 10 minutes.

The difficulty of such a task depends on the number of
digits. This way, the difficulty was set to seven digits. In fact,
the human WM is fundamentally limited to store seven (more
or less two) items [28]. Hence, volunteers were expected to
get sufficiently involved into this WM task, without actually
reaching mental overload when achieving this task alone [9].

III. COLLABORATIVE PROBLEM FORMALIZATION

A. MOMDP model formalism

The MOMDP model [25] is an extension of the POMDP
model [20], which explores the fact that certain state vari-
ables are fully observable. Formally, a MOMDP is a tuple
(X ,Y, A,Ω, TX , TY ,Ω, R, γ, b0), where: X (resp. Y) is the
set of fully (resp. partially) observable state variables; A
is the set of actions; Ω is the set of observations; TX
(resp. TY ) is the conditional probability transition function
such that, TX (x, a, x′, y) = p(x′|x, y, a), ∀(x, a, x′, y) ∈
X ×A×X ×Y (resp. TY(x, y, a, x′, y′) = p(y′|x, y, a, x′),
∀(x, y, a, x′, y′) ∈ X ×Y×A×X ×Y); O is the conditional
probability observation function such that, O(o, a, x′, y′) =
p(o|x′, y′, a),∀(o, a, x′, y′) ∈ Ω×A×X ×Y; R : X ×Y ×
A→ R is the reward function defined for a state-action pair;
γ ∈ [0, 1[ is the discount factor; and, b0 = (x0, bY0

) ∈ B
is the initial probability distribution over states, where B is
complete belief state space.

As the artificial decider agent does not have access to the
true state of the world, it maintains a probability distribution
over the partial observable state variables (initialized by b0 =
(x0, bY0)). And, after each action a executed, each next fully
observable state x′ reached and each observation o perceived,
the probability distribution must be updated using the Bayes’
rule (η being a normalization constant):

bo,a,x
′

Y (y′) = η
∑
y′∈Y

p(o|y′, x′, a)p(y′|x, y, a, x′)p(x′|x, y, a)bY(y)

Note that the belief state b is a tuple formed by the couple
(x, bY), with bY ∈ BY(x). BY(x) is a belief state space over
Y conditioned by x: BY(x) = {(x, bY), bY ∈ BY}. Notice
that BY(x) is a sub-space of the complete belief state space
B, such that B =

⋃
x∈X BY(x).

The MOMDP solving can be seen as an optimization
problem for finding a set of policies πx : BY → A, which
maximizes the criterion:

π∗x ← argmax
πx∈Π

Eπx

[
∞∑
t=0

γtr((xt, b
t
Y), π((xt, b

t
Y)))

∣∣∣∣∣b0)
]
.

Such a criterion allows the definition of a value function
and the use of dynamic programming to solve the problem.
Then, the resulting set of policies πx : BY → A, that can be
extracted from the optimal value function, defines an optimal
action which maximizes the expected gain for each reachable
belief states (x, bY), considering that optimal actions would
be performed for all possible successive belief states. For
more details about MOMDP resolution, please refer to [25].

B. MOMDP model for the collaborative mission

The collaborative mission consists in identifying targets,
that can be either human, material, or none, and to bring to
the base only relevant targets (Cf. Section II-A). The drones
are able to sense the type of targets, but they have a less
reliable probability of good classification than the one of
the human operator. The human operator plays cooperatively
with the drones in order to help them with a sensing task.

1) States, actions and observations: The MOMDP state
space is composed by the cross-product between a set of state
variables: the mission state of each drone i (dronei), the
input of the operator (operator-input), the availability of the
human operator and the type of each target j (targetj-type).
For the following, let nd ∈ N∗ be the number of drones,
nt ∈ N∗ be the number of targets, i ∈ [[1;nd]] and j ∈ [[1;nt]].

Possible values for each discrete state variable are:
• dronei : { going-to-target1... going-to-targetnt , at-target1...

at-targetnt , going-to-base, base}, ∀i ∈ [[1;nd]];
• operator-input : {at-target1 ... at-targetnt , other-task, none};
• availability: {OK, KO};
• targetj-type : {human, material, none}, ∀j ∈ [[1;nt]].

We consider that the drones’ position, the operator’s input
and the availability are fully observable state variables; and,
the target’s type is a partially observable state variable.

Therefore we have some discrete observation variables.
The drones and the operator can observe the target’s type.
So, we have:
• o-dronei : {ohuman, omaterial, onone}, ∀i ∈ [[1;nd]];
• o-operator : {ohuman, omaterial, onone};
As actions are defined in a centralized way, the joint

action set is composed by the cross product between drones’
individual actions and user’s interface possible actions. The
user interface (i.e. ground station) action is used to relay a
drone’s requests to the human operator to look at a target
(e.g. launching a yellow bounding box) in order to bring
more reliable measures about the target type. So, we have:
• a-dronei: {goto-target1...goto-targetnt, sample, check, base},
∀i ∈ [[1;nd]];

• a-operator-request: {show-target1...show-targetnt , show-
other-task}.

The transition function defines the dynamic of the model
for each agent. We choose to define a clock of 1 second
to trigger the model (ask for a new action). Therefore, all
transition probabilities related to actions’ effects are defined
hereafter based on this clock.



2) Effects of drones’ actions on drones’ states: the action
going-to-targetj moves the dronei to the going-to-targetj
state with a probability of 1.0, except if the dronei is on
the going-to-targetj state. In this case, it moves the dronei
to the at-targetj state with a probability of 0.2, and remains
on the going-to-targetj state with 0.8. This helps us to
indirectly model the drones’ travel time for a movement that
lasts approximately 5 seconds in our application. The action
check does not change the state of dronei. It consists in
sensing information about the target’s type that the dronei is
overflying. The action sample samples the considered target
and changes the dronei’s state to going-to-base state with a
probability of 1.0. The action go-to-base moves the dronei
to the going-to-base state with a probability of 1.0, except if
the dronei is already on the going-to-base state. In this case
it moves the dronei to the base state with a probability of
0.20, and remains in going-to-base state with 0.8.

3) Effects of actions related to operator’s request: the
action show-targetj depends on the availability state of the
human operator. The probability effect of this action depends
on the time taken by the human operator to answer the
drones’ request when available. To ask for the operator’s
attention, the ground station performs a visual effect to
emphasize where the operator should look (e.g. by launching
a yellow bounding box, see Fig. 1). Previous work has shown
that the yellow bounding box visual effect that is used on
the Search & Rescue task is very efficient, taking around
3 seconds in average to be seen [29]. Based on it, we
consider that the operator would answer to the interface and
so, changes its state to at-targetj with a probability of 0.33
if available, and would remain on the previous state with the
residual probability. The action show-other-task has no visual
effects on the application. When the operator is considered
as not available all actions have no effect.

4) Effects of drones’ actions on target states: when drones
are moving, target states do not change. But, when a drone
samples a target, this target can change its type with an
uniform probability over types. This allows us to model
the fact that new targets can be integrated into the model,
appearing anywhere on the application, once the actual one
has been sampled. Also, when all the drones are on the base,
all targets’ types can change with an uniform probability.
This trick allows us to exploit longer missions without
reinitializing the planning problem.

5) The availability of the operator: the operator must
perform the drones’ monitoring task in priority. But, he can
be requested when he is estimated available, e.g. when he has
finished the other-task (Short-Term Item Memorization task)
for instance. The other-task has a recurrent time duration
of 30 seconds in average, with a 13 seconds cross fixation
period which is considered as a break where the human
operator could be estimated as available. Therefore, the
human operator has a probability of 0.08 to switch from
KO to OK, which is a worst-case probability, and vice-versa.

6) Observation function: the observation model is based
on the fact that all recognition tasks performed by a human
operator are still more reliable than when performed by a

state/obs Drone (Operator)
ohuman omaterial onone

human 0.65 (0.95) 0.30 (0.05) 0.05 (0.05)
material 0.20 (0.05) 0.75 (0.95) 0.05 (0.05)
none 0.05 (0.05) 0.05 (0.05) 0.90 (0.95)

TABLE I
DRONES (AND HUMAN) OBSERVATIONS PROBABILITY TABLE.

drone. An informed observation can be done by a drone
(resp. the human) only if it is over a target and only if
it performs a check action (resp. only when he answers
a show-target action request). The observation function is
summarized in Table I. These probabilities were arbitrarily
chosen for this study case.

7) Reward function: all moving actions have the same
cost, 0.1 per drone, except if at least one drone is on the
base (it is discounted from the cost). The check action has the
cost of 5 per drone. We consider that the payoff related to a
sample action is superior for human targets than for material
ones (human 1000, material 300). If the drone samples a non
relevant target it costs 10000 per target sampled. Note that
if two drones sample the same target the payoff remains the
same. It prevents multiple drones to sample the same target.
The action sample is penalized if it is performed elsewhere
than while flying a target. If a show-target request action is
performed, it costs 2.5 if the operator is available, and 20 if
he is not available.

8) Off-line policy generation: for this study case, and
based on the parametric model before presented, we have
generated the MOMDP model considering 2 drones and 3
targets. The model obtained was solved using the SARSOP
algorithm [25], with ε = 0.1 and with a memory limited to
6.5Gb (a computer with 8Gb RAM). The computed policy
was then executed on the experimental platform described
hereafter to handle the collaborative interaction between
human and artificial agents.

IV. MATERIALS AND METHODS

A. Volunteers

Ten male volunteers (mean age: 33.0, STD= 8.1) com-
pleted the experiment. They have normal or corrected-to-
normal vision, normal hearing, and no psychiatric disor-
ders. After providing written informed consent, they were
instructed to complete the experimental scenario (Cf. Section
II).

B. Global System Architecture

The global system architecture is presented in Fig. 2. The
interaction between the operator and the AAVs is ensured
by the ATMOSPHEr1 interface [30]. This interface can be
seen as part of a ground station which is equipped with an
eye-tracker sensor.

1A Tiny Multi-agent system Oriented Simulator Platform for HMI Ex-
periments - https://sourceforge.isae.fr/projects/atmospher/
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Fig. 2. The complete system architecture. The human operator is able
to interact with the Search & Rescue task and the Short-Term Item
Memorization task interfaces, while an eye-tracker is monitoring his eyes
position. The ATMOSPHEr interface sends to the Data Fusion module
the current drones’ state and observations, and the human operator’s input
(sensing task) with a frequency of 1Hz (the same clock used on the MOMDP
belief update and action request too). The Data Fusion module sends to
the MOMDP policy module the compiled couple (State, Observation). The
MOMDP module updates the belief state and sends the next Action to the
ATMOSPHEr interface.

1) Eye-tracking Device: An eye-tracker (SMI RED250)
was used to collect the human operator’s eye gaze. Volunteers
were asked to stay at a distance of around 60 cm from the
screen. The calibration tolerance was set to be horizontally
and vertically under 0.5◦. The refreshment rate of the eye-
tracker was set to 60Hz. We used SMI iView XTM Software
Development Kit2 to retrieve the volunteer’s gaze position on
the screen, and to export it through a Python TCP/IP interface
that communicates with the Data Fusion module (Fig.
2). We used the participants’ eye gaze as a straightforward
indicator of their cognitive availability. In a nutshell, the
discrete state variable availability (Cf. Section III-B.1) for
the request of the decisional policy was set to OK when the
participant gaze was on the left part of the screen (looking at
Search & Rescue task), and KO otherwise (looking at Short-
Term Item Memorization task or outside the screen, or if the
gaze signal was lost).

C. Metrics
1) Performance evaluation on Search & Rescue task: We

evaluated the operator’s Search & Rescue task performance
with he ratio of the number of answered requests over the
total number of requests asked by the policy. We were
interested in how much the human operator was engaged
on this task, that was defined as primary. We also logged
the expected rewards of the human-robots system during
experiments (MOMDP score given by the SARSOP policy
simulator) as an indicator of policy execution efficiency (Cf.
Section III-B.7).

2) Perfomance evaluation on Short-Term Item Memo-
rization task: Each participant had the same number of
digits series during each session. Therefore, we defined the
performance criteria of Short-Term Item Memorization task

2lyrawww.uvt.nl/ cenv/dci-lab/smi/iViewX.pdf

as the number of digits series that has been fully retrieved,
in the correct order.

D. Protocol’s Sequence

First, the volunteer was trained on the Short-Term Item
Memorization task alone (duration: 10 min), and then on the
Search & Rescue task alone (duration: 10 min). Afterwards,
the volunteer passed two times the dual task protocol:

• in one condition, the decisional system was using the
eye gaze position measured by the eye-tracking device:
we will call it the “with gaze monitoring” (with GM)
condition (duration: 10 min);

• in the other condition, the decisional system had no
information about where the volunteer was looking,
and it was considering him as “available”: this was
the “without gaze monitoring” (without GM) condition
(duration: 10 min) and was used as a control condition.

The order between the with GM condition and the without
GM condition was counter-balanced between the volunteers.
The volunteers had no information about the type of con-
dition they were achieving. At the end of each dual task
condition, the volunteer completes a NASA-TLX form [31].
The typical total duration of a subject’s session (informed
consent approval, the two practice tasks, and the two dual
tasks) was about one hour and fifteen minutes.

V. EXPERIMENTAL RESULTS

A. The Search & Rescue task’s Scores

The Search & Rescue task’s scores are summarized in
Table II. One can observe that there is a tendency concerning
a better request ratio score on with GM condition than
on without GM condition. However, as the volunteers’ re-
quest ratio score is not normally distributed, non-parametric
Wilcoxon rank-sum tests were applied on median values for
each condition. These tests reveal that ratio scores are not
significantly different between the with GM condition, the
without GM condition and the Search & Rescue task achieved
alone. Based on this, we can not formally advance any
conclusion with respect to this score. It is also worth noting
that the variance was the largest in the without GM condition
suggesting that the volunteers had more contrasted behavior
regarding task prioritization. The strategy in the with GM
condition proposed by the system led to less variability
reflecting a more balanced behavior of human operators.

In the same Table, the average expected rewards were
also summarized. Given that these expected rewards were
averaged between 10 volunteers, this is obviously not enough
to evaluate the performance of the MOMDP policy. Paired t-
tests did not reveal any significant difference concerning final
expected reward (human-robots system) between the three
conditions. Nevertheless, average expected rewards have the
same order of magnitude. It means that even when the
human operator was not available to help the AAVs (with
GM condition), the robotic system could achieve the target
recognition task alone.



Metric
Request ratio

score
Averaged discounted

sum of rewards
without GM 0.76 (0.26) 1321.4 (456.5)
with GM 0.84 (0.11) 1210.4 (269.5)
S&R task alone 0.92 (0.03) 1143.4 (469.9)

TABLE II
Search & Rescue TASK’S AVERAGED SCORES (AND STD).

B. Short-Term Item Memorization task’s Scores

The Short-Term Item Memorization task’s scores are sum-
marized in Figure 3. For this scores, parametric two-tailed
paired t-tests were applied on mean values for each con-
dition. P-values were corrected for multiple comparisons
(Bonferroni-Holm). Paired t-test results revealed that the
volunteers perform significantly better on Short-Term Item
Memorization task during the with GM condition than in the
without GM condition (pcorrected<0.01) (Fig. 3). They also
performed significantly better during the Short-Term Item
Memorization task alone training session than in the with
GM condition (pcorrected<0.001).

Without
Gaze

Monitoring

With
Gaze

Monitoring

Short-Term Item 
Memorization 

Task Alone

*

**

Fig. 3. Mean number of fully correct digits on the three conditions (without
GM, with GM and training on Short-Term Item Memorization task alone),
on 20 trials. Red bars indicate standard errors and *: pcorrected < 0.01,
**: pcorrected < 0.001.

C. Volunteers’ Subjective Feedback

A two tailed paired t-test was conducted on the NASA-
TLX scores and revealed that the volunteers rated the with
GM condition’s workload statistically significantly lower
than the without GM condition’s workload (p<0.01). These
results show the importance of taking into account a measure
of the human self-estimated workload while interacting with
robots and performing many tasks.

D. Synthesis

The behavioral measures reveal that the decision system
including a cognitive state indicator (with GM condition)
helps the participant to maintain a good performance on
the primary drones monitoring task (Search & Rescue task),
while improving the score on the secondary WM task (Short-
Term Item Memorization task). Consistently, the subjective
rating confirmed that with GM condition reduced the vol-
unteer’s workload. Our results confirm previous findings [1]
supporting that taking into account the human operator in
the design of the system leads to better overall performance.
In our context, the overall performance is the performance
of the whole system that includes human-robots and all the
tasks the human has to perform.

VI. CONCLUSION AND FUTURE WORKS

The objective of this study was to show that the (MO)MDP
decision framework is suitable to design a human-robots
interactive system. We implemented such a framework to
handle the non-deterministic nature of the human operator’s
cognitive availability.

The results of this study supports the advantages of
taking into consideration the cognitive availability of the
human operator in such complex contexts and to integrate
psychophysiological measurement: volunteers had better ob-
jective performances in the double task paradigm when
their cognitive availability state was taken into account. The
subjective measurements were also in line with these latter
results as the volunteers experienced lower mental workload
in the with GM condition than in the without GM one. Taken
together these results demonstrate that the human is not a
providential agent and that he can not take over or assist the
robots at anytime.

The MOMDP formalism is suited to model probabilistic
actions’ effects, as the human’s time to answer a request
when solicited, and probabilistic observations as the mis-
classification rate when identifying targets. Moreover, such
a formalism can be used to consider the human cognitive
state as a partial observable state (see [23], [24] for in-
stance). More interestingly, using an adapted decision model
framework, such as a MOMDP, we can directly integrate
confidence weight on the observation of the cognitive state
we are obtaining. Though we admit that our metric to derive
the cognitive availability was simple, this proof of concept
demonstrates that it is easy to introduce uncertainties on
observations concerning this state variable while maintaining
the same framework. Therefore, we advocate for the supple-
ness of such a MOMDP formalism, that allows to easily
extend the model to consider new state variables and obser-
vation variables. This approach paves the way to integrating
more complex partial observable human cognitive states,
such as mental workload, mind wandering state, and task
engagement. Improvements can also be made concerning the
model used (Cf. Section III): for example, the generation of
the probability table (Cf. Section III-B.6) could be improved
by using learned data. If probabilities tables are hard to be
learned, one could consider an extension of the MOMDP
model, the Qualitative Possibilistic MOMDPs [32], where
the possibility theory is applied instead of a probability one.
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