
HAL Id: hal-01446070
https://hal.science/hal-01446070v1

Preprint submitted on 25 Jan 2017 (v1), last revised 28 Jan 2017 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Formalisation of the Generalised Towers of Hanoi
Laurent Théry

To cite this version:

Laurent Théry. A Formalisation of the Generalised Towers of Hanoi. 2017. �hal-01446070v1�

https://hal.science/hal-01446070v1
https://hal.archives-ouvertes.fr


A Formalisation of the

Generalised Towers of Hanoi

Laurent Théry
Laurent.Thery@sophia.inria.fr

Abstract

This notes explains how the optimal algorithm for the generalised
towers of Hanoi has been formalised in the Coq proof assistant using
the SSReflect extension.

1 Introduction

The famous problem of the towers of Hanoi was proposed by the french
mathematician Édouard Lucas. It is composed of three pegs and some disks
of different size. Here is a drawing of the initial configuration for 5 disks1:

Initially, all the disks are pilled-up in decreasing order of size on the first peg.
The goal is to move them all to another peg. There are two rules. First, only
one disk can be moved at a time. Second, a larger disk can never be put on
top of a smaller one.

1We use macros designed by Martin Hofmann and Berteun Damman for our drawings.

1



The towers of Hanoi one of the classical example that illustrates all the
power of recursion. If we know how to solve the problem for n disks, then the
problem for n+ 1 disks can be solved in 3 steps. Let us suppose we want to
transfer all the disks to the last peg. The first step uses recursion and moves
the n-top disks to the intermediate peg.

The second step moves the largest disk to its destination

The last step uses recursion and moves the n disks on the intermediate peg
to their destination.

This simple recursive algorithm is also optiomal: it produces the minimal
numbers of moves. In particular, if we look at each recursion depth, the

2



key idea is that largest disk always moves once from its current peg to its
destination.

The generalised version of the towers of Hanoi considers an arbitrary
initial configuration and an arbitrary final configuration. These two configu-
rations must be valid : there is no larger disk on top of a smaller disk. The
problem is to find an algorithm that generates the minimal nunber of moves
that connects the two configurations. Here, the naive recursive algorithm is
still applicable to solve the problem but does not lead to an optimal algo-
rithm. This can be illustrated by 3 disks when trying to go from the initial
configuration:

to the final position

If the naive recursive approach, that tries to move the largest disk only once,
leads to a 7-move long solution as depicted in Figure 1 at page 12. The
optimal solution requires instead to move the largest disk twice and is 5-move
long as depicted in Figure 2 at page 2. In the following, we explain how the
generalised towers of Hanoi has been formalised in the Coq proof assistant
and how an algorithm that solves this problem has been proved correct.

2 The formalisation

In this section, we present the different elements our formalisation, start-
ing with pegs, disks, configurations and moves, then we describe the naive
recursive algorithm and finally the optimal one.

3



2.1 Pegs

The set of natural numbers strictly smaller than three I3 is used to represent
the three pegs.

Definition peg := I3.

An operation that is frequently used in the algorithm is, having two arbitrary
peg p1 and p2 to get the third one, This is done by the function opeg using
some arithmetic:

Definition opeg p1 p2 : peg := inord (3− (p1 + p2)).

where inord is the function that injects a natural number into the type In.

2.2 Disks

A parameter n is used. A disk is then an element of In.

Definition disk := In.

The comparison of the respective size of two disks is simply performed by
comparing their natural number.

2.3 Configurations

Disks are ordered from the largest to the smallest on a peg. This means that
a configuration just needs to record which disk is on which peg. It is then
defined as a finitite function from disks to pegs.

Definition configuration := {ffun disk → peg}.

Note that in this encoding, we do not have invalid configurations.
A configuration is called perfect if all its disks are on a single peg. It is the

case for the initial and final configurations in the standard towers of Hanoi.
The constant function that always returns p is then the perfect configuration
where all the disks are on the peg p.

4



Definition perfect p := [ffun d ⇒ p].

We also need two functions to build configurations. The first one builds a new
configuration from a configuration c by putting all the disks of size strictly
smaller than m on the peg p: this new configuration is perfect at depth m.

Definition mk perfect m p c := [ffun d ⇒ if d < m then p else c d].

The second function performs a single change on the configuration c : the
disk d is moved to the peg p.

Definition setd d p c2 := [ffun d1 ⇒ if d1 = d then p else c d1].

2.4 Moves

A move is defined as a relation between configuration. A parameter m is
introduced. It represents a bound on the size of the disk that has been
moved. Its purpose is to let us perform proof by induction: the induction is
then performed on the depth of the moves m rather than on the number of
disks n.

Definition movem : rel configuration :=
[rel c1 c2 | [∃d1 : In,

[&&

d1 < m,
c1 d1 6= c2 d1,
[∀d2, d1 6= d2 ⇒ c1 d2 = c2 d2 ],
[∀d2, c1 d1 = c1 d2 ⇒ d1 ≤ d2 ] &

[∀d2, c2 d1 = c2 d2 ⇒ d1 ≤ d2]]]].

The definition simply states that there is a disk d1 htat fulfills five conditions.
Its size is smaller than m. It is has moved. It is the unique disk that has
moved. No disk is in on top of d1 in c1. No disk is on top of d1 in c2.
Trivial facts first need to be derived. For example, the move relation is
cumulative and symmetrical.

5



Lemma moveW m1 m2 : m1 ≤ m2 → subrel movem1
movem2

.

Lemma move sym m c1 c2 : movem c1 c2 = movem c2 c1.

A first interesting is then that before and after a move, all the disks smaller
than the disk that has moved are all pilled up on the same peg:

Lemma move perfectl m d c1 c2 :
movem c1 c2 → c1 d 6= c2 d → c1 = mk perfect d (opeg (c1 d) (c2 d)) c1.

Lemma move perfectr m d c1 c2 :
movem c1 c2 → c1 d 6= c2 d → c2 = mk perfect d (opeg (c1 d) (c2 d)) c2.

An important corollary is that if a disk d moves twice on different pegs then
the two configurations after the first move and before the second one are
perfect configurations at depth d.

Lemma move twice d c1 c2 c3 c4 :
c1 6= c4 → c1 d 6= c2 d → c3 d 6= c4 d →

moved.+1 c1 c2 → connect moved c2 c3 → moved.+1 c3 c4 →

c2 = mk perfect d (opeg (c1 d) (c2 d)) c2 ∧

c3 = mk perfect d (c1 d) c2.

This is a key lemma that is used to get a direct lower bound (2d − 1) on the
number of moves that are needed for connecting c2 are c3. We will explain
this later.

In order to be able to decompose paths under the movem.+1 relation, two
inversion lemmas are needed. The first one checks if the disks m moves. If
it is the case, it singles out its first move.

Inductive pathS spec (d : In) c : seq configuration → bool → Type :=
pathS specW : ∀cs, path moved c cs → pathS spec d c cs true |

pathS spec move : ∀c1 cs1 cs2,
path moved c cs1 → c d 6= c1 d → moved.+1 (last c cs1) c1 →

path moved.+1 c1 cs2 → pathS spec d c (cs1 ++ c1 :: cs2) true |

pathS spec false : ∀cs, pathS spec d c cs false.

Lemma pathSP d c cs : pathS spec d c cs (path moved.+1 c cs).

6



The decomposition is presented as an inductive predicate in order to get the
decomposition by the direct application case: pathSP tactic on a path. The
second inversion lemma considers a path at depth d + 1 for which the disk
d may have moved but at the end it remains on the same peg. It builds the
”restricted” path for which the disk does not move.

Lemma pathS restrictE d c cs :
path moved.+1 c cs → last c cs d = c d →

{cs1 |

[∧

path moved c cs1,
last c cs1 = last c cs &

size cs1 ≤ size cs ?= iff cs1 = cs ]}.

The number of moves of the restricted path gets strictly smaller only if there
is a move of the disk d in the path cs.

2.5 Naive algorithm

Our definition of the naive algorithm works at depth m, starts with a con-
figuration c and tries to move all the disks of size less than m to the peg p.
The strategy works as follows. If the disk m is already on the peg p, there
is nothing to do at depth m: the algorithm is recursively called at depth
m − 1. Otherwise, the disk m needs to be moved. The algorithm is first
called at depth m − 1 to move all the disks of size smaller than m − 1 to
the intermediate peg p1. Then, the disk of size m is moved to the peg p and
finally the algorithm is called a second time to move the disk of size smaller
than m− 1 to the peg p. Formally, this gives2:

Fixpoint rpeg path rec m c p :=
if m is m1.+ 1 then

if c m = p then rpeg path rec m1 c p else

let p1 := opeg (c m) p in

let c1 := setd m p (mk perfect m1 p1 c) in
rpeg path rec m1 c p1 ++ c1 :: rpeg path rec m1 c1 p

else [::]

Definition rpeg path c p := rpeg path rec n c p.

2This is a simplified version. The real code is less readable because m is an ordinal.

7



Note that c1 is configuration after the disk m has been moved to the peg p:
all the disks smaller than m are on the intermediate peg p1.

The first basic property that needs to be proved is that this algorithm
is correct: what is build is a path that goes from the configuration c to the
perfect configuration on peg p

Lemma rpeg path correct c p (cs := rpeg path c p) :
path (move n) c cs ∧ last c cs = perfect p.

This directly gives the fact that any configuration is connected to any perfect
configuration

Lemma move connect rpeg c p : connect (move n) c (perfect p).

Since the relation is symmetric, this gives that any two configurations are
connected.

Lemma move connect c1 c2 : connect (move n) c1 c2.

There is always a solution to the generalized tower of Hanoi.
If we are only interested by the size of the solution, it is possible to give

an algorithm that computes the size of the connection given by the naive
algorithm.

Fixpoint size rpeg path rec m c p :=
if m is m1.+ 1 then

if c m = p then size rpeg path rec m1 c p else

let p1 := opeg (c m) p in

size rpeg path rec m1 c p1 + 2m1

else 0.

Note that in this version, there is only one recursive call. The justification
for this comes from the fact that this algorithm returns 2m − 1 when called
on a perfect configuration c that is different from p.

8



Lemma size rpeg path rec 2p m p1 p2 c (c1 := mk perfect m p1 c) :
size rpeg path rec m c1 p2 = (2m − 1)(p1 6= p2).

This gives us directly that it computes the actual size of the naive algorithm.

Lemma size rpeg path rec pr m c p :
size (rpeg path rec m c p) = size rpeg path rec m c p.

As a matter of fact 2m − 1 is the maximum a naive solution can get

Lemma size rpeg path rec pr m c p : size rpeg path rec m c p ≤ 2m − 1.

With these results, it is possible to prove the optimality of the naive algorithm
for the special case where the initial configuration is perfect.

Lemma rpeg path rec min m c1 p cs (c2 := mk perfect m p c1) :
path (move m) c1 cs → last c1 cs = c2 →

size rpeg path rec m c1 p ≤ size cs ?= iff (cs = rpeg path rec m c1 p).

Note that we also prove that the optimal solution is unique. The proof works
by a double induction: one induction on the depth m and another strong
induction on the size of cs. So, when proving the step case at depth m, the
property is known to hold for all paths at depth m−1 and for paths at depth
m which size is strictly smaller than cs. We then simply do a discussion on
the number of moves the disk m does in the path cs :

- If it does not move, the inductive hypothesis for m − 1 gives directly
the result.

- If it moves once, the path cs mimics the strategy of the naive algo-
rithm at depth m. So, combining the two applications of the inductive
hypothesis for m − 1 (one before and one after the move) gives the
result.

- If it moves more than once, there are two possibilities. Either the disk
visits a peg more than once (this is always the case if the disk moves

9



more than two times). In this case, the lemma pathS restrictE gives us a
stricly smaller path on which we can apply the inductive hypothesis on
the size. Either the disk has moved twice on different pegs. The lemma
move twice tells us that if we consider the path the first move and before
the second, it connects two perfect configurations at depth m − 1. So
the inductive hypothesis for m−1 and the lemma size rpeg path rec 2p

tell us that its size is greater than 2m−1 − 1. The same holds for the
path after the second move and the final configuration. Altogether, this
gives a size for cs (not considering the path before the first move of the
disk m) that is larger than 1+ (2m−1 − 1) + 1+ (2m−1 − 1) = 2m. This
is strictly more than the bound 2m − 1 for the naive algorithm given
by the lemma size rpeg path rec pr.

This ends the proof.

2.6 Optimal algorithm

In order to define the optimal algorithm, we first define the symmetric of the
naive algorithm that goes from a perfect configuration to any configuration
by simply reversing the path.

Definition lpeg path rec m p c := rev (belast c (rpeg path rec m c p)).

Definition lpeg path p c := lpeg path rec n p c.

This algorithm is clearly correct and optimal.
The optimal algorithm is defined recursively in order to find the first disk

that has to be moved. When this disk is found, it simply chooses the best
solution between moving it directly to where it has to go (going from c1 to
c3 then c2) and moving it twice (going from c1 to c3 then c4 and fimally c2)
using the intermediate peg p. The computation of these two solutions can use
the naive algorithm since one of the two configurations that are connected is
perfect, so we know it is optimal.

10



Fixpoint hanoi path rec m c1 c2 :=
if m is m1.+1 then

if c1 m = c2 m then hanoi path rec m1 c1 c2 else

let p := opeg (c1 m) (c2 m) in
let n1 := size rpeg path rec m1 c1 p + size rpeg path rec m1 c2 p in

let n2 := size rpeg path rec m1 c1 (c2 m) +
2m1 + size rpeg path rec m1 c2 (c1 m) in

if n1 ≤ n2 then

let c3 := setd m (c2 m) (mk perfect m1 p c1) in
rpeg path rec m1 c1 p ++ c3 :: lpeg path rec m1 p c2

else

let c3 := setd m p (mk perfect m1 (c2 m) c1) in
let c4 := setd m (c2 m) (mk perfect m1 (c1 m) c1) in
rpeg path rec m1 c1 (c2 m) ++ c3 :: rpeg path rec m1 c3 (c1 m)

++ c4 :: lpeg path rec m1 (c1 m) c2
else [::].

Definition hanoi path c1 c2 := hanoi path rec n c1 c2.

It is then easy to derive that this algorithm is correct. The proof for opti-
mality is similar to the one for the naive algorithm : we simply show that
the largest disk cannot move three times in the optimal solution.

Lemma hanoi path correct c1 c2 (cs := hanoi path c1 c2) :
path (move n) c1 cs ∧ last c1 cs = c2.

Lemma hanoi rec min m c1 c2 cs :
path (move m) c1 cs → last c1 cs = c2 →

size (hanoi path rec m c1 c2) ≤ size cs.

3 Conclusion

We have presented a formalisation of the generalised towers of Hanoi. The
formalisation clearly benefits from the SSReflect library. In particular,
finite function have been a convenient tool to encode configuration. Most of
the proofs are elementary. Without surprise, the difficult part is to get the
optimality results. We had to device two dedicated inversion principles in or-
der to mechanise the case distinctions that were needed. The complete proof
is available at http://www-sop.inria.fr/lemma/Laurent.Thery/Hanoi.

11

http://www-sop.inria.fr/lemma/Laurent.Thery/Hanoi


Figure 1: A non-optimal solution for the generalised towers of Hanoi

12



Figure 2: An optimal solution for the generalised towers of Hanoi

13


	Introduction
	The formalisation
	Pegs
	Disks
	Configurations
	Moves
	Naive algorithm
	Optimal algorithm

	Conclusion

