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Approximation of the allelic frequency spectrum in general

supercritical branching populations

Benoit Henry1

Abstract

We consider a general branching population where the lifetimes of individuals are i.i.d. with

arbitrary distribution and where each individual gives birth to new individuals at Poisson times

independently from each other. In addition, we suppose that individuals experience mutations

at Poissonian rate θ under the infinitely many alleles and neutrality assumptions assuming that

types are transmitted from parents to offspring. This mechanism leads to a partition of the

population by type, called the allelic partition. The main object of this work is the frequency

spectrum A(k, t) which counts the number of families of size k in the population at time t.

The process (A(k, t), t ∈ R+) is an example of non-Markovian branching process belonging to

the class of general branching processes counted by random characteristics. In this work, we

propose methods of approximation to replace the frequency spectrum by simpler quantities. Our

main goal is study the asymptotic error made during these approximations through central limit

theorems. In a last section, we perform several numerical analysis using this model, in particular to

analyze the behavior of one of these approximations with respect to Sabeti’s Extended Haplotype

Homozygosity [20].

MSC 2000 subject classifications: Primary 60J80; secondary 92D10, 60J85, 60G51, 60K15, 60F05.

Key words and phrases. allelic partition – allelic frequency spectrum – branching processes – neutral

mutations – splitting tree – Central Limit Theorem.

1 Introduction

In this paper, we consider a general branching population where the lifetimes of the individuals

and their reproductions processes are independent and follow the same distribution. Moreover, we

assume that their lifetimes are distributed according to an arbitrary probability distribution PV and

that the births occur, during their lifetime, according to a Poisson process with constant rate b. The

tree underlying this dynamics is called a splitting tree. This class of random trees was introduced in

[13] by Geiger and Kersting and has been widely studied in the last decade [16, 17, 18].

We suppose, in addition, that neutral mutations occur on individuals and that each new mutation

confers to its holder a brand new type (i.e. never seen in the population): this is the infinitely many
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alleles assumption. This allows modeling the occurrence of a new type in a population (such as a new

species or a new phenotype in a given specie). We also suppose that every individual inherits the type

of its parent. This model leads to a partition of the population by types. The frequency spectrum

of the population alive at time t is defined as the sequence of number (A(k, t), k ∈ N∗) (N∗ refers to

the set of positive integers) where, for each k, A(k, t) is the number of families (i.e. sets of individuals

carrying the same type) of size k in the population. The famous example of Ewens sampling formula

gives explicit expression for the law of the frequency spectrum [12] when the genealogy is given by

the Kingman’s coalescent. However, due to its central role in biology, the frequency spectrum has

been studied in many other population models. Among coalescent processes, the frequency spectrum

has, for instance, also been studied in the context of Beta [5], Bolthausen-Sznitman [3] or Lambda

[4] coalescents. Other works studied similar quantities in the case of Galton-Waston branching

processes (see [6] or [14]). In our model, the frequency spectrum has also been widely studied in the

past [9, 10, 11, 8].

Another object of interest is the process (Nt, t ∈ R+) which counts the number of living indi-

viduals in the population at a given time t. This process is known as binary homogeneous Crump-

Mode-Jagers process. One of the main result of the theory of such process is the law of large number

which gives in our particular case that e−αtNt converges almost surely to a random variable E which

is exponential conditionally on non-extinction (for some positive constant α).

As for e−αtNt, it is also known that the quantities e−αtA(k, t) converge almost surely to ckE ,

where ck is an explicit deterministic constant. This result can be easily obtained by conjunction

of the works of [9] and [19] using the theory of general branching processes counted by random

characteristics (a complete statement can be found in [11]). An alternative proof avoiding the use of

the general branching processes theory can be found in [8].

It appears that the frequency spectrum (A(k, t), k ∈ N∗) is a quantity which is hard to manipulate

from the probabilistic point of view (see [9, 10, 8]). This implies that such a model is inconvenient for

practical applications. In this work we propose to use the laws of large numbers in order to replace

(A(k, t))k≥1 by more manipulable quantities and propose to investigate the error made during this

approximation. The first possible approximation is the following.

Approximation 1:

(A(k, t), k ∈ N∗) ≈ (ck)k≥1e
αtE .

However, this is unsatisfactory for practical applications since the random variable E is not

observable at finite times. Another idea is to exploit the fact that the random variable appearing in

the law of large numbers for A(k, t) and for Nt is the same. This leads to the second approximation.

Approximation 2:

(A(k, t), k ∈ N∗) ≈ (ck)k≥1Nt.

In order to investigate the errors made during this approximation (at least asymptotically), one would

like to have central limit theorems associated to the law of large numbers for the frequency spectrum.

In a previous work [15], we showed that the error in the convergence of e−αtNt is of order eαt/2 and

obtained a central limit theorem for this error. An important aspect of the method introduced in [15]

is that it can be used to derive CLTs for other branching processes counted by random characteristics.
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In particular, the main goal of this work is to obtain central limit theorems for the convergence of

the frequency spectrum. More precisely, we show that the error in both approximations converges

(when renormalized) to a Laplace random variable which is obtained through a Gaussian mixing

with the limiting random variable of eαtNt (which also improve the results of [15]).

The original motivation of this study (and of other works on this model [9, 10, 8]) comes from

the works of Sabeti and al. [20] where the frequency spectrum is used to detect positive selection of

an allele in an increasing population. More specifically, suppose that you want to detect the positive

selection of an allele on a given gene. The main idea is that, under neutral evolution, the allele under

consideration needs a long time to reach a high frequency in the population. Hence, if the frequency

of the allele w.r.t. its age is significantly higher than the expected frequency (w.r.t. its age and under

neutral growth), this anomaly would suggest a positive selection of this allele. The main problem is

now to be able to estimate how old the allele is. Sabeti and al. remarked that the allelic partition can

be used as a clock to estimate the age of an allele. More precisely, the type is defined as a given part

of the genome (of the specie) of length x (measured in a meaningful unit such as kilo-bases). Hence,

two individuals have different types if this portion of DNA has differences in the sequence of basis.

As a consequence, the allelic partition of the subpopulation carrying the allele becomes thinner as

x increases (because the higher x is, the higher is the probability that a mutation occurred on a

sequence of x bases). Finally, the speed of fragmentation of the allelic partition, when x increases,

should give clues on the age of the allele. One of the purposes of this model is to understand how

the frequency spectrum evolves under neutral evolution and to provide tools to pursue such analysis.

In this work, we discuss some aspects of this idea and give some directions in order to construct

rigorous tests for the positive selection (see Section 8).

The paper is organized as follows. Section 2 is devoted to the mathematical description of the

model and to preliminary results which are used in the sequel. Section 3 gives the mains theoretical

results of this work and, in particular, central limit theorems which allow to study the error in our

proposed approximations. Section 4 gives an outline of the strategy of proof. Section 6 and 7 are

devoted to the proofs of Theorem 3.4 and 3.1 respectively. Finally, in Section 8 we perform some

numerical studies on the model to stress the quality of our approximation. The discussions about

the method of Sabeti and al. are given in this last section. An appendix contains some technical

proofs.

2 Model and preliminaries

In this work, we consider a branching population with the following dynamic: starting with a single

individual (called the ancestor) whose lifetime is distributed according to an arbitrary probability

distribution PV on (0,∞], this ancestor gives birth to new individuals at a Poissonian rate b. Each

birth event giving a single new individual. From this point, each child of the ancestor lives and gives

birth according to the same mechanism independently from the other individuals in the population.

This formal description can be made rigorous through the definition of a probability distribution

on the set of chronological trees. For the details of such construction, we refer the reader to [16].

The first quantity of interest when studying such population is the number Nt of alive individuals
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in the population at a fixed time t (assuming that the time t = 0 is birth-date of the ancestor). The

process (Nt, t ∈ R+) is known as binary homogeneous Crump-Mode-Jagers process and is a simple

example of non-Markovian branching process. In the sequel, we denote by W (t) the expectation of

Nt conditionally on the non-extinction at time t. That is

W (t) := E [Nt | Nt > 0] .

In [16], the author shows that the random variable Nt is geometrically distributed conditionally

on {Nt > 0} with parameter 1
W (t) . In addition, the author of [16] showed that the Laplace transform

of W can be linked to the Laplace transform of PV through the relation∫
[0,∞)

W (s)e−λs ds =
1

ψ(λ)
, ∀λ > α,

where

ψ(x) = x− b
∫

(0,∞]

(
1− e−rx

)
PV (dr), x ∈ R+, (2.1)

and α is the largest root of ψ,

α = sup{x ∈ R+ | ψ(x) = 0}.

The function ψ is called the Laplace exponent of the tree and characterizes its law. In particular,

the Laplace transform of PV can be expressed in terms of ψ,∫
R+

e−λv PV (dv) = 1 +
ψ(λ)− λ

b
, ∀λ ∈ R+. (2.2)

In this work, we assume that α is a strictly positive real number. This case is called the super-

critical case and is equivalent to bE[V ] > 1, where V is some random variable with distribution PV .

In the supercritical case, the real number α is called the Malthusian parameter of the population

because it corresponds to the mean exponential growth rate of the population. Before going further,

let us remark that equation (2.2) leads easily to the following identity:∫
R+

e−αv PV (dv) = 1− α

b
. (2.3)

Many previous works [9, 10, 11] demonstrate that some properties of the splitting tree were easier

to study on the tree describing only the genealogical relation between the lineages of the individuals

alive at time t. For instance, in the model with mutations, the difference between two individuals

in term of type lies only on the time past since their lineages has diverged. Hence, this particular

genealogical tree, known as coalescent point processes (CPP), contains the essential information

to study the allelic partition. In order to derive the law of that genealogical tree, one needs to

characterize the joint law of the times of coalescence between pairs of individuals in the population,

which are the times since their lineages have split.

In [16], the author defines an order on the set of individuals alive at a fixed time t, conditionally on

{Nt > 0}, and considers the sequence of times of coalescence (Hi)0≤i≤Nt−1 between two consecutive

individuals (that is Hi is the time passed since the lineage of individuals i and i+ 1 have diverged)
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with the convention that the older lineage is the first one (i.e. H0 = t). Moreover, in [16], the author

shows that the random vector (Hi)0≤i≤Nt−1 can be produced from a sequence (Hi)i≥1 of i.i.d. random

variable stopped at its first value greater than t and such that

P (H1 > s) =
1

W (s)
, s ∈ R+.

To summarize, given the population is still alive at time t, one can forget about the details of the

splitting tree and code the genealogy by a new object called the coalescent point process (CPP). Its

law is the law of a sequence (Hi)0≤i≤Nt−1, where the family (Hi)i≥1 is i.i.d. with the same law as H,

stopped before its first value HNt greater than t, and H0 is deterministic equal to t (see Figure 1).

Although we do not use directly the CPP in this work, this object allowed us to obtain [8]

formulas for the moments of the frequency spectrum which are widely used in the sequel. For this

reason, we recall the properties needed to understand the methods.

Remark 2.1. Let N be a integer valued random variable. In the sequel we said that a random vector

with random size (Xi)1≤i≤N form an i.i.d. family of random variables independent of N , if and only

if

(X1, . . . , XN )
d
=
(
X̃1, . . . , X̃N

)
,

where
(
X̃i

)
i≥1

is a sequence of i.i.d. random variables distributed as X1 independent of N .

0 1 2 3 4 5 6 7 8 9 10 12 13 14 15

Figure 1: A coalescent point process for 16 individuals, hence 15 branches. (Image by A. Lambert)

Before going further, let us point out that if we define Nt as the first value of the sequence (Hi)i≥1

greater than t, i.e.

Nt = inf{i ≥ 1 | Hi > t},

then Nt is indeed geometric with the expected parameter. More precisely, for a positive integer k,

P (Nt = k | Nt > 0) =
1

W (t)

(
1− 1

W (t)

)k−1

. (2.4)
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In particular,

E [Nt | Nt > 0] = W (t). (2.5)

Moreover, it can be showed (see [19]), that

E [Nt] = W (t)−W ? PV (t), (2.6)

and

P (Nt > 0) = 1− W ? PV (t)

W (t)
, (2.7)

where

W ? PV (t) :=

∫
[0,t]

W (t− s) PV (ds).

Now, let us introduce the mathematical formalism for the mutation process used in this work (this

formalism comes from [8]). Since only the mutations occurring on the lineages of living individuals

at time t can be observed, it follows from standard properties on Poisson point processes, that the

mutation process can be defined directly on the CPP. So, let P be a Poisson random measure on

[0, t]× N with intensity measure θλ⊗ C, where C is the counting measure on N, then the mutation

random measure N on the CPP is defined by

N (da, di) = 1Hi>t−a1i<Nt P (da, di) ,

where an atom at (a, i) means that the ith branch experiences a mutation at time t−a. We suppose

that each individual inherits the type of its parent. This rule yields a partition of the population by

types. The distribution of the sizes of the families in the population is called the frequency spectrum

and is defined as the sequence (A(k, t))k≥1 where A(k, t) is the number of types carried by exactly k

individuals in the alive population at time t, excluding the family holding the ancestral type of the

population (i.e. individuals holding the same type as the root at time 0). This last family is called

clonal, as the ancestral type.

In the study of the frequency spectrum, an important role is played by the law of the clonal

family. We denote by Z0(t) the size of this family at time t.

To study this family, it is easier to consider the clonal splitting tree constructed from the original

splitting tree by cutting every branches beyond mutations. This clonal splitting tree is a standard

splitting tree without mutations, where individuals are killed as soon as they die or experience a

mutation. The new lifespan law is therefore the minimum between an exponential random variable

of parameter θ and V . This distribution is denoted Pθ. It is straightforward by simple manipulations

of Laplace transforms that the Laplace exponent of the corresponding tree is

ψθ(x) = x−
∫

(0,∞]

(
1− e−rx

)
Pθ(dr) =

xψ(x+ θ)

x+ θ
.

We denote by Wθ the corresponding scale function. This leads to,

P (Z0(t) = k | Z0(t) > 0) =
1

Wθ(t)

(
1− 1

Wθ(t)

)k−1

, k ≥ 1.
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When α > θ (resp. α = θ, α < θ), this new tree is supercritical (resp. critical, sub-critical) and we

talk about clonal supercritical case (resp. critical, sub-critical case).

Moreover, the law of Z0 conditionally on the event {Nt > 0} can be obtained, and is given by

P (Z0(t) = k | Nt > 0) =
e−θtW (t)

Wθ(t)2

(
1− 1

Wθ(t)

)k−1

, ∀k ≥ 1. (2.8)

For the rest of this paper, unless otherwise stated, the notation Pt refers to P (. | Nt > 0) whereas

P∞ refers to the probability measure conditioned on the non-extinction event (which has positive

probability in the supercritical case).

Finally, we recall the asymptotic behaviors of the scale functions W (t) and Wθ(t) which are

widely used in the sequel.

Lemma 2.2. ([9, Thm. 3.21]) There exist a positive constant γ such that,

e−αtψ′(α)W (t)− 1 = O
(
e−γt

)
.

In the case that θ < α (clonal supercritical case),

Wθ(t) ∼
t→∞

e(α−θ)t

ψθ(α− θ)
.

In the case that θ > α (clonal sub-critical case),

Wθ(t) =
θ

ψ(θ)
+O

(
e−(θ−α)t

)
.

In the case where θ = α (clonal critical case),

Wθ(t) ∼
t→∞

θt

ψ′(α)
.

For a purpose, a more precise description of the asymptotic behavior of W is needed. It is given

by the following result.

Lemma 2.3. [15, Prop. 5.1] There exists a positive non-increasing càdlàg function F such that

W (t) =
eαt

ψ′(α)
− eαtF (t), t ≥ 0,

and

lim
t→∞

eαtF (t) −−−→
t→∞

µ,

with

µ :=

{
1

bE[V ]−1 if E[V ] <∞,
0 otherwise,

where V is some random variable with distribution PV .
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From this lemma and (2.7), one can easily deduce that

P (Nt > 0) −−−→
t→∞

P (NonEx) =
α

b
, (2.9)

where NonEx refer to the non-extinction event.

In [8], we show that a CPP stopped at time t with scale function W can be constructed by grafting

independent CPP stopped at a fixed time a ≤ t on a CPP stopped at time t−a with an explicit scale

function different of W whose total population is denoted N
(t)
t−a (see Figure 2). Moreover, we showed

t

t-a

P(1) P(2) P(3) P(4)

Figure 2: Adjunction of independent CPPs on the blue CPP. N
(t)
t−a is the number of individual in

the blue CPP.

that the frequency spectrum can be expressed as an integral with respect to the random measure N
along the CPP, that is

A(k, t) =

∫
[0,t]×N

1
Z

(u)
0 (a)=k

N (da, du) , ∀k ∈ N∗,

where Z
(u)
0 refers to the clonal family of the uth grafted sub-CPP (see Figure 2). In other words,

since the mass of N is concentrated on mutation points, this boils down to count, for each mutation,

if the clonal descent (of the newest type) is represented by k alive individuals at time t. Let us point

out that Z
(u)
0 (a) can be interpreted (without grafting CPPs) as the number of individual at time t

which descend from the uth individual (among the individuals alive a time t − a) and carrying the

same type as this uth individual.

More generally, denoting by (A(u)(k, a), k ∈ N∗) the frequency spectrum of the uth grafted

sub-CPP, we have, for any positive integers k1, · · · , kl with l ∈ N∗,

l∏
i=1

A(ki, t) =
l∑

i=1

∫
[0,t]×N

1
Z

(u)
0 (a)=ki

N
(t)
t−a∑

u1:l−1=1

l−1∏
j=1
i 6=j

A(uj)(kj , a) N (da, du) , (2.10)

where
∑N

(t)
t−a

u1:l−1=1 denotes for the multi-sum

N
(t)
t−a∑

u1=1

· · ·
N

(t)
t−a∑

ul−1=1

.
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Moreover, in [8, Thm, 3.1], we show that the expectation of such integral can be computed as if the

process (u, a) 7→ Z
(u)
0 (a) (or (u, a) 7→ A(u)(k, a) ) was independent of the random measure N (which

is clearly not the case). Equation (2.10) is used later to obtain some moments estimates useful to

prove our theorems. In particular, this allows to prove that (see [8, Thm, 5.2]) for any positive

integer k and l,

Et [A(k, t)] = W (t)

∫ t

0

θe−θs

Wθ(s)2

(
1− 1

Wθ(s)

)k−1

ds, (2.11)

and

Et [A(k, t)A(l, t)] = 2W (t)2

∫ t

0

θe−θs

Wθ(s)2

(
1− 1

Wθ(s)

)k−1

ds

∫ t

0

θe−θs

Wθ(s)2

(
1− 1

Wθ(s)

)l−1

ds

−W (t)

∫ t

0
2θ

e−θaW (a)

Wθ(a)2

(
1− 1

Wθ(a)

)l−1 ∫ a

0

θe−θs

Wθ(s)2

(
1− 1

Wθ(s)

)k−1

ds da

−W (t)

∫ t

0
2θ

e−θaW (a)

Wθ(a)2

(
1− 1

Wθ(a)

)k−1 ∫ a

0

θe−θs

Wθ(s)2

(
1− 1

Wθ(s)

)l−1

ds da

+W (t)E
∫ t

0
θW (a)−1

(
E
[
A(k, a)1Z0(a)=l

]
+ E

[
A(l, a)1Z0(a)=k

])
da

+ 1l=kW (t)

∫ t

0

θe−θa

Wθ(a)2

(
1− 1

Wθ(a)

)k−1

da. (2.12)

These tools also allow, for instance, to prove next two results [16, 11, 8].

Theorem 2.4. There exists a random variable E, such that

e−αtNt −−−→
t→∞

E
ψ′(α)

, a.s. and in L2.

Moreover, under P∞, E is exponentially distributed with parameter 1.

Theorem 2.5. For any positive integer k,

e−αtA(k, t) −−−→
t→∞

ckE
ψ′(α)

, a.s. and in L2,

where E is the random variable of the Theorem 2.4 and

ck =

∫ ∞
0

θe−θa

Wθ(a)

(
1− 1

Wθ(a)

)k−1

da. (2.13)

3 Main results

The almost sure convergences stated in Section 2 suggests studying the second order properties of

these convergences to get central limit theorems. Our main result, Theorem 3.1, allows to study

the asymptotic error in the second approximation proposed in the introduction of this work. In

addition, we prove more standard central limit theorem which are interesting from the theoretical

point of view.
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Before going further, we recall that the Laplace distribution with mean µ ∈ Rn and covariance

matrix K is the probability distribution whose characteristic function is given by

λ ∈ Rn 7→ 1

1 + 1
2〈λ,Kλ〉 − i〈µ, λ〉

,

where 〈·, ·〉 denotes the standard Euclidean scalar product. This law is denoted by L (µ,K). We also

recall that, if G is a Gaussian random vector with mean µ and covariance matrix K and E is an

exponential random variable with parameter 1 independent of G, then
√
EG is Laplace L (µ,K).

3.1 Central limit theorem for the error between A(k, t) and ckNt

Our first theorem concerns the error between A(k, t) and ckNt.

Theorem 3.1. Suppose that θ > α, then

ψ′(α)
(
e−α

t
2 (A(k, t)− ckNt)

)
k∈N∗

(d)−−−→
t→∞

L w.r.t. P∞,

where L is RN∗-valued random variable with distribution L(0,M) where the constants ck are defined

in (2.13) and the covariance matrix M is defined, for any positive integer l and k, by

Ml,k =2ψ′(α)

∫ ∞
0

θe−θa

Wθ(a)2

(
1− 1

Wθ(a)

)l−1

(Ea [A(k, a)]− ckW (a)) da (3.1)

+ 2ψ′(α)

∫ ∞
0

θe−θa

Wθ(a)2

(
1− 1

Wθ(a)

)k−1

(Ea [A(l, a)]− clW (a)) da

− ψ′(α)

∫ ∞
0

θW (a)−1Ea
[
(A(k, a)− ckNa)1Z0(a)=l

]
da

− ψ′(α)

∫ ∞
0

θW (a)−1Ea
[
(A(l, a)− clNa)1Z0(a)=l

]
da

+ 1l=k

∫ ∞
0

θe−θs

Wθ(s)2

(
1− 1

Wθ(s)

)k−1

ds.

The above theorem can be enhanced to obtain more information on the limiting distribution.

Corollary 3.2. Under the hypothesis of Theorem 3.1. Let G be a centered RN∗-valued Gaussian

random variable, with covariance matrix M independent of the random variable E of Theorem 2.4,

then

ψ′(α)
(
e−α

t
2 (A(k, t)− ckNt)

)
k∈N∗

(d)−−−→
t→∞

√
EG w.r.t. P∞.

In addition, this convergence holds jointly with the weak convergence of ψ′(α)e−αtNt to E.

Remark 3.3. • Let us point out that the above convergences has to be understood as convergence

of processes for the product topology of RN. In particular, it is well-known that for this topology

(see [7]) the convergence of finite dimensional distributions is enough to ensure the convergence

as processes.
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• Note that an explicit formula for Et[A(k, t)] is given by (2.11). Proposition 4.5 of [8] gives

explicit formulas for Et
[
A(k, t)1Z0(t)=l

]
. And a formula for Et

[
Nt1Z0(t)=k

]
can be found in

Proposition 4.1 of [9].

The proof of these results can be found in Section 7.

3.2 Central limit theorem for the convergence of Theorem 2.5

Our second result is a central limit theorem related to the convergence of Theorem 2.5.

Theorem 3.4. Suppose that θ > α. Then, we have, under P∞,(
e−α

t
2
(
ψ′(α)A(k, t)− eαtckE

))
k∈N∗

(d)−−−→
t→∞

L,

where L is RN∗-valued random variable with distribution L(0, H) where the constants ck are defined

in (2.13) and the covariance matrix H is defined, for any positive integer k and l, by

Hk,l = Mk,l − 4ψ′(α)γckcl − 2µψ′(α), i, j ≥ 1,

where µ is defined in Lemma 2.3, and

γ :=

{
1 if E[V ] <∞,

−α−1PV ({∞}) otherwise,

where V is some random variable with distribution PV .

We have a similar extension for this theorem as for the previous one.

Corollary 3.5. Under the hypothesis of Theorem 3.1. Let G be a centered RN∗-valued Gaussian

random variable, with covariance matrix H independent of the random variable E of Theorem 2.4,

then

ψ′(α)
(
e−α

t
2 (A(k, t)− ckNt)

)
k∈N∗

(d)−−−→
t→∞

√
EG w.r.t. P∞.

In addition, this convergence holds jointly with the weak convergence of ψ′(α)e−αtNt to E.

The proof of Theorem 3.4 can be found in Section 6.

Remark 3.6. The proofs of the two theorems are very similar. Since the hardest case is the one of

Theorem 3.4, we only detail this case in the sequel. The proof of the corollaries are only detailed in

the case of Theorem 3.1 in Section 7. However, Remark 7.2 highlights the only difference between

the two cases.
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4 Strategy of proof

The proof of this theorem is based on the proof of the central limit theorem for the process (Nt, t ∈
R+) given in [15]. The structure of the proof follows the same lines and is detailed in Section 4 of [15].

In a sake of completeness, we recall the ideas. For this reason, the results which are straightforward

rewording of the proofs given in [15] are not detailed. However, we think it is necessary to recall

some aspects of [15], in particular from [15, Section 4].

The idea of the proof is based on a decomposition of the tree as the one of Figure 3. More precisely,

if we fix two times u and t with u < t, each individual composing the population at time u induces a

subtree of the whole tree made of its residual lifetime and its descent. To formalize this, let us recall

that, for any fixed time u, there is a natural order (for instance given by an exploration process [16],

see also Figure 3) of the individuals alive at this time. Moreover, we denote, for 1 ≤ i ≤ Nu, Oi the

residual lifetime of the ith individual alive at time u. The tree of the ith individual is denoted T(Oi)

where Oi refers to the residual lifetime of individual i. Indeed, since the descent of each of these

individuals are made of independent random quantities (by construction), it follows that the family

(Oi)1≤i≤Nu is the only source of dependencies between the family (T(Oi))1≤i≤Nu . Roughly speaking,

in view of [15], one would like to decompose the error

e−
α
2
t (A(k, t)− ckNt) ,

as the sum of the errors in each subtree,

e−
α
2

(t−u)
Nu∑
i=1

e−
α
2
u (A(k, t− u,Oi)−Nt(Oi)) , (4.1)

where A(k, t− u,Oi) denotes the number of families of size k in tree T(Oi) at time t− u (seen as a

standalone tree, i.e time 0 for T(Oi) corresponds to time u in the whole tree). The notation Nt−u(Oi)

refers to the number of individual in tree T(Oi) at time t−u. Doing so, the error can be re-expressed

as a geometric sum (under Pu) of errors with controlled moments, leading to a Laplace distribution

when Nu gets big.

Unfortunately, one cannot decompose the error this way. This is due to the fact that subtrees

may share individuals with a common type. Hence, among the individuals of a family of size k

(which contribute to A(k, t)), some might belong to subtree T(Oi) whereas some others might be in

T(Oj) (for i 6= j). However, the decomposition of Equation (4.1) holds true on the event

Γu,t = {”there is no family in the population at time t which is older than u”} ,

which occurs with high probability for u << t and θ > α (since in the clonal subcritical case, the

families tend to extinct).

Another important aspect is to obtain estimates on the moments of the error. To get such

estimates, the following estimates which comes from [15, Corollary 6.3] are useful.

1

P (Nt > 0)
=
b

α
− bµψ′(α)

α
e−αt + o(e−αt). (4.2)

12
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Figure 3: Residual lifetimes with subtrees associated to living individuals at time u.

We also have

Et [NtE ] =
2eαt

ψ′(α)
− 1

ψ′(α)
− 3µ+ o(1). (4.3)

Finally, let us recall that the law of the vector (O2, . . . , ONu) is given by the following lemma

which also comes from [15].

Lemma 4.1. Let u in R+, we denote by Oi for i an integer between 1 and Nu the residual lifetime

of the ith individuals alive at time u. Then under Pu, the family (Oi, i ∈ {1, . . . , Nu}) form a family

of independent random variables, independent of Nu, and, expect O1, having the same distribution,

given by, for 2 ≤ i ≤ Nt,

Pu(Oi ∈ dx) =

∫
R+

W (u− y)

W (u)− 1
bP (V − y ∈ dx) dy.

Moreover, it follows that the family (Ns(Oi), s ∈ R+)1≤i≤Nu is an independent family of process, i.i.d.

for i ≥ 2, and independent of Nu.

To end this reminder, let us recall the decomposition of the limiting random variable E (defined

for instance in Theorem 2.4) at a fixed time u. First, from the construction of the splitting tree (see

also [15]), we have, almost surely,

Nt(Oi) =

∫
[0,t]

N ξu
t−u1Oi≥u ξ(du) + 1Oi≥t, ∀t ≥ 0,

where

1. (Nt, t ∈ R+)i≥1 is an i.i.d. family of random processes with the same law as (Nt, t ∈ R+),

13



2. ξ is some Poisson random measure with constant rate b,

3. the objects of item 1 and 2 are independent, and independent of Oi,

4. ξa denotes ξ([0, a]).

The idea behind these equations is that the tree T(Oi) is constructed by grafting on a branch with

length Oi a random number of trees with the same distribution as the whole splitting tree T. Hence,

the number of individual in this tree at time t, is the number individual in each of the grafted trees

(taken at a time corresponding to t minus the grafting time), plus 1 if the first branch has length

greater than t. In addition, in [15] we showed that ψ′(α)e−αtNt(Oi) converges in L2 to a random

variable E(Oi), and that we have the following lemma.

Lemma 4.2. [15, Lemma 6.8] For any time u > 0, we have the following decomposition of E (see

Theorem 2.4 for the definition),

E = e−αu
Nu∑
i=1

Ei (Oi) , a.s.

Moreover, under Pu, the random variables (Ei (Oi))i≥1 are independent, independent of Nu, and

identically distributed for i ≥ 2.

Before proving Theorem 3.4, we need an important number of estimates on the moments of the

error. This is the point of the next section.

5 Preliminary moment estimates

As explained in Section 4, one needs to have estimates on the error in the sum of Equation (4.1).

There are two steps to obtain these estimates:

• Get the estimates when the lifetime V∅ of the ancestral individual is distributed according to

PV .

• Deduce the estimates when V∅ follows an arbitrary distribution, and finally take law of Oi for

V∅.

In both case, the lifetime distribution of the other individuals is still assumed to be PV . So, according

to plan, we begin with the standard splitting tree case.

5.1 Case V∅
L
= PV

One of the main difficulties is to get estimates on moments like

E
[(
ψ′(α)A(k, t)− eαtckE

)n]
, for n = 2 or 3.

or

E [(A(k, t)− ckNt)
n] , for n = 2 or 3.

We begin with the following lemma.
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Lemma 5.1. Let k and l be two positive integers, then

eαtE
[(
e−αtψ′(α)A(k, t)− ψ′(α)cke

−αtNt

) (
e−αtψ′(α)A(l, t)− cle−αtψ′(α)Nt

)]
−−−→
t→∞

Mk,l

where M is defined in Equation (3.1).

Proof. We give the details for l 6= k, the case l = k is a direct adaptation of what follows with the

indicator function 1l=k of (2.12) in mind. We recall that using the calculus made in Remark 5.6 of

[8], we have

Et [A(k, t)Nt] = 2W (t)2ck(t)− 2W (t)

∫
[0,t]

θPa (Z0(a) = k) da

+W (t)

∫
[0,t]

θW (a)−1Ea
[
Na1Z0(a)=k

]
da,

with

ck(t) :=

∫ t

0

θe−θa

Wθ(a)2

(
1− 1

Wθ(a)

)k−1

da, ∀k ≥ 1, t ∈ R+.

Moreover, from (2.12) and Lemma 2.3, we have

ψ′(α)2Et [A(k, t)A(l, t)] = 2W (t)2ck(t)cl(t) +RW (t) + o(e−αt),

with

R :=− ψ′(α)

∫ ∞
0

2θW (a)−1Pa (Z0(a) = k)Ea [A(l, a)] da

+ ψ′(α)

∫ ∞
0

2θW (a)−1Pa (Z0(a) = l)Ea [A(k, a)] da

+ ψ′(α)

∫ ∞
0

θW (a)−1
(
Et
[
A(k, a)1Z0(a)=l

]
+ Et

[
A(l, a)1Z0(a)=k

])
da.

These identities allow us to obtain, using also that Nt is geometrically distributed under Pt,

Et [(A(k, t)− ckNt) (A(l, t)− clNt)] = 2W (t)2ck(t)cl(t) + e−αtR+ o(e−αt)

− 2clck(t)W (t)2 + 2clW (t)

∫
[0,t]

θPa (Z0(a) = k) da− clW (t)

∫
[0,t]

θW (a)−1Ea
[
Na1Z0(a)=k

]
da

− 2ckcl(t)W (t)2 + 2clW (t)

∫
[0,t]

θPa (Z0(a) = l) da− ckW (t)

∫
[0,t]

θW (a)−1Ea
[
Na1Z0(a)=l

]
da

+ ckclW (t)2

(
2− 1

W (t)

)
= 2W (t)2 (ck(t)− cl) (cl(t)− ck) + e−αt

R

ψ′(α)
+ o(e−αt),

+ 2clW (t)

∫
[0,t]

θPa (Z0(a) = k) da− clW (t)

∫
[0,t]

θW (a)−1Ea
[
Na1Z0(a)=k

]
da

+ 2clW (t)

∫
[0,t]

θPa (Z0(a) = l) da− ckW (t)

∫
[0,t]

θW (a)−1Ea
[
Na1Z0(a)=l

]
da

− ckclW (t).
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Taking the limit as t goes to infinity leads to

Mk,l := lim
t→∞

ψ′(α)2e−αtEt [(A(k, t)− ckNt) (A(l, t)− clNt)] = R

+ 2ψ′(α)cl

∫
[0,∞)

θPa (Z0(a) = k) da− ψ′(α)cl

∫
[0,∞)

θW (a)−1Ea
[
Na1Z0(a)=k

]
da

+ 2ψ′(α)cl

∫
[0,∞)

θPa (Z0(a) = l) da− ψ′(α)ck

∫
[0,∞)

θW (a)−1Ea
[
Na1Z0(a)=l

]
da

− ψ′(α)ckcl.

Our next goal is to get the same type of results for the error in the CLT involving E of Theorem

3.4. For this, we need the following lemma.

Lemma 5.2. Consider E(O2) as defined in Section 4. Then, we have

Et [E(O2)] =

∫
R+

αe−αuPt(O2 ≥ u) du = ψ′(α) + ψ′(α)γe−αt + o(e−αt)

with

γ :=

{
1 if E[V ] <∞,

−α−1PV ({∞}) otherwise.

In particular, if V is not integrable and P(V =∞) = 0, then γ = 0.

Proof. As recalled in Section 4, we have that there exists

• an i.i.d. family of random processes (N i
t , t ∈ R+)i≥1 (corresponding to the population counting

processes induced by each child of individual 2) with the same distribution as (Nt, t ∈ R+),

• a Poisson random measure ξ with constant rate b independent of the above family,

such that all these objects are independent of O2 (under Pt) and

Nt(O2) =

∫
[0,t]

N ξu
t−u1O2≥u ξ(du) + 1O2≥t, ∀t ≥ 0,

where ξu := ξ([0, u]). In addition, as shown in Lemma 6.6 of [15], in L1 ,

ψ′(α)e−αtNt(O2) −−−→
t→∞

E(O2) :=

∫
R+

e−αuEξu1u≤Oi ξ(du),

with

ψ′(α)e−αtN i
t −−−→
t→∞

Ei, almost surely and in L1.

Hence, it follows from Lebesgue’s theorem that

ψ′(α)e−αtEt [Nt(O2)] = ψ′(α)

∫
[0,t]

e−αue−α(t−u)E [Nt−u]Pt(O2 ≥ u)b du+ ψ′(α)e−αtPt(O2 ≥ t),
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converges, as t goes to infinity, to ∫
R+

αe−αuPt(O2 ≥ u) du,

which is equal to Et [E(O2)] . Now, according to Lemma 4.1, we have that∫
R+

αe−αuPt(O2 ≥ u) du =

∫
R+

αe−αu
∫ t

0
b
W (t− y)

W (t)− 1
P(V ≥ u+ y) dy du.

which gives, thanks to Lemma 2.3,∫
R+

αe−αuPt(O2 ≥ u) du

= b(W (t)− 1)−1

∫
R+

αe−αu
∫

[0,t]

(
eα(t−y)

ψ′(α)
− eα(t−y)F (t− y)

)
P(V ≥ u+ y) dy du

=
beαt

ψ′(α)(W (t)− 1)

∫
R+×[0,t]

αe−α(u+y)P(V ≥ u+ y) dy du (5.1)

+
bµ

W (t)− 1

∫
R+×[0,t]

αe−αuP(V ≥ u+ y) dy du

+
b

W (t)− 1

∫
R+×[0,t]

(
µ− eα(t−y)F (t− y)

)
αe−αuP(V ≥ u+ y) dy du,

where we recall that µ is defined in Lemma 2.3. In particular, we have∫
R2
+

αe−α(u+v)P(V ≥ u+ v) du dv =

∫
R+

αue−αuP(V ≥ u) du

=

∫
R+

(
1− e−αx

α
− xe−αx

)
PV (dx),

which gives using (2.3) and (2.1),∫
R2
+

αe−α(u+v)P(V ≥ u+ v) du dv =
ψ′(α)

b
.

In addition,∫
R+×(t,∞)

αe−α(u+v)P(V ≥ u+ v) du dv =

∫
(t,∞)

αe−αuP(V ≥ u)(u− t) du

= e−αt
∫ ∞

0
αue−αuP(V > t+ u) du.

Thanks to Lebesgue’s theorem, we hence have∫ ∞
0

αue−αuP(V > t+ u) du −−−→
t→∞

α−1PV ({∞}),
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which is eventually 0 if PV does not have mass at infinity. As usual, let V be a random variable with

distribution PV . Then, if E[V ] <∞, similar computations give∫
R+×R+

αe−αuP(V ≥ u+ y) dy du = E[V ]− 1

b
=

1

µb
.

Finally, plugging the above computations in (5.1) gives∫
R+

αe−αuPt(O2 ≥ u) du =

{
ψ′(α) + ψ′(α)e−αt + o(e−αt) if E[V ] <∞,
ψ′(α)− ψ′(α)e−αtα−1PV ({∞}) + o(e−αt) otherwise.

Using the preceding lemma, we can now get the quadratic error in the convergence of the frequency

spectrum.

Lemma 5.3 (Quadratic error for the convergence of A(k, t).). Let k and l two positive integers.

Then under the hypothesis of Theorem 3.4, we have

e−αtEt
[(
ψ′(α)A(k, t)− eαtEck

) (
ψ′(α)A(l, t)− eαtEcl

)]
−−−→
t→∞

Mk,l − 4ψ′(α)γckcl − 2µψ′(α),

where the sequence (ck)k≥1 is defined by (2.13), γ is defined in Lemma 5.2 and µ is defined in Lemma

2.3.

Proof. The proof of this lemma is based on the decomposition of E as

E = e−αt
Nt∑
i=1

E(Oi).

According to Lemma 4.1, we know that the family (E(Oi))1≤i≤Nt is (under Pt) a family of independent

random variable (which is i.i.d. for i ≥ 2), independent of Nt. Hence,

Et [A(k, t)E ] = e−αtEt [A(k, t)(Nt − 1)Et [E(O2)]] + e−αtEt [A(k, t)]Et [E(O1)] .

First of all, we have that the r.h.s. of the above equality is bounded si e−αtEt[A(k, t)] converges as t

goes to infinity. From this, we get

Et
[(
ψ′(α)e−αtA(k, t)− Eck

) (
ψ′(α)e−αtA(l, t)− Ecl

)]
=ψ′(α)2e−2αtEt [(A(k, t)−Ntck) (A(l, t)−Ntcl)]

+ ψ′(α)e−2αtclEt [A(k, t)Nt]
(
ψ′(α)− Et [E(O2)]

)
+ ψ′(α)e−2αtckEt [A(l, t)Nt]

(
ψ′(α)− Et [E(O2)]

)
+ ψ′(α)2e−2αtEt

[
N2
t

]
− Et

[
E2
]

+ o(e−αt)

Now, according to Lemma 7.1 and Lemma 5.2, we have

ψ′(α)2e−2αtclEt [A(k, t)Nt]× eαt (1− Et [E(O2)]) −−−→
t→∞

−2clckγ,
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where γ is defined in Lemma 5.2. Now, using (4.2), we get

2− Et[E2] = 2µψ′(α)e−αt + o(e−αt),

which leads, using Lemma 2.3, to

eαt
(
ψ′(α)2e−2αtEt

[
N2
t

]
− Et

[
E2
])
−−−→
t→∞

−2µψ′(α).

Finally, using Lemma 5.1, we get

Et
[(
ψ′(α)e−αtA(k, t)− Eck

) (
ψ′(α)e−αtA(l, t)− Ecl

)]
−−−→
t→∞

Mk,l − 4γckcl − 2µψ′(α).

Lemma 5.4 (Boundedness of the third moment). Let k1, k2, k3 three positive integers, then

E

[
3∏
i=1

∣∣∣e−α2 t (ψ′(α)A(ki, t)− eαtEcki
)∣∣∣] = O (1) .

Proof. We have,

E

[∣∣∣∣∣
3∏
i=1

(
ψ′(α)A(ki, t)− eαtEcki

)
e
α
2
t

∣∣∣∣∣
]
≤

3∏
i=1

E

∣∣∣∣∣
(
ψ′(α)A(ki, t)− eαtEcki

)
e
α
2
t

∣∣∣∣∣
3
 1

3

.

Hence, we only have to prove the Lemma for k1 = k2 = k3 = k. Hence,

E

∣∣∣∣∣
(
ψ′(α)A(k, t)− eαtEck

)
e
α
2
t

∣∣∣∣∣
3
 ≤ 8E

[∣∣∣∣ψ′(α)A(k, t)− ckNt

e
α
2
t

∣∣∣∣3
]

+ 8c3
kE

[∣∣∣∣Nt − eαtE
e
α
2
t

∣∣∣∣3
]
.

The last term have been treated in the proof of [15, Lemma 6.4], and the boundedness of

E

[∣∣∣∣ψ′(α)A(k, t)− ckNt

e
α
2
t

∣∣∣∣3
]
,

follows from the following Lemma 5.5 and Hölder’s inequality.

Lemma 5.5. For all k ≥ 1,

E

[(
A(k, t)− ckNt

e
α
2
t

)4
]
,

is bounded.

Due to technicality, the proof of this lemma is postponed to the end in appendix.
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5.2 Arbitrary initial distribution case

The following lemmas are the counter part of Lemmas 6.5, 6.6, and 6.7 of [15]. They play the same

role in the proof of Theorem 3.4 as in the proof of the central limit theorem given in [15]. In the

sequel, we denote by (A(k, t,Ξ))k≥1, the frequency spectrum of the splitting tree where the lifetime

of the ancestral individual is Ξ but where the other individuals have lifetimes distributed according

to PV . This is done in the same spirit as for Nt (Ξ) in [15], which denotes the number of individuals

at time t in a splitting tree where the first individual has lifetime Ξ. So, from the construction of

the splitting tree, it is easily seen that there exists an i.i.d. family of processes (N i
t , t ∈ R+)i≥1, and

an independent Poisson point measure ξ on R with intensity b such that

Nt(Ξ) =

∫
[0,t])

N
(i)
t−u1Ξ≥u ξ(du) + 1Ξ≥t, ∀t ∈ R+.

Now defining

Ei := lim
t→∞

ψ′(α)e−αtN i
t ,∀i ≥ 1, almost surely,

we can set

E (Ξ) :=

∫
[0,∞)

E(ξu)e
−αu1Ξ>u ξ(du).

With this in hands, we can study the asymptotic behavior of the moments of

ψ′(α)A(k, t,Ξ)− eαtE(Ξ)ck.

This first lemma gives the asymptotic of the quadratic error.

Lemma 5.6 (L2 convergence in the general case). Consider the general frequency spectrum

(A(k, t,Ξ))k≥1 ,

then, for all k, ψ′(α)e−αtA(k, t,Ξ) converge to E (Ξ) (see 5.2) in L2 as t goes to infinity. Moreover,

e−αtE
[(
ψ′(α)A(k, t,Ξ)− eαtE(Ξ)ck

) (
ψ′(α)A(l, t,Ξ)− eαtE(Ξ)cl

)]
converges, as t goes to infinity, to

α

b
Hk,l

∫
R+

e−αuP (Ξ > u) bdu,

where the convergence is uniform w.r.t. Ξ, and Hk,l is defined in Theorem 3.4.

In the case where Ξ is distributed as O2 for u = βt and 0 < β < 1
2 , we get

e−αtE
[(
ψ′(α)A(k, t, O2)− eαtE(O2)ck

) (
ψ′(α)A(l, t, O2)− eαtE(O2)cl

)]
−−−→
t→∞

ψ′(α)Kk,l.

This next two lemma give bounds on the first and third moment of the error.

Lemma 5.7 (First moment). The first moments are asymptotically bounded, that is, for all k ≥ 1,

E
(
ψ′(α)A(k, t,Ξ)− eαtckE(Ξ)

)
≤ O(1),

uniformly with respect to Ξ.
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Lemma 5.8 (Boundedness in the general case.). Let k1, k2, k3 three positive integers, then

E

[∣∣∣∣∣
3∏
i=1

(
ψ′(α)A(ki, t,Ξ)− eαtE(Ξ)cki

)
e
α
2
t

∣∣∣∣∣
]

= O (1) ,

uniformly with respect to Ξ.

We do not detail the proofs of these results since they are direct adaptations of the proofs of

Lemmas 6.5, 6.6, and 6.7 of [15].

6 Proof of Theorem 3.4

The following result is based on the fact that, in the clonal sub-critical case, the lifetime of a family

is expected to be small. It follows that one can expect that all the family of size k live in different

subtrees as soon as t >> u. This is the point of the following lemma.

Lemma 6.1. Suppose that α < θ. If we denote by Γu,t the event,

Γu,t = {”there is no family in the population at time t which is older than u”} ,

then, for all β in (0, 1− α
θ ), we have

Pβt (Γβt,t) −−−→
t→∞

1.

Proof. The proof of this lemma, as the calculation of the moments of A(k, t) relies on the represen-

tation of the genealogy of the living population at time t as a coalescent point process [8, Prop. 5.1].

Moreover, we denote by Ñ
(t)
u the number of living individuals at time u who have alive descent at

time t. In [8], we showed that, under Pt, Ñ
(t)
u is geometrically distributed with parameter W (t−u)

W (t) .

Now, 1Γu,t can be rewritten as

1Γu,t =

Ñ
(t)
u∏
i=1

1{Zi0(t−u)=0},

where Zi0(t−u) denotes the number of individuals alive at time t descending from the ith individual

alive at time u and carrying its type (in Figure 2, the clonal type of the sub-CPP). Moreover, from

Proposition 4.3 of [8], we know that that under Pt, the family Z
(i)
0 (t−u) is an i.i.d. family of random

variables distributed as Z0(t− u) under Pt−u, and Ñ
(t)
u is independent of Z

(i)
0 (t− u) (still under Pt).

Then,

Pt (Γu,t) = Et
[
Pt−u (Z0(t− u) = 0)Ñ

(t)
u

]
=

Pt−u (Z0(t− u) = 0) W (t−u)
W (t)

1− Pt−u (Z0(t− u) = 0)
(

1− W (t−u)
W (t)

) .
Using (2.8), some calculus leads to,

Pt (Γu,t) = 1− 1

1 + Wθ(t−u)

e−θ(t−u)W (t)

(
1− e−θ(t−u)W (t−u)

Wθ(t−u)

) . (6.1)
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Now, since,

Pt (Γu,t) = Pu (Γu,t)
P (Nu > 0)

P (Nt > 0)
− P (Γu,t, Nt = 0, Nu > 0)

P (Nt > 0)
,

taking u = βt, we obtain, using Lemma 2.2 in (6.1), and that

P (Nt = 0, Nβt > 0) = P (Nβt > 0)− P (Nt > 0) →
t→∞

0,

the desired result.

Proof of Theorem 3.4. Fix 0 < u < t. Note that the event Γu,t of Lemma 6.1 can be rewritten as

1Γu,t =

Nu∏
i=1

1{Zi0(t−u,Oi)=0}, (6.2)

where Zi0(t − u,Oi) denote the number of individuals alive at time t carrying the same type as the

ith alive individual at time u, that is the ancestral family of the tree constructed from the residual

lifetime of the ith individual and its descent (see Section 4).

Let N be a positive integer and K = (k1, · · · , kN ) be a multi-integer. We denote by L(K) (resp.

A(K, t)) the random vector
(
Lk1 , . . . ,LkN

)
(resp. (A(k1, t), . . . , A(kN , t))) with

Lkt =
ψ′(α)A(k, t)− ckeαtE

e
α
2
t

. (6.3)

On the event Γu,t, we have almost surely,

A(kl, t) =

Nu∑
i=1

A(i)(kl, t− u,Oi), ∀l = 1, . . . , N,

where the family
(
A(i) (kl, t− u,Oi)

)
1≤i≤Nu stands for the frequency spectrum the subtrees (T(Oi))1≤i≤Nu .

Hence, using Lemma 4.2,

Lklt =

Nu∑
i=1

ψ′(α)A(i)(kl, t− u,Oi)− eα(t−u)Ei(Oi)ckl
e
α
2
ue

α
2

(t−u)
. (6.4)

In the sequel, we denote, for all l and i ≥ 1,

Ã(i) (kl, t− u,Oi) =
ψ′(α)A(i) (kl, t− u,Oi)− eα(t−u)Ei(Oi)ckl

e
α
2

(t−u)
.

Ã(i) (K, t− u,Oi) denotes the corresponding random vector. In particular, according to Lemma 4.1

and Lemma 4.2, we have that the family (Ã(i) (kl, t− u,Oi))1≤i≤Nu is independent (under Pu).

Now, let

ϕK (ξ) := E
[
exp

(
i < Ã (K, t− u,O2) , ξ >

)
1Z2

0 (t−u,O2)=0

]
,

ϕ̃K (ξ) := E
[
exp

(
i < Ã (K, t− u,O1) , ξ >

)
1Z1

0 (t−u,O1)=0

]
,
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with 〈·, ·〉 denotes the standard Euclidean scalar product.

From this point, following closely the proof of Theorem 3.2 of [15]: that is, using Lemmas 4.1

and 4.2, and Equation (6.4), we have that

Eβt
[
ei<L

(K)
t ,ξ>1Γβt,t

]
= ϕ̃K(e−

αβ
2
tξ)Eβt

[
ϕK(e−

αβ
2
tξ)Nβt−1

]
,

for u = βt with β ∈
(
0, 1

2 ∧ (1− α
θ )
)
. This gives using that Nβt has geometric distribution under Pβt

that

Eβt
[
ei<L

(K)
t ,ξ>1Γβt,t

]
= ϕ̃K(e−

αβ
2
tξ)

1

W (βt)− (W (βt)− 1)ϕK(e−
αβ
2
tξ)

. (6.5)

Now, a Taylor expansion of ϕK gives

ϕ(ξ) = 1 + i

|K|∑
p=1

ξpE
[
Ã(kp, (1− β)t, O2)1Z2

0 ((1−β)t,O2)=0

]
− 1

2

|K|∑
p,q=1

Mkp,kq(t)ξpξq +R(1−β)t(ξ),

where |K| is the length of the multi-integer K and

Mki,kj (t) := E

[(
ψ′(α)A(i) (ki, (1− β)t, Oi)− eα((1−β)t)Ei(Oi)cki

e
α
2

((1−β)t)

)

×

(
ψ′(α)A(i) (kj , (1− β)t, Oi)− eα((1−β)t)Ei(Oi)ckj

e
α
2

((1−β)t)

)
1Z2

0 ((1−β)t,O2)=0

]
. (6.6)

We now need to handle the indicator function 1Z0(t−u,Oi)=0 in the Taylor development of ϕK .

We show how it can be done for one of the second order terms, the method is similar for the other

terms. It follows from Hölder’s inequality that

E

(ψ′(α)A(i) (kl, (1− β)t, Oi)− eα((1−β)t)Ei(Oi)ckl
e
α
2

((1−β)t)

)2

1Z2
0 ((1−β)t,O2)>0


≤ E

∣∣∣∣∣ψ′(α)A(i) (kl, (1− β)t, Oi)− eα(1−β)tEi(Oi)ckl
e
α
2

(1−β)t

∣∣∣∣∣
3
 2

3

P
(
Z2

0 ((1− β)t, O2) > 0
) 1

3 , (6.7)

from which it follows, using Lemma 5.8, that the r.h.s. of this last inequality is

O
(
P
(
Z2

0 ((1− β)t, O2) > 0
) 1

3

)
.

Now, using (6.2) and Lemma 6.1, it is easily seen that

P
(
Z2

0 ((1− β)t, O2) > 0
)
−−−→
t→∞

0.

Finally, using Cauchy-Schwarz inequality in (6.6) and Lemma 5.3, we get

Mki,kj (t) −−−→t→∞
ψ′(α)Hki,kj ,
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where H is defined in Theorem 3.4 (see also Lemma 5.3).

Now, in (6.6), we have, using similar methods and Lemma 5.7, that

e−
αβ
2
tE
[
Ã(kp, (1− β)t, O2)1Z2

0 ((1−β)t,O2)=0

]
= O(e−

α
2
t).

Finally, using the above computations, we get with (6.6)

ϕ(e−
αβ
2
tξ) = 1− e−αβt 1

2

|K|∑
p,q=1

Mkp,kq(t)ξpξq +R(1−β)t(e
−αβ

2
tξ) +O(e−

α
2
t), (6.8)

and a similar treatment for the third order term in the reminder R using Lemma 5.8 gives

R(1−β)t(e
−αβ

2
tξ) = O(e−

3αβ
2
t).

Putting all these together in (6.5) (and taking into account that β < 1
2 ∧ (1− α

θ )) entails

Eβt
[
ei<L

(K)
t ,ξ>1Γβt,t

]
=

1

1 + e−αβtW (βt)1
2

∑|K|
i,j=1 ξiξjMki,kj (t) + o(1)

. (6.9)

These allow us to conclude, from (6.9), that

Eβt
[
ei<L

(K)
t ,ξ>1Γβt,t

]
−−−→
t→∞

1

1 + 1
2

∑N
i,j=1Hki,kj ξiξj

,

where K is the multi-integer (k1, . . . , kN ). To end the proof, note that,∣∣∣E∞ [ei<L(K)
t ,ξ>

]
− Eβt

[
ei<L

(K)
t ,ξ>1Γβt,t

]∣∣∣ ≤ E
[∣∣∣∣ 1NonEx

P (NonEx)
−
1Nβt>01Γβt,t

P (Nβt > 0)

∣∣∣∣] →t→∞ 0,

thanks to Lemma 6.1.

7 Proof of Theorem 3.1

Since all the ideas of the proof of this theorem have been developed the preceding sections, we do

not detail all the proof. We only details the steps which need clarification.

7.1 More on moments

Our first step is the computation of the covariance matrix M of the Laplace limit law. According

to the proof of Theorem 3.4, it is given, for two positive integer l and k, by

Mk,l := lim
t→∞

W (βt)

eαβt
E

[(
ψ′(α)A(i) (k, (1− β)t, Oi)− ψ′(α)ckN(1−β)t

e
α
2

((1−β)t)

)

×

(
ψ′(α)A(i) (l, (1− β)t, Oi)− clN(1−β)t

e
α
2

((1−β)t)

)
1Z2

0 ((1−β)t,O2)>0

]
,
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which is equal, thanks to (6.7), Lemma 5.1 and an easy adaptation of Lemma 6.6 in [15], to

Mk,l = lim
t→∞

bψ′(α)

α

W (βt)

eαβt
eαtE

[(
e−αtA(k, t)− cke−αtNt

) (
e−αtA(l, t)− cle−αtNt

)]
= Mk,l.

Now, in order to obtain the joint convergence, we need some new moment estimates.

Lemma 7.1. Let k be some positive integer, then

E
[
e−αtNt

(
A(k, t)− ckNt

e
α
2
t

)]
−−−→
t→∞

0

Proof. In order to have an explicit expression for

Et [Nt (A(k, t)− ckNt)] ,

we use again Remark 5.6 of [8] to get

Et [NtA(k, t)] = 2

∫ t

0
W (t)2

(
1− W (a)

W (t)

)
θe−θa

Wθ(a)2

(
1− 1

Wθ(a)

)k−1

da

+W (t)

∫ t

0
θ
Ea
[
Na1Z0(a)=k

]
W (a)

da.

Now, using that Nt has a geometric distribution under Pt (with parameter W (t)−1), we get

ckEt
[
N2
t

]
= W (t)2

(
2− 1

W (t)

)∫ ∞
0

θe−θa

Wθ(a)2

(
1− 1

Wθ(a)

)k−1

da.

Combining this two equality leads to

Et [Nt (A(k, t)− ckNt)] = 2W (t)2

∫ ∞
t

θe−θa

Wθ(a)2

(
1− 1

Wθ(a)

)k−1

da+O(tW (t)).

Now, since Lemma 2.2 (clonal sub-critical case) and that W (t) ∼ ψ′(α)eαt (Lemma 2.2 also) entails

e−
3α
2
tW (t)2

∫ ∞
t

θe−θa

Wθ(a)2

(
1− 1

Wθ(a)

)k−1

da = O
(
e−

3α
2
tW (t)2

∫ ∞
t

θe−θa da

)
,

we then get the result using (2.9) and that θ > α.

Remark 7.2. In the case of Theorem 3.4, one would need that

E
[
e−αtNt

(
ψ′(α)A(k, t)− ckeαtE

e
α
2
t

)]
−−−→
t→∞

0,

to obtain the joint convergence with e−αtNt as stated in the theorem. In fact, this result easily follows

from the above proof and the estimate

Et [NtE ]− ψ′(α)e−αtEt
[
N2
t

]
=

2eαt

ψ′(α)
− 2ψ′(α)e−αtW (t)2 + o(e

α
2
t) = o(e

α
2
t),

which is deduced using (4.3), Lemma 2.3 and the geometric law of Nt under Pt.
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7.2 Insights for the joint convergence

In this section, we detail the points which require clarification to obtain the joint convergence as

stated in Theorems 3.4 and 3.1. In the case of Theorem 3.1, this means the joint convergence of(
ψ′(α)e−αtNt, e

−α
2
t (A(k, t)− ckNt)k≥1

)
,

as t goes to infinity. To this end, rather than considering the characteristic function

Eu
[
ei<L

(K)
t ,ξ>1Γu,t

]
,

as in Section 6 (we also recall that L(K)
t and Γu,t are respectively defined in Equation (6.3) and

Lemma 6.1), we consider

Eu
[
exp

(
i < L(K)

t , ξ > +iλψ′(α)e−αtNt

)
1Γu,t

]
, (7.1)

with, this time,

Lklt =

Nu∑
i=1

ψ′(α)A(i)(kl, t− u,Oi)− ψ′(α)Nt−u(Oi)ckl
e
α
2
ue

α
2

(t−u)
.

and, for all l and i ≥ 1,

Ã(i) (kl, t− u,Oi) =
ψ′(α)A(i) (kl, t− u,Oi)− ψ′(α)Nt−u(Oi)ckl

e
α
2

(t−u)
,

where we refers the reader to Section 4 for the definition of Nt−u(Oi). Equation (7.1) can be rewritten,

following the proof of Theorem 3.4, as

ϕ̃K(ξ, λ)Eu
[
ϕK(e−

α
2
uξ, e−

α
2
uλ)Nu−1

]
= ϕ̃K(e−

α
2
uξ, e−

α
2
uλ)

W (u)−1

1− (1−W (u)−1)ϕK(e−
α
2
uξ, e−

α
2
uλ)

,

(7.2)

with, this time,

ϕK (ξ, θ) := E
[
exp

(
i < Ã (K, t− u,O2) , ξ > +iλψ′(α)e−α(t−u)Nt−u(O2)

)
1Z2

0 (t−u,O2)=0

]
,

ϕ̃K (ξ, θ) := E
[
exp

(
i < Ã (K, t− u,O1) , ξ > +iλψ′(α)e−α(t−u)Nt−u(O1)

)
1Z1

0 (t−u,O1)=0

]
.

Now, a simple Taylor expansion gives

ϕ(ξ, λ) = 1 + i

|K|∑
p=1

ξpE
[
Ã(kp, t− u,O2)

]
+ λiE

[
ψ′(α)e−α(t−u)Nt−u(O2)

]

− 1

2

|K|∑
p,q=1

E
[
Ã(kp, t− u,O2)Ã(kq, t− u,O2)

]
ξpξq

− 1

2

|K|∑
p=1

e−α(t−u)E
[
Ã(kp, t− u,O2)ψ′(α)Nt−u(O2)

]
ξpλ+Rt−u(ξ, λ). (7.3)
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Remark 7.3. In the above expression, the moments does not involve 1Zi0(t−u,O1)=0 at will. Since

according to the proof of Theorem 3.4, these indicator functions can be neglect, their presence is

hidden in the reminder Rt−u.

Hence, plugging (7.3) in Equation (7.2) gives

ϕ̃K(e−αuξ, e−αuλ)Eu
[
ϕK(e−αuξ, e−αuλ)Nu−1

]
=

1

W (u)

[
1− (1−W (u)−1)

(
1 + e−α(t−u)λiE

[
ψ′(α)Nt−u(O2)

]
− 1

2

|K|∑
p,q=1

e−αuE
[
Ã(kp, t− u,O2)Ã(kq, t− u,O2)

]
ξpξq + R̃(t, u)

)]−1

,

for some R̃ satisfying R̃(βt, t) = o(e−αβt)(with the same choice of β as in the proof of Theorem 3.4).

Now, setting u = βt as in the proof of Theorem 3.4, and taking the limit as t goes to infinity shows

the convergence of the above quantity to

1

1 + λi+ 1
2

∑|K|
p,q=1Mi,jξpξq

.

Indeed, the one main difference with the proof of Theorem 3.4 lies on the moment

E
[
Ã(kp, t− u,O2)Nt−u(O2)

]
in the Taylor development of ϕK , which can be shown to go to 0 using Lemma 7.1 and an adaptation

of Lemma 6.6 in [15].

To end the proof let us remark that if G is some Gaussian random variable with null mean and

covariance matrix K independent of a random variable E (with exponential distribution and mean

1), then the characteristic function of the couple (
√
EG, E) is given by

(ξ, λ) ∈ Rd × R 7→ 1

1 + λi+ 1
2〈ξ,Kξ〉

,

where 〈·, ·〉 denotes the standard Euclidean scalar product.

8 Numerical studies

The purpose of this section is to analyze our approximation method and the estimation of the error

by virtue of numerical experiments. There are several practical difficulties appearing when one tries

to perform such study.

The first problem, which involves no conceptual difficulties, lies only on the implementation of

the formulas appearing in Theorems 3.4 and 3.1. In particular, the computation of the moments of

type E[A(k, t)1Z0(t)=l] are particularly complicated (see Proposition 5.4 in [8]).
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Another difficulty is to obtain numerical approximations of the scale functions W and Wθ. For

instance, these functions appear in the computation of the covariance matrix of Theorems 3.4 and

3.1 or when one wants to simulate the coalescent point process. To obtain such approximations, we

need to apply numerically the Laplace inversion operator to the functions 1
ψ and 1

ψθ
.

Unfortunately, the Laplace numerical inversion is a rather difficult problem (see for instance

[1] or [2]) which is often computationally expensive. As a consequence, the computational cost of

performing multiple numerical integration involving W or Wθ can be important when done with a

crude method. Moreover, these methods presents rough numerical instabilities when the original

function is exponentially increasing (inverting λ→ 1
1−λ , whose inverse is x→ ex, is already a tough

numerical problem).

For all these reasons, we provide with this work a Matlab toolbox which handle all these difficulties

and allows users to perform numerical experiments without having to take care of these issues. This

toolbox is available on the author personal homepage.

In this whole section, we are interested in the approximation of the frequency spectrum at a fixed

time t by the sequence Nt(ck)k≥1 (we recall that ck is defined in equation (2.13)). As a consequence,

the errors in this approximation are computed thanks to Theorem 3.1. The parameters of the model

are set as follows:

• PV is a Rice distribution with shape parameter 1 and scale parameter 1.

• b = 1.

• θ = 1.

For such parameters α approximately equals to 0.5. Figure 4 shows the evolution of the frequency

spectrum (for k between 1 and 10) through time. The different quantities seem to growth expo-

nentially with rate α with a time-shift which depend on k. An interesting open question would

be to understand the behavior of these shifts. In order to stress our methods of approximation,

the first idea is to look to the renormalized frequency spectrum (A(k,t)
ck

)k≥1 which is expected to

look like (Nt, t ∈ R+). As showed in Figure 5, the approximation seems to be quite accurate for

k = 1, 2. However, a more quantitative analysis is required. Figure 6 shows the absolute error in the

approximation of A(1, t) by c1Nt. This error is a little disappointing since it since to diverge when

t goes to infinity. However, even if, according to Figure 6, the absolute error at time 20 is of order

103, the relative error shows that this error is quite small with respect to the value of A(1, 20).

Another question is about the speed of convergence in the central limit theorem stated in Theorem

3.1. The red curve of Figure 7 shows the density of the Laplace distribution given in Theorem 3.1 in

the case of A(1, t) whereas the blue histogram shows the distribution of ψ′(α)(e−α
t
2 (A(1, t)− ckNt))

for t = 10 (αt ∼ 5 and Et[Nt] ∼ 300) from 10000 simulations. This figure highlights the fact that

even if the taken time t is quite small the distribution ψ′(α)(e−α
t
2 (A(1, t) − ckNt)) seems already

close to the limiting distribution. Figure 8 shows the same kind of behavior in the multidimensional

case. To be more quantitative, Figure 9 shows the evolution in time of the distance between the

density of limit distribution given in Theorem 3.1 and a kernel estimation of the distribution of

ψ′(α)(e−α
t
2 (A(1, t) − ckNt)) (the estimation is made from 10000 simulations at each time). This
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Figure 4: A simulation of the evolution of the frequency spectrum under the given model.
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Figure 5: Evolution of the renormalized frequency spectrum (A(k, t)/ck)k≥1 under the given model.
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Figure 6: Absolute error (left picture) and relative (right picture) in the approximation of A(1, t) by

c1Nt.

suggest an exponential rate of convergence in Theorem 3.1. In the view of Figure 9, one may think

that Berry-Essen type results for Theorem 3.1 would be quite interesting, in particular to under-

stand how the speed of convergence is related to choice of the parameters. Another interesting

question which could be partially probed by simulation is the study of the behavior of the error in

the clonal supercritical case. Figure 10 shows a kernel estimation (from 10000 simulations) of the

density of ψ′(α)(e−α
t
2 (A(1, t) − ckNt)) in the clonal supercritical case (θ = 0.2 < α). Figure 10

suggest a totally different behavior with a limit distribution which is asymmetric with respect to 0.

In particular, in the view of the shape of the distribution, one could conjecture that the limit is a

skew stable distribution.

To end this section, let us goes back to one of the motivation of this work. The following discussion

do not claim to be rigorous and is essentially formal. We recall that the Extended Haplotype

Homozygosity (EHH) can be used to detect positive selection in a population [20]. In particular, the

behavior of the frequency spectrum we are interested in the behavior of the frequency spectrum as

the mutation rate increases. In order to have a rigorous model to describe this type phenomenon,

we need to introduce a new mutation measure which is different from the one given in Section 2.

We define it directly on the CPP but this could be equivalently defined on the splitting tree. So let

P be a Poisson random measure on [0, t] × N × R+ with intensity measure λ ⊗ C ⊗ λ, where C is

the counting measure on N. Then, for any mutation rate θ in R+, we define the θ-mutation random

measure Nθ by

Nθ (A×B) =

∫
A×B×[0,θ]

1Hi>t−a1i<NtP (di, da, dx) ,

where, as before, an atom at (a, i) means that the ith branch experiences a mutation at time t− a.

This construction allows to increase the mutation rate in consistent manner. This allows to model

the type of an individual at a distance x (such that the mutation rate is a function of x) from the

core region of DNA (we refer the reader to [20] for more details). Now, following [8], we can define
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Figure 7: Distribution of the renormalized error and expected limit distribution given by our CLT.

Figure 8: Joint distribution of the renormalized error (left figure) and expected limit distribution

(right figure) given by our CLT.
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Figure 9: Estimation of the rate of convergence in L2 norm.
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supercritical case.
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the frequency spectrum at mutation rate θ by

Aθ(k, t) =

∫
[0,t]×N

1Z0(i,a)=kNθ(di, da),

where Z0(i, a) is the number of individual at time t carrying the type of the ith individual at time

t− a (see [8] for more details). Let us also define Zθ0(t) the number of individuals carrying the type

of the first individual at time 0 when the mutation measure is given by Nθ. As expected, the allelic

partition of the population becomes thinner as θ growth.

Now, the definition of the EHH Gθ(t) is the probability that two uniformly sampled individuals

in the population have the same type, that is

Gt(θ) =
Zθ0(t)(Zθ0(t)− 1) +

∑
k≥1 k(k − 1)Aθ(k, t)

Nt(Nt − 1)
.

Using that

Nt = Zθ0(t) +
∑
k≥1

kAθ(k, t),

this rewrite

Gt(θ) =
(Nt −

∑
k≥1 kA

θ(k, t))(Nt −
∑

k≥1 kA
θ(k, t)− 1) +

∑
k≥1 k(k − 1)Aθ(k, t)

Nt(Nt − 1)
.

Finally, using the approximation

(A(k, t))k≥1 ≈ (ck)k≥1Nt

proposed in this work, one could expect that

Gt(θ) ≈
∑

k≥1 k(k − 1)ck

Nt
=

∫∞
0 2θe−θx(Wθ(x)− 1)dx

Nt
.

We stress the fact that the above expression makes sens only in the clonal subcritical case (in the

other cases the integral in not finite). Now, we can look at the accuracy of this approximation in view

of numerical simulation. Figure 11 shows the value of the EHH (when θ increase) from a simulation

of the model (blue curve) and the one obtained using our approximation (red curve). In view of

Figure 11, the approximation seems pretty accurate. In order to be more quantitative, Figure 12

shows the relative error between the EHH and its approximation for one simulation. This shows that

the error, as least for sufficiently large θ, remains under 8%. To end, let us highlight that Theorem

3.1 can be used to give confidence intervals for fixed θ but in order the construct tests of selection

from curves like these of Figure 11 one would need to have functional CLT in long time for the

process ((Aθ(k, t)− cθkNt)k≥1, θ ∈ R+).
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Figure 12: Relative error in the approximation of the EHH
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A Formula for the fourth moment of the error

Lemma A.1.

Et
[
(A(k, t)− ckNt)

4
]

= 4

∫
[0,t]

θ
W (t)

W (a)
Ea
[
1Z0(a)=k (A(k, a)− ckNa)

3
]
da

+ 48

∫
[0,t]

θ
W (t)2

W (a)2

(
1− W (a)

W (t)

)
Ea
[
1Z0(a)=kNaA(k, a)

]
Ea [(ckNa −A(k, a))] da

+ 24

∫
[0,t]

θ
W (t)2

W (a)2

(
1− W (a)

W (t)

)
Ea
[
1Z0(a)=kN

2
a

]
Ea [(A(k, a)− ckNa)] da

+ 24

∫
[0,t]

θ
W (t)2

W (a)2

(
1− W (a)

W (t)

)
Ea
[
1Z0(a)=kA(k, a)2

]
Ea [(A(k, a)− ckNa)] da

+ 8

∫
[0,t]

θ
W (t)2

W (a)2

(
1− W (a)

W (t)

)
Pa (Z0(a) = k)Ea

[
(A(k, a)− ckNa)

3
]
da

+ 48

∫
[0,t]

θ
W (t)2

W (a)2

(
1− W (a)

W (t)

)
Ea
[
1Z0(a)=kA(k, a)

]
Ea
[
(A(k, a)− ckNa)

2
]
da

+ 72

∫
[0,t]

θ
W (t)3

W (a)3

(
1− W (a)

W (t)

)2

Ea
[
1Z0(a)=k (A(k, a)− ckNa)

]
Ea [(A(k, a)− ckNa)]

2 da

+ 72

∫
[0,t]

θ
W (t)3

W (a)3

(
1− W (a)

W (t)

)2

Pa (Z0(a) = k)Ea
[
(A(k, a)− ckNa)

2
]
Ea [A(k, a)−Nack] da

+ 96

∫
[0,t]

θ
W (t)4

W (a)4

(
1− W (a)

W (t)

)3

Pa (Z0(a) = k)Ea [(A(k, a)− ckNa)]
3 da+ c4

kEtN4
t

Proof. The proof of this Lemma lies on the calculation of the expectation of each term in the

development of

(A(k, t)− ckNt)
4 .

To make this, we intensively use the relation (2.10) and the method developed in [8]. We begin by

computing

Et
[
A(k, t)4

]
.
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Formula (2.10) gives us,

A(k, t)4 =4

∫
[0,t]×N

1Zi0(a)=ki

N
(t)
t−a∑

u1:3=1

3∏
j=1
i 6=j

A(uj)(k, a)N (da, di)

=4

∫
[0,t]×N

1Zi0(a)=kA
i(k, a)Ai(k, a)Ai(k, a)N (da, di)

+ 4

∫
[0,t]×N

1Zi0(a)=k

N
(t)
t−a∑

j1,j2,j3=1
j1 6=j2 6=j3 6=i

Aj1(k, a)Aj2(k, a)Aj3(k, a)N (da, di)

+ 12

∫
[0,t]×N

1Zi0(a)=kA
i(k, a)Ai(k, a)

N
(t)
t−a∑

j=1,j 6=i
Aj(k, a)N (da, di)

+ 4

∫
[0,t]×N

1Zi0(a)=k

N
(t)
t−a∑

j=1,j 6=i
Aj(k, a)3N (da, di)

+ 12

∫
[0,t]×N

1Zi0(a)=kA
i(k, a)

N
(t)
t−a∑

j1,j2=1,j1 6=j2 6=i
Aj1(k, a)Aj2(k, a)N (da, di)

+ 24

∫
[0,t]×N

1Zi0(a)=kA
i(k, a)

N
(t)
t−a∑

j1=1,j1 6=i
Aj1(k, a)Aj1(k, a)N (da, di)

+ 12

∫
[0,t]×N

1Zi0(a)=k

N
(t)
t−a∑

j1,j2=1,j1 6=j2 6=i
Aj1(k, a)2Aj2(k, a)N (da, di). (A.1)

The decomposition of the sum in form
N

(t)
t−a∑

u1:3=1

,

has then been made to distinguish independence properties in our calculation. Actually, as soon

as, i 6= j, Ai(k, a) is independent from Ai(k, a) (see [8] for details). It is essential to note that the

expectation of these integrals with respect to the random measure N are all calculated thanks to
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Theorem 3.1 of [8]. So, taking the expectation now leads to,

Et
[
A(k, t)4

]
=4

∫
[0,t]

θEa
[
N

(t)
t−a

]
Ea
[
1Z0(a)=kA(k, a)3

]
θda

+ 4

∫
[0,t]

θPa (Z0(a) = k)Ea
[(
N

(t)
t−a

)
(4)

]
Ea [A(k, a)]3 da

+ 12

∫
[0,t]

θEa
[
1Z0(a)=kA(k, a)2

]
Ea
[(
N

(t)
t−a

)
(2)

]
Ea [A(k, a)] da

+ 4

∫
[0,t]

θPa (Z0(a) = k)Ea
[(
N

(t)
t−a

)
(2)

]
Ea
[
A(k, a)3

]
da

+ 12

∫
[0,t]

θEa
[
1Z0(a)=kA(k, a)

]
Ea
[(
N

(t)
t−a

)
(3)

]
Ea [A(k, a)]2 da

+ 24

∫
[0,t]

θEa
[
1Z0(a)=kA(k, a)

]
Ea
[(
N

(t)
t−a

)
(2)

]
Ea
[
A(k, a)2

]
da

+ 12

∫
[0,t]

θPa (Z0(a) = k)Ea
[(
N

(t)
t−a

)
(3)

]
Ea
[
A(k, a)2

]
Ea [A(k, a)] da.

Using the same method for all the other terms and that, for any positive real number a lower than t,

Nt =

N
(t)
t−a∑
i=1

N (i)
a ,

we get Lemma A.1 by reassembling similar terms together. The last term is obtained using the

geometric distribution of Nt under Pt.

B Boundedness of the fourth moment

Lemma B.1. We begin the proof of the boundedness of the fourth moment by some estimates.

Et [(A(k, t)− ckNt)] = O
(
e−(θ−α)t

)
, (i)

Et
[
(A(k, t)− ckNt)

3
]

= O
(
W (t)2

)
, (ii)

Et
[
(A(k, t)− ckNt)

2
]

= O (W (t)) , (iii)

EtNn
t = O(enαt), n ∈ N∗, (iv)

Pt (Z0(t) = k) = O(e(α−θ)t). (v)

37



Proof. Relation (i) is easily obtained using the expectation of Nt and A(k, t) using (2.11), (2.13) and

the behaviour of W provided by Proposition 2.3. The relation (iii) has been obtained in the proof

of Theorem 6.1 in [8]. The two last relations are easily obtained from (2.4), (2.8) and Lemma 2.2.

The relation (ii) is obtained using the following estimation,∣∣∣Et [(A(k, t)− ckNt)
3
]∣∣∣ ≤ Et

[
Nt (A(k, t)− ckNt)

2
]
.

We begin the proof by computing the r.h.s. of the previous inequality using the same techniques

as in Appendix A.

E
[
A(k, t)2Nt

]
= 2

∫ t

0
θ
W (t)

W (a)
E
[
NaA(k, a)1Z0(a)=k

]
da

+4

∫ t

0
θ
W (t)2

W (a)2

(
1− W (a)

W (t)

)
E
[
Na1Z0(a)=k

]
E [A(k, a)] da

+4

∫ t

0
θ
W (t)2

W (a)2

(
1− W (a)

W (t)

)
E
[
A(k, a)1Z0(a)=k

]
E [Na] da

+4

∫ t

0
θ
W (t)2

W (a)2

(
1− W (a)

W (t)

)
Pa (Z0(a) = k)E [A(k, a)Na] da

+12

∫ t

0
θ
W (t)3

W (a)3

(
1− W (a)

W (t)

)2

Pa (Z0(a) = k)E [A(k, a)]E [Na] da.

2E
[
A(k, t)N2

t

]
= 2

∫ t

0
θ
W (t)

W (a)
E
[
N2
a1Z0(a)=k

]
da

+8

∫ t

0
θ
W (t)2

W (a)2

(
1− W (a)

W (t)

)
E
[
Na1Z0(a)=k

]
E [Na] da

+4

∫ t

0
θ
W (t)2

W (a)2

(
1− W (a)

W (t)

)
Pa (Z0(a) = k)E

[
N2
a

]
da

+12

∫ t

0
θ
W (t)3

W (a)3

(
1− W (a)

W (t)

)2

Pa (Z0(a) = k)E [Na]
2 da.

Finally,

E
[
Nt (A(k, t)− ckNt)

2
]

= 2

∫ t

0
θ
W (t)

W (a)
E
[
Na (A(k, a)− ckNa)1Z0(a)=k

]
da

+4

∫ t

0
θ
W (t)2

W (a)2

(
1− W (a)

W (t)

)
E
[
Na1Z0(a)=k

]
E [A(k, a)− ckNa] da

+4

∫ t

0
θ
W (t)2

W (a)2

(
1− W (a)

W (t)

)
E
[
(A(k, a)− ckNa)1Z0(a)=k

]
E [Na] da

+4

∫ t

0
θ
W (t)2

W (a)2

(
1− W (a)

W (t)

)
Pa (Z0(a) = k)E [Na (A(k, a)− ckNa)] da

+12

∫ t

0
θ
W (t)3

W (a)3

(
1− W (a)

W (t)

)2

Pa (Z0(a) = k)E [Na]E [A(k, a)− ckNa] da

+c2
kEtN3

t .
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Now, an analysis similar to the one of Lemma 5.5 leads to the result.

Proof of Lemma 5.5. The ideas of the proof, is to analyses one to one every terms of the expression

of

Et
[
(A(k, t)− ckNt)

4
]
,

given by Lemma A.1 using Lemma B.1 to show that they behave as O
(
W (t)2

)
. Since the ideas are

the same for every terms, we just give a few examples.

First of all, we consider∫
[0,t]

W (t)

W (a)
Ea
[
1Z0(a)=k (A(k, a)− ckNa)

3
]
da.

Using Lemma B.1 (ii), we have∫
[0,t]

W (t)

W (a)
Ea
[
1Z0(a)=k (A(k, a)− ckNa)

3
]
da = O

(
W (t)2

)
.

Now take the term ∫
[0,t]

W (t)2

W (a)2
Ea
[
1Z0(a)=kN

2
a

]
Ea [(A(k, a)− ckNa)] da,

we have from Lemma B.1 (i) and (iv),∫
[0,t]

W (t)2

W (a)2
Ea
[
1Z0(a)=kN

2
a

]
Ea [(A(k, a)− ckNa)] da ≤

∫
[0,t]

W (t)2

W (a)2
Ea
[
N2
a

]
e−(θ−α)ada = O

(
W (t)2

)
.

Every term in W (t) or W (t)2 are treated this way. Now, we consider the term in W (t)4 which is

I := 96

∫
[0,t]

W (t)4

W (a)4
Pa (Z0(a) = k)Ea [(A(k, a)− ckNa)]

3 da+ 24W (t)4c4
k,

since Nt is geometrically distributed under Pt, and that

EtN4
t = 24W (t)4 − 36W (t)3 +O(W (t)2). (B.1)

On the other hand, using the law of Z0(t) given by (2.8) and the expectation of A(k, t) given by

(2.11) (under Pt), we have,

96

∫
[0,t]

W (t)4

W (a)4
Pa (Z0(a) = k)Ea [(A(k, a)− ckNa)]

3 da

= −96W (t)4

∫ t

0

θe−θa

Wθ(a)2

(
1− 1

Wθ(a)

)k−1
(∫ a

0

θe−θs

Wθ(s)2

(
1− 1

Wθ(s)

)k−1

ds

)3

da

= −24W (t)4

(∫ t

0

θe−θa

Wθ(a)2

(
1− 1

Wθ(a)

)k−1

da

)4

.
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Finally,

I = 24W (t)4

(∫ ∞
t

θe−θa

Wθ(a)2

(
1− 1

Wθ(a)

)k−1

da

)4

= O
(
W (t)4e−4θt

)
= o(1).

The last example is the most technical and relies with the term in W (t)3, which is, using (B.1)

and Lemma A.1,

J :=72

∫
[0,t]

W (t)3

W (a)3
Ea
[
1Z0(a)=k (A(k, a)− ckNa)

]
Ea [(A(k, a)− ckNa)]

2 da

+ 72

∫
[0,t]

W (t)3

W (a)3
Pa (Z0(a) = k)Ea

[
(A(k, a)− ckNa)

2
]
Ea [A(k, a)−Nack] da

− 288

∫
[0,t]

W (t)3

W (a)3
Pa (Z0(a) = k)Ea [(A(k, a)− ckNa)]

3 da− 36c4
kW (t)3.

On the other hand, using the calculus made in the proof of Theorem 6.3 of [8], we have

Ea
[
(A(k, a)− ckNa)

2
]

=4

∫
[0,a]

W (a)2

W (s)2

(
1− W (s)

W (a)

)
Ps (Z0(s) = k)Es (A(k, s)− ckNs) ds

+ 2

∫
[0,a]

W (s)

W (a)
Es
[
1Z0(s)=k (A(k, s)− ckNs)

]
ds+ c2

kW (a)2

(
2− 1

W (a)

)
.

Substituting this last expression in J leads to

J = −144

∫
[0,t]

W (t)3

W (a)3
Ea
[
1Z0(a)=k (A(k, a)− ckNa)

] ∫
[a,∞]

P (Z0(a) = k)

W (s)2
Es [(A(k, s)− ckNs)] dsda

+ 144W (t)3

∫
[0,t]

1

W (a)
Ea
[
1Z0(a)=k (A(k, a)− ckNa)

] ∫
[a,t]

1

W (s)2
Ps (Z0(s) = k)Es [A(k, s)−Nsck] da

− 144c2
k

∫
[0,t]

W (t)3

W (a)
Pa (Z0(a) = k)Ea [A(k, a)−Nack] da

+ 144

∫
[0,t]

W (t)3

W (a)3
P (Z0(a) = k)Ea [A(k, a)−Nack]

3 da

− 288

∫
[0,t]

W (t)3

W (a)2
Pa (Z0(a) = k)

∫
[0,a]

1

W (s)
Ps (Z0(s) = k)Es (A(k, s)− ckNs) dsEa [A(k, a)−Nack] da

+ 72

∫
[0,t]

W (t)3

W (a)
Pa (Z0(a) = k) c2

k

(
2− 1

W (a)

)
Ea [A(k, a)−Nack] da

− 288

∫
[0,t]

W (t)3

W (a)3
Pa (Z0(a) = k)Ea [(A(k, a)− ckNa)]

3 da− 36c4
kW (t)3.
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Using many times that,∫
[0,t]

θP (Z0(a) = k)

W (s)2
Es [(A(k, s)− ckNs)] ds

=−
∫

[0,t]

θe−θs

Wθ(s)2

(
1− 1

Wθ(s)

)k−1 ∫
[s,∞]

θe−θu

Wθ(u)2

(
1− 1

Wθ(u)

)k−1

duds

=
c2
k

2
− 1

2

(∫
[t,∞]

θe−θs

Wθ(s)2

(
1− 1

Wθ(s)

)k−1

ds

)2

,

thanks to (2.8), (2.11), and (2.6), we finally get

J =− 144
(
c2
k − ck(t)2

) ∫
[0,t]

W (t)3

W (a)3
Ea
[
1Z0(a)=k (A(k, a)− ckNa)

]
da

+ 36W (t)3

c2
k

(∫
[t,∞]

W (t)3

W (a)3
Ea [A(k, a)−Nack]

3 da

)2

−

(∫
[t,∞]

W (t)3

W (a)3
Ea [A(k, a)−Nack]

3 da

)4


+ 144 (ck − ck(t))2
∫

[0,t]

W (t)3

W (a)
Ea [A(k, a)−Nack] da

+ 36W (t)3 (ck − ck(t))4 .

This shows that J is O
(
W (t)2

)
.
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pages 715–731. Institut Henri Poincaré, 2014.
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