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Abstract 

The main purpose of the project FUI THERMOFLUID is to study the feasibility of a new 

electronic cooling system embedded on flying objects (missile, satellite, and airplane). The 

technology chosen consists of a pumped two-phase flow cooling loop (PTPFL). It is an 

innovative technology with a transport capacity of the thermal power up to 10 MW.m, 

exceeding in this way the performance of all other technologies. A PTPFL is a cooling loop 

based on the exploitation of the latent heat properties of the fluid trapped inside the loop, and 

moved by a pump. The components constituting a PTPFL are: a two-phase reservoir (TP-R), a 

mini- channels evaporator, a brazed plate condenser, a pump and pipes. The global research 

work is devoted to propose a dynamic model and experimental validation of the PTPFL. The 

present article is exclusively dedicated to the TP-R two-phase reservoir (TP-R). Indeed this 

element plays a key role in the functioning of PTPFL. Historically, the TP-R did not equip the 

first cooling loop. However, due to its advantages its introduction was essential. The 

developed dynamic model will be used in another work to predict the thermal hydraulic 

efficiency of the PTPFL from its mechanical and fluidic parameters, to conduct the study of 

transitional regimes and instability problems, and provides an original tool dedicated to design 

the TP-R in function of the thermal power levels to be evacuated and the selected refrigerant. 

The bond graph methodology is adopted for modeling works because of its energetic 

approach and multi physics character of the studied system.  

 

The new model proposed in this article has many originalities: First, it is based on bond 

graph approach. Nowadays, the open literature shows that no bond graph model has been 

developed for such thermo-fluid system. Second, the dynamic model of TP-R pays great 

attention to phenomena that have never been taken into account in works cited in the present 

article, such as evaporation and condensation. Third, different conducto-convective heat 

exchanges are modeled without any experimental recalibration of the thermal exchange 

coefficients, unlike models proposed in the literature. In fact, all coefficients are 

systematically calculated using adequate correlations. 

 
Keywords: Bond Graph; two-phase flow; dynamic; transient; heat transfer coefficient; convection; 

conduction; cooling loop; modeling, Presurizer. 
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1. INTRODUCTION AND STATE OF THE ART 

 

An electronic device generates heat flows that require thermal management. For example the 

limit junction temperature of a silicon chip is about 125°C; if it is exceeded an important risk 

of malfunction and degradation is considered. Furthermore, the volume density of the power 

dissipated by Joule effect in a converter is quadrupled every four years, providing values that 

could reach 100       for the arrival of 2020 [Ser07]. The cooling of electronic devices 

based only on exchanges by natural convection is dedicated to low power. Indeed, the heat 

transfer coefficient remains low: 15 W/cm² [Rio16]. Furthermore, the finned radiators have 

exchange coefficients up to: 35 W/cm² [Rio16]. For higher power, cooling loops are more 

adapted. The pumped two-phase flow cooling loop (PTPFL) is an effective technology in 

terms of heat flow transport capacity: 10 MW.m [LAU06], with high level adaptability and an 

exchange coefficient up to: 600 W/cm².  

A (PTPFL) is a cooling system composed of five components as shown in Figure 1. A 

succinct description of the role accomplished by each element is given in a previous work 

[KEB14]. The current article deals especially with the two-phase reservoir noted TP-R in 

Figure 1. 

 

 
Figure 1 : Overall architecture of a PTPFL 

 

The first part of the current research work presents the different functions insured by a TP-R. 

Moreover, a modeling state-of-the-art is conducted in order to highlight better our 

contributions. A second part is devoted to describe the new dynamical model based on bond 

graph methodology. This model takes into consideration the physics of evaporation and 

condensation phenomena. Convection and conduction flows are modeled without any need of 

experimental recalibration of thermal exchange coefficients. The thermo-hydraulic behavior 

of the water and the steam filling the TP-R is validated thanks to experimental tests presented 

and detailed in the third part. 

 

1.1. Main functions of a: TP-R 

The TP-R is component of the PTPFL. It fulfills simultaneously three roles during the 

functioning of the system. 

 

a) Thermodynamic control of the PTPFL 

The lower part of the TP-R is filled with liquid. The vapor occupies the upper part as shown 

in Figure 2. Thus, it is possible to control the liquid pressure by acting on its temperature, 

using a suitable heating device. Then, taking into account some pressure losses it is possible 
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to command the pressure within the evaporator and the condenser as well. Consequently, the 

saturation temperature is controlled inside the evaporator. Thanks to this temperature, the 

saturated nucleate boiling is launched allowing an efficient cooling based on the latent heat. 

 

 
Figure 2 : representation of evaporation and condensation phenomena. 

 

b) The TP-R, a volume of control 

It is used to compensate for the expansion phenomenon of fluid. In fact, during PTPFL 

functioning, the fluid trapped in the loop passes through several transitional phases, during 

which its volume increases under the effect of heat received by the device to be cooled. This 

volume variation induces a pressure rise, jeopardizing in this way the whole structure of the 

loop. With the TP-R this risk does not exist, since the liquid volume in excess is directly 

injected into the TP-R. 

 

c) TP-R is a pump protector 

The TP-R permits to the pump to function without cavitation. Actually, it is necessary to heat 

first the liquid contained in the TP-R. The rise of liquid temperature induces an increase in 

pressure throughout the loop. Thus, the fluid filling the loop sees its pressure increasing while 

its initial temperature is maintained constant. These thermodynamic conditions force the 

vapor to condensate in the loop, and so provide a secure pump starting without cavitation. 

 

1.2. State-of-the-art of TP-R modeling 

Up to now, unlike Capillary Pumped Loops (CPL), the published literature lists absolutely no 

research work dedicated to PTPFL modeling. Nowadays, our research work [KEB14] is the 

only detailed work dedicated to PTPFL technology and published in the open scientific 

literature. However, TP-R remains a common component between the two cooling 

technologies (CPL) and (PTPFL). Then, it is important to carry on a state-of-the-art on how 

this component is modeled in the CPL to better position our work and highlight its originality 

compared to the previous works. 

 

a) Classification of models 

Considering the large number of CPL modeling [WMN08] and [FHP11] made since their 

first introduction in 1978, an overall classification of existing models is proposed and 

structured as shown in Table 1.  
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Author 

 

steady model  Unsteady model 

analytical  

solution 

Numerical  

solution 

 

analytical  

solution 

Numerical  

solution 

 

Furukawa [FUR06]      

Dolgirev [DGMK78]      

Ku [KKM87]      

Kaya et Hoang 

[KH99] 

     

Kaya  [KPGT07]      

Chuang [Chu03]      

Hamdan [HGH03]      

Pouzet [PJP04]      

Launay[LPDJ07]      

Table 1: classification of TP-R modeling works. 

 

b) Results of the state-of-the-art  

First, it turns out that steady models are predominant with analytical solutions. The state-of-

the-art reveals that few numerical models are developed for simulation in steady state. In fact, 

numerical tools remain reserved for unsteady studies (transient phenomena, instability, 

thermal cycling ...) where important thermo hydraulic coupling must be taken into account. 

Also, the late appearance of numerical models is mainly due to significant advances in the 

field of the computing science.  

 

The new model proposed in this article is dynamical with numerical solutions; it differs from 

existing models by the large number of phenomena modeled as well as the minimum number 

of simplifying hypotheses. The following phenomena are treated in the proposed model but 

not in other models: 

 

 Evaporation at the liquid / vapor interface. 

 Condensation on walls (Nusselt theory). 

 Multiple heat exchange. 

 Various configurations of flow (cartridge / liquid). 

 Longitudinal conduction. 

 Exchanges with the outside. 

 

2. MODEL DESCRIPTION OF TP-R 

 

2.1.Physical description of modeled phenomena 

 The liquid receives power density ( / ²)q w m  from the cartridge, which makes its 

temperature increasing. If this one reaches the saturation temperature satT  corresponding to 

the pressure liqP  in the liquid volume, nucleate boiling is therefore initiated. So, vapor 

bubbles arise in the liquid. Then, bubbles ascend in the form of convection cells, to the 

interface where they are vaporized as represented in Figure 2. 

 

 The steam temperature is the result of a complex process of evaporation happening at the 

liquid-vapor interface coupled with a process of condensation at the inner surface of the TP-

R as shown in Figure 2. Actually, the steam in contact with the inner wall of the TP-R is 

likely to condense when its temperature is greater than the one of the wall 
sup

_ intwallT . This 

phenomenon, called film condensation, which could coexist with the evaporation 

phenomenon, leads to the formation of a continuous liquid film of width film  located 

between the steam and the wall as shown in Figure 2. The width of the film film , the Mass 
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flow of evaporation evapm  and condensation condm , the enthalpy flow rate generated by the 

condensation 
.

/cond liqH  and evaporation 
.

/liq vapH  are modeled. The thermal flow rate 

exchanged between the vapor and the wall 
sup

.

/ _ intvap wallH  is also modeled, as can be seen in 

Figure 3. 
 

A heat flow /cart liqH  exists between the heating element and the liquid mass. A part of this 

heat flow 
inf

/ _ intliq wallH  is transferred, by natural convection to the wall. A certain quantity 

longQ  is propagated by conduction along the material constituting the TP-R. This heat flow 

longQ  increases the temperature of the upper wall 
sup

_ intwallT  which is in contact with the 

vapor, and consequently intervenes in the condensation phenomena taking place in this part of 

the TP-R. Finally, other portions of heat flow noted: 
inf

/ _air wall extH  and 
sup

/ _air wall extH  are 

transferred by natural convection from the wall (lower and upper parts) to the outside of the 

TP-R. The Figure 3 summarizes the distribution of the flows, above mentioned. 

 

  
Figure 3 : Distribution of the various heat flows within the TP-R. 

 

Finally, it is particularly important to remind the reader that no identification of the thermal 

exchange coefficients was made, contrary to modeling works found in the literature (Pouzet 

stall [PJP04], Chuang [CHU03], Kaya et al. [KPGT07] Adoni et al. [AAJK07]) where an 

experimental identification was needed to find thermal conductance. 

 

2.2.Bond graph model of the TP-R 

About the theory of bond graphs  

Industrial thermal fluids systems are multi-disciplinary. Their functioning involves 

systematically several domains of the physic (mechanic, hydraulic, thermal, chemical and 

electrical fields. This phenomenological complexity makes it difficult to develop a standard 

model based on partial differential equations. 

 

The bond graph methodology is based on the principle of energy conservation. It allows to 

represent graphically the power transfer between components of a complex system. A bond 

graph model is a unified graphical representation for all areas of engineering science. It is 

based on the principle of analogy between different fields of physics. Also, a bond graph 

model is structural which allows simulation and analysis of the model properties (Dauphin -
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Tanguy et al, 1999) and behavioural. The bond graph allows modeling adapted to the 

evolutionary technological needs. In fact the model can be easily modified by adding or 

removing elements, permitting in this manner a modeling approach called "bottom-up" or 

“top down". 

 

Bond graphs or standard approaches? 

During recent decades, a significant number of tools and thermal modeling methodologies 

were developed for industry and research domains. These models are generally grouped into 

three categories: “black box models”, “white box models” and " gray box models". The 

"black box models" simply allow a numerical solution of the problem without providing any 

physical interpretation of the studied system. However the "white box models” are based on 

the physics and explicitly describe the system. Therefore, they are more complex to generate, 

since they contain very few approximations, thus so many parameters. Indeed, they require a 

long calculation time and a large computing capacity. So the scientists used the "gray box 

models". These models combine the physical sense and spirit of simple models. The Bond 

graphs are part of this class of models. The advantage of this approach, compared to other 

simulation tools such as TRNSYS, is that they require writing new computer codes to model 

components that are not available in their libraries, while bond graphs, due to their graphic 

approach and with a minimum of input parameters, it is easier to model complex phenomena. 

Also they are very suitable for modeling the basic problems of heat transfer through a wall 

while TRNSYS, for example, is not dedicated to this type of problems. If the Bond graph 

language gives the physical structure of the system, it also gives the causal structure, in other 

words, the calculation structure. It provides systematically variables and equations of state. 
 

Assumptions 

 Steam is saturated.  

 TP-R is composed of two volumes. See Figure 3. 

 The lower volume is exclusively liquid. 

 The upper volume is exclusively steam. 

 The interface thickness separating the two volumes is neglected. 

 In the proposed model the interface separating liquid and gas is not considered at all. In 

reality, this phase is composed of a mixture of liquid and gas and should be taken into 

account in the modelling process, but studies and experimentations conducted by 

(Carey 1992) and (Guo 2000) for water shows that the thickness of this interface is of 

some nanometers. This result leads us to neglect the presence of such interface. 

 

Note: 

The interaction between liquid and vapor volumes is considered by modelling the heat 

exchange taking place in both directions: liquid/vapor (evaporation phenomenon) and 

vapor/liquid (condensation phenomenon). Also, the mass flow of evaporation and 

condensation reflects how both volume are linked. All these phenomena are modeled by the 

multiport bond graph element R.   

 

 No presence of non-condensable gas in the TP-R. 

 Temperature and pressure are considered uniform. 

 The material constituting the TP-R is assumed to be homogeneous, isotropic, of constant 

thermal conductivity λ. 

 The refrigerant used for the simulation is water; its thermo physical features are extracted 

from NIST [site 1]. Specific polynomial and Gaussian correlations were developed and 

are listed in Annex A. 
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Choice of thermodynamic variables 

The product of effort and flux in a true bon graph is a power. However, to make profit of 

some simplifications related to the mathematical formalism, it is decided to develop a pseudo 

bond graph in which the product effort by flux is not a real power, but all the properties of a 

true bond graph remain the same. 

 

The variables in the pseudo bond graph model are: 

• Pressure and Mass flow for the hydraulic domain. 

• Temperature and enthalpy flow rate (for convection) or heat flow rate (in case of 

conduction) for the thermal domain. 
 

Discretization of the TP-R structure 

The reservoir structure is discretized into five volumes as shown in Figure 3: 

 

1. Liquid Volume: liqV . 

2. Steam Volume: vapV . 

3. Volume of the wall in contact with the liquid : _ infwallV . 

4. Volume of the wall in contact with the steam : _ supwallV . 

5. Volume of the heating cartridge wall: _wall cartV . 

 

All of these volumes are modeled by a capacitive C-element, which characterize the storage 

of mass and heat inside the TP-R. The mass and energy conservation equations are 

represented in bond graph theory by junctions: 0h  for hydraulic part, and 0t  for the thermal. 

Also, these two junctions reflect the assumption of pressure and temperature uniformity. 

 

Given the mathematical form of heat exchange laws (Fourier law), thermal transfer 

phenomena (convection and conduction) are modeled by dissipative R-elements shown in 

Figure 4. 

 

The Figure 4 is a global representation of the pseudo bond graph model, developed for the 

two-phase reservoir. 

 

After the qualitative description of modeled phenomena, the conservation equations 

governing the dynamic behaviour of the TP-R are now presented.  

 

The unknowns are:  

 

 the pressure of the liquid : ( )liqP t ,  

 the mass of the liquid : _liq accm  and the vapor mass : _vap accm ,  

 the temperature of the liquid : ( )liqT t ,  

 the temperature of the lower TP-R wall : 
inf

( )wallT t ,  

 the temperature of the upper TP-R wall : 
sup

( )wallT t ,  

 the temperature of the cartridge : ( )cartT t ,  

 the pressure of the vapor : ( )vapP t ,  

 the temperature of the vapor: ( )vapT t , 
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The mentioned unknowns are calculated inside C elements, the resolution of integral 

equations is performed by Runge-Kutta solver integrated in 20-sim [Site 2], a step of 0.01 has 

been chosen. (20-sim is a modeling and simulation program for mechatronic systems). The 

bond graph methodology leads us to represent the calculation formalism as follows: 

 

 
Figure 4 : Dynamic pseudo-bond graph model of TP-R. 

 

After the qualitative description of modeled phenomena, the conservation equations 

governing the dynamic behaviour of the TP-R are now presented.  

 

The unknowns are:  

 

 the pressure of the liquid : ( )liqP t ,  

 the mass of the liquid : _liq accm  and the vapor mass : _vap accm ,  

 the temperature of the liquid : ( )liqT t ,  

 the temperature of the lower TP-R wall : 
inf

( )wallT t ,  

 the temperature of the upper TP-R wall : 
sup

( )wallT t ,  

 the temperature of the cartridge : ( )cartT t ,  

 the pressure of the vapor : ( )vapP t ,  

 the temperature of the vapor: ( )vapT t , 

 

The mentioned unknowns are calculated inside C elements, the resolution of integral 

equations is performed by Runge-Kutta solver integrated in 20-sim [Site 2], a step of 0.01 has 

been chosen. (20-sim is a modeling and simulation program for mechatronic systems). The 

bond graph methodology leads us to represent the calculation formalism as follows: 
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2.3.Mathematical equations governing the C-elements 

 

a) Volume liqV   

 The pressure of the liquid ( )liqP t :  

The liquid pressure is given by the hydrostatic law representing one of constitutive laws of the 

element liquidC  :  

  ( ) ( ) ( )liq vap liq liqP t P t g x t     (1) 

where:  

 ( ) ( )liq TP R vapx t H x t   (2) 

 

Vapor pressure ( )vapP t  is calculated by equation (18). ( )vapx t  is the height of steam in the TP-

R, its expression is obtained by equation (56). 

 

 The liquid mass _liq accm  

Equation of mass conservation 

The mass storage in the liquid volume liqV  is modeled by the 2 ports element liqC , as shown 

in Figure 5. 

 

 
Figure 5 :  Bond graph model of the liquid volume. 

 

The hydraulic junction 0h  allows to write the hydraulic flow balance: 

 

 _liq acc cond evapm m m   (3) 

 

Mass flow of condensation and evaporation are respectively given by equations (52) and (58). 

Then, we have:  

 _ _ ,0( )liq acc liq acc liq

t

m t m dt m    (4) 

,0liqm : the initial mass of the fluid contained in the TP-R 

 

 ,0 ,0 0 ,0( )liq liq liqm T V   (5) 

Remark 
Initially, the liquid and vapor are in thermodynamic equilibrium: 

 

 ,0 ,0 0vap liqT T T   (6) 

 

with 0T  an input to the model. ,0liqV  is the initial volume of liquid occupying the TP-R: 
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    2 2
,0 ,0liq TP R liq cart cartV R x R H        (7) 

 

,0vapV  the initial volume of vapor in the TP-R: 

 

 ,0 ,0vap TP R liqV V V   (8) 

 

 The temperature of liquid ( )liqT t  

Equations of energy conservation 

The thermal junction 0t allows to write the following enthalpy flow balance: 

 

 
inf

_ / / / / _ int( ) ( )liq acc cond liq cart liq liq vap liq wallH H H H H     (9) 

 

The enthalpy storage in the volume liqV  is modeled (Figure 5) by the element liqC : 

 

 _ _ ,0( ) ( )liq acc liq acc liq

t

H t H t dt H    (10) 

 

where ,0liqH  is the initial enthalpy in the control volume. The constitutive law of the element

liquidC  is then: 

  _

_ ,

( )
( )

( )

liq acc
liq

liq acc p liq

H t
T t

m t c



 

(11) 

 

 

The accumulated mass of the liquid _ ( )liq accm t  is given by equation (4). 

 

b) Volume _ infWallV   

 The temperature of the walls 
inf

( )wallT t  

The thermal junction 0t allows writing the following enthalpy flow balance: 

 

 
inf inf

_ / _ int / / _( ) ( )
inf

wall acc liq wall cart liq air wall extH H H H    (12) 

 

The enthalpy storage in the volume _ infwallV  is modeled by the element _ infwallC : 

 

 
inf inf inf

_ _ ,0( )wall acc wall acc wall

t

H t H dt H    (13) 

 

 

The constitutive law of the element _ infwallC  is then: 

 

  
inf

inf

inf

_

,

( )
( )

( )

wall acc
wall

wall p wall

H t
T t

m t c



 

(14) 

 

 

c) Volume _ supWallV   

 The temperature of the wall 
sup

( )wallT t  

The formalism related describing the element _ supwallC  is similar to the that one of _ infwallC . 
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d) Volume  _Wall cartV   

 The temperature of the cartridge ( )cartT t  

The thermal junction 0t allows to write the following enthalpy flow balance: 

 

 _ _cart acc ext cartH P H   (15) 

 

where P the thermal power provided by the cartridge. The enthalpy storage in the volume 

_wall cartV  is modeled by the element _wall cartC : 

 

 _ _ ,0( )cart acc cart acc cart

t

H t H dt H    (16) 

 

The constitutive law of the element _wall cartC  is then: 

 

  _

,

( )
( )

( )

cart acc
cart

cart p cart

H t
T t

m t c



 

(17) 

e) Volume vapV   

 The vapor mass _vap accm  

The vapor mass stored inside the volume vapV  is modeled using the bond graph element vapC  

with the same developments shown in section (2.3.b). 

 

 The pressure of the vapor  ( )vapP t  

The vapor volume is saturated which allows to write the vapor pressure vapP  as function of 

steam density vap . The relationship between the two variables is obtained using 

thermodynamic tables provided by NIST [site1]. An interpolation function is then developed 

and valid for [0.0049; 0.91 3/kg m ]: 

 

 3 20.03539. 1.859. 0.6709. 0.001328
( )

0.4596

vap vap vap
vap vap

vap

P
  




  



 

(18) 

 

 

Remark about interpolation fonctions: 

It should be noted that the functions relating the thermodynamic quantities are valid for 

pressure interval of small amplitudes [0.1; 1.5 bar], that's why these functions (polynomials, 

Lagrangian, Gaussian) are of great precision (the correlation coefficient is equal to 1). A 

particular interest is devoted to the precision when developing these functions. 

The steam density ( )vap t  is: 

 _ ( )
( )

( )

vap acc
vap

vap

m t
t

V t
   

(19) 

 

The vapor volume ( )vapV t  is calculated using the equation (55). 

 

 The temperature of the vapor ( )vapT t  

The temperature of saturated steam in the TP-R is related to the pressure (saturation 

conditions). The relationship between the two variables is obtained using a Gaussian 

interpolation which is valid for [0.1; 1.5 bar]: 
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 2 2

2 2

3.252 1.636
( ) 392.7.exp 273.7.exp

1.23 0.7764

0.9858 0.6574
151.1.exp 44.5.exp

0.5366 0.3601

297.2.exp

vap vap
vap vap

vap vap

vap

P P
T P

P P

P

       
                     

       
                     

 

2 2
0.1384 2.414

52.64.exp
0.6353 0.5595

vapP       
                   

 

 

 

 

(20) 

 

 

2.4. Description of conducto-convective flows: R elements 

This section presents expressions of the eight thermal flows involved in the heating process. 

These flows are shown in Figure 3 and are crucial to calculate the unknowns of the problem. 

The thermal convective coefficients are the most complicated parameters, they are calculated 

using specific correlations extracted from the open literature and reported below. 

 

a) Heat flow from the cartridge: 
.

/cart liqH  

This term is computed in the bond graph element _ _Wall ext cartR   presented in figure 4. 

Research works on heat exchanges in a closed reservoir, (Nukiyama , 1934) led to set up an 

experiment allowing the visualization of different flow patterns appearing during heating. An 

analysis of the curve obtained Figure 6 shows that heat exchange mode is strongly associated 

to the observed pattern (liquid, bubbles, plug, slug and annular...). It is therefore important, 

from a modeling point of view, to identify, first, the flow regime using appropriate indicators 

to apply subsequently the corresponding heat exchange coefficient. Actually, the curve of 

Figure 6 shows that the evolution of the heat density ( / ²)q w m  imposed by the heating block to 

the liquid depends on the difference between the temperature of the cartridge wall ,wall cartT  

and the liquid temperature: ,wall cart liqT T T   .The slope of the curve ( )q f T   represents the 

famous heat exchange coefficient convh . A detailed study of the proposed correlations for this 

coefficient is discussed in this paragraph, in order to take them into account in the developed 

model. Finally, note that the heat flow provided by the heat source (cartridge) to the liquid is 

written as: 

 
 

.

/ ,cart liq conv cart wall cart liqH h S T T     
(21) 

 

where: 

 2cart cart cartS R H     (22) 

 

Heat exchange coefficients related to different flow patterns 

Nukiyama drew the graph Figure 6, in which heat flow density ( / ²)q w cm  is a function of :

,wall cart liqT T T   . 

 

 Heat transfer coefficient associated with the section : OA 

During this preliminary phase, the heat transfer /liq cartH  between the heating element and the 

liquid is done by convection obeying Newton's law: 

 

 .

/cart liq conv cartH h S T    
(23) 
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Figure 6 : Nukiyama curve specific to water [DEL90]. 

 

The convection coefficient convh   is calculated using Churchil and Chu correlation reported by 

J-M Delhaye [DEL90] and valid for: 125 1010  Ra . In our case the value of Ra number is 

about 58 10 : 

 2

1/6

8/27
9/16

0.387
0.60

0.559
1

Pr

Ra
Nu

 
 
 

  
 

           

 

(24) 

 

 

The following numbers are defined: 

 Nusselt number : 

 conv cart cart

liq liq

h d q d
Nu

T 

 
 

 
 

(25) 

 Rayleigh number 

 3
liq cart

liq liq

g T d
Ra



 

  



 

(26) 

 Prandtl number : 

 
Pr

liq

liq




  

(27) 

 

 Heat transfer coefficient associated with the section AC : towards a Saturated 

Nucleate Boiling (SNB): 

Section AB: Nucleate boiling with isolated bubbles. Bubbles of vapor (or nucleation sites), 

are regularly distributed along the heating zone. They appear at this area and move in the form 

of steam columns towards the liquid/vapor interface of TP-R. At this interface, bubbles will 

evaporate increasing thereby the vapor pressure in the upper part of the two-phase reservoir. 

 

Section BC : Saturated Nucleate Boiling (SNB) with slug forms. Vapor bubbles chaplets 

proliferate as long as the heat flux is emitted by the cartridge. They have shapes of slugs or 

vapor columns [DEL90]. Slugs intensify until they substantially isolate the entire exchange 

surface with a very unstable vapor film. The heat flow used to heat up the liquid is mainly due 

to the latent heat of vaporization.  

 

The heat flux density q  transferred along the AC section presented in Figure 6 is calculated 

using the correlation of Rohsenow [ROH85]:  
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 

0.33

, , ,( )
s

wall liq wall cart sat liq p liq
sf

v liq v liqliq vap

c T T cq
C

L L g



  

     
     

       

 

(28) 

 

 

Rohsenow suggests the following values: 1s   for water. As for the coefficient sfC , the value 

0.013sfC  is recommended. 

 

Indicator detecting the change of the flow pattern: OA or AC section? 

From a modeling standpoint, it is necessary to write an indicator making the code able to 

switch from the correlation of Churchil and Chu to the Rohsenow correlation. 

 

According to the Figure 6, one can note that it is not enough to have the equality ,wall cart satT T  

to attend the birth of vapor bubbles. Actually, an additional overheating is needed before 

speaking of saturated nucleate boiling (SNB). This overheating is mainly related to the cavity 

radius of vapor bubbles cavr  and interfacial tension  , which exists at the interface between 

the liquid and vapor. As a first approximation, overheating needed to launch the SNB can be 

calculated as follows [DEL90] 

 
,

2 sat
sat wall cart sat

cav v vap

T
T T T

r L





 
   

 
 

(29) 

 

Radius cavities cavr  at a smooth metal surface is about: 5cavr m  for water [DEL90].So that, 

the indicator SNBind  programmed in the model is as follows: 

If: 

 
,

2 sat
wall cart sat

cav v vap

T
T T

r L





 
 

 
 

(30) 

 

then: 1SNB  , this means that the (SNB) is initiated, and the correlation used is the Rohsenow 

equation (28). Otherwise 0SNB  , there is not yet (SNB) and the used correlation is then the 

Churchil and Chu equation (24). 

 

Point C: known as the boiling crisis point, or burn out. 

If the critical flow critq density is reached, then a volume of steam envelops the entire 

exchange surface as shown in Figure 7, causing thereby a separation between the liquid and 

the cartridge.  

 

Nukiyama experience shows that during a critical flow, the quantity ,wall cart liqT T T    

increases very quickly, as it is visible in Figure 6. It is manifested in reality by a consequent 

increase in the wall temperature of the heating cartridge which can easily exceed its melting 

temperature (1000 ° C) and therefore a degraded cartridge. 

 

 
Figure 7 : boiling crisis. 
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The critical flow density is calculated in the proposed model of TP-R. If ever this value is 

reached the model user knows it. This is an output of the model. 

 

The selected correlation of critq  is the one of Sun and Lienhard reported by J-M Delhaye 

[DEL90] : 

 1/2 1/2
*

1/ 4
0.116 0.3 exp( 3.44 ) ( )vapq R L gcrit v liq vap    

 
 

           
 

 
(31) 

 

 

where *R  is a dimensionless radius whose expression is: 

 

 

 

1/2

* cart

liq vap

R R
g



 


 
  
  
 

 

(32) 

 

 

b) Heat flow exchanged between the liquid and the wall: 
inf

.

/ _ intliq wallH  

This term is computed in the bond graph element _ int_ infWallR   presented in figure 4. 

Heat losses transferred from the liquid to the outside of the TP-R, are the consequence of 

three modes of heat transfer: 

 

 Natural convection between liquid and the inner wall 

The heat transfer coefficient is given by: 

 

 
int

liq

TP R

Nu
h

D






  

(33) 

 

  Pr
m

Nu C Gr    (34) 

 

where: 

If   4 9Pr 10 ,10Gr   
 

    then :   0.59C   and 1/ 4m  . 

If   9 13Pr 10 ,10Gr   
 

   then :   0.021C   and 2 / 5m  . 

 

 The number Pr  is given by equation (27). Gr  is the Grashof number defined as : 

 

 3 2

2

TP R liq

liq

D g T
Gr

 



    
  

(35) 

 

Finally, the heat flow transferred by natural convection is: 

 

 
inf inf inf

/ _ int int int _ int( )liq wall liq wallH h S T T     (36) 

with:  

 
inf

int 2 TP R liqS R x      (37) 

 

 Radial conduction inside the wall 

The analytical expression for the thermal resistance inside of a hollow cylinder is: 
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 ,

,int

ln

2
TP R

TP R ext

TP R

liq

R

R
R

x 






 
 
 
 


  

 

(38) 

 

Thus, the radial heat flow transferred by conduction through the wall of the TP-R is written 

according to Newton’s law: 

  
inf inf

_ int _
1

wall wall wall extQ T T
R

    
(39) 

 

 Natural convection between wall and air. 

The heat transfer coefficient by laminar convection is written as: 

 

 0.25

1.42ext
liq

T
h

x

 
  

 
 

 
(40) 

with: 

 
inf

_wall ext airT T T    (41) 

 

This expression of exth  implies a laminar flow regime air/wall. In other words, it is valid for a 

number of Grashof below than: 910 , which is largely respected in our case. Thus, the heat 

flow transferred by convection is: 

 
 inf inf inf

.

_ / _ _air ext wall ext ext ext wall ext airH h S T T     
(42) 

where:  

  
inf

2ext TP R TP R liqS R e x        (43) 

c) Heat flow between liquid and the condensate film: 
.

/cond liqH  

This term is computed in the bond graph element _ int_ supWallR  presented in figure 4. 

The enthalpy flow rate received by the liquid from the condensate film is: 

 

 .

/ ,cond liq cond p liq vapH m c T    
(44) 

 

The Annex C shows how to determine the analytical expression of the Mass flow of 

condensation 
condm . Its formula is given by equation (52). Expressions of other quantities 

involved in the condensation phenomenon such as film width equation (53), and the flow 

velocity condv  of condensate film are also established in the Annex C. The term of specific heat 

,p liqc  is calculated based on the temperature of the condensate film vapT  according to the 

relationship (A. 3). 

 

d) Heat flow exchanged between liquid and vapor: /liq vapH  

This term is computed in the bond graph element _ _Inter liq vapR  presented in figure 4. 

At the evaporation interface, the vapor bubbles leave the liquid to go into the vapor space. 

These bubbles carry with them some enthalpy flow (quantity of heat) whose expression is: 

 

 / ,liq vap evap p liq liqH m c T    (45) 

Expression of ,p liqc  is calculated by equation (A. 3). The term evapm  is given equation (58). 
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e) Longitudinal heat flow propagated by conduction along the wall: 
long

Q  

This term is computed in the bond graph element WallR  presented in figure 4. 

TP-R is a cylinder of an outer diameter: _TP R extD  , and an internal diameter: _ intTP Rd  , its 

cross section is then: 

  2 2
_ _ int

4
TP R TP R ext TP RS D d


      

(46) 

 

The heat transfer resistance is: 

 TP R
long

TP R TP R

H
R

S


 




 
(47) 

 

It comes, according to the Fourier conduction law: 

 

  
inf sup

1
.

long
wall wall

long

Q T T
R

   
(48) 

 

f) Heat flow exchanged between the steam and the wall of the TP-R: 
sup

/ _ intvap wallH  

This term is computed in the bond graph element _ int_ supWallR  presented in figure 4. 

The total specific heat *
vL  transferred by the steam to the TP-R wall is the sum of two 

contributions: the specific heat of condensation condH  added to the specific heat due to sub-

cooling of the condensate  
sup

, _ int0.68 ( )p liq vap wallc T T   . *
vL  is then : 

 

 
sup

*
, _ int0.68 ( )v cond p liq vap wallL H c T T       (49) 

 

The specific heat of condensation condH is calculated using the following equation: 

 

 " '( ) ( ) ( )cond vap vap vapH P h P h P    (50) 

 

Functions "h  and 'h  are given in Annex C. Thus, the amount of heat 
sup

/ _ intvap wallH  transferred 

by the steam to the wall is given by: 
 

 
sup

*
/ _ intvap wall cond vH m L   (51) 

 

2.5. Mass flow of condensation and evaporation 
 

The condensate mass flow expression condm  is established in Annex B : 

 

  
 

3

2
3

liq vap film

cond liq TP R
liq

g
m R

  
 




  
    


 

(52) 

 

The expression of the condensate thickness is also obtained in Annex B: 

 

  
 

sup

1/4

_ int4 liq liq vap wall vap

film

cond liq liq vap

x T T

g H

 


  

     
 
    
  

 

(53) 
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Calculation of the vapor height: 

The total geometric volume of TP-R is the sum of two volumes: liquid and vapor: 

 

 TP R liq vapV V V    (54) 

 

 

Then: 

 
  _2 2

( )
( ) ( ) ( )

liq acc
vap TP R vap TP R liq TP R TP R

liq

m t
V t R x t V V t R H 


   

 
          

 
 

 
(55) 

 

 

And: 

 
  _2

2

( )

( )

liq acc
TP R TP R

liq

vap

TP R

m t
R H

x t
R






 



 
    

 
 




 

(56) 

 

 

The density liq , The viscosity liq  and The specific heat of condensation condH  are 

respectively given by equations (A. 1), (A. 5). And (50). 

 

Mass flow of evaporation 

The heat balance shows that the flow of heat transferred by the heating element to the liquid 

volume /cart liqH  is the sum of two contributions: 

 The evaporation flow whose term is
.

evap evapm H
 

 
 

 . 

 The leakage flow   , ,0evap p liq liq liqm c T T   , used to bring the temperature of the liquid mass 

to its saturation temperature. 

 

Then: 

 
 

.

/ , ,0cart liq evap evap evap p liq liq liqH m H m c T T       
(57) 

where  

 

  

.

/

, ,0

cart liq
evap

evap p liq liq liq

H
m

H c T T


   
 

(58) 

 

 

3. EXPERIMENTAL VALIDATION OF TRANSIENT THERMO HYDRAULIC MODEL OF THE TP-R 

 

An experimental validation is necessary to evaluate the ability of the model to predict the 

thermo hydraulic behavior of a TP-R. After the description of the used test bench we propose 

two validation tests in which comparisons between time evolution of the measured and 

simulated pressures and temperatures are performed. Also, the dynamic model was lately 

tested for other power densities ranging from 1W to 200W (the maximal power delivered by 

the cartridge), the model showed good agreement with experimental data extracted from the 

same test rig, which leads to consider that the model is valid for all the domain of our 

application. 
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3.1. Test rig description 

 

The test bench used in this study is developed in cooperation between LML, CRYStAL 

laboratories and Atmostat Company. As shown in Figure 8, the TP-R is equipped with: 

 

 
Figure 8 : TP-R instrumentation. 

 

 K-type thermocouple, manufactured by TC direct. Its reference is 408-056 with a 

precision of: +/- 1°C. The thermocouple is completely immersed in the liquid. 

 Pressure sensor manufactured by Keller Serie 23. Its reference is: PAA-23/25, with a 

precision of +/- 0.5%. 

Applied constraints 

A crenel of power is applied to the heating block housed in the TP-R. The ambient 

temperature is 20°C. 

 

3.2. Experiments 

 

 First validation test: crenel of amplitude 90W. 

The initial temperature of the liquid contained in the TP-R is 20°C. The whole test lasts 

2160s. 

 Second validation test: crenel of amplitude 105W. 

The initial temperature of the liquid contained in the TP-R is 57°C. The whole test lasts 

5436s. 

 

a) Temperature evolution of the liquid and vapor  

The time evolution of measured and simulated temperature of the liquid, shown in the Figure 

9 for the first test and in Figure 10 for the second one is analyzed. In addition, the time 

evolution of the steam temperature (red curves) calculated by the model are plotted on the 

same figures for the sake of a comprehensive analysis. Recall that the current instrumentation 

bench does not allow the direct measurement of the steam temperature. The analysis begins 

with the observation of the liquid temperature (bleu curves) in both tests carried out. It is 

found that the model draws a monotonous evolution spread over two phases just like the one 

obtained experimentally. Hardly the heat is applied, liquid temperature starts increasing 

almost linearly until the exact moment when we cut the heat flow. At this time the 
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temperature gradually falls until it stabilizes at a value corresponding to the second permanent 

regime. Both figures 10 and 11 show a clear ability of the model to predict the thermal 

behavior of the reservoir during two simultaneous transient. The first transient corresponding 

to the heating phases seems to be well estimated. This reflects the fact that numerous heat 

exchange coefficients implemented are representative of the real heat exchange taking place 

in the TP-R. The start of the second transitional (caused by the power cut) seems to be less 

well reflected. Note also that in addition to measurement uncertainties (1.5°C), the observed 

difference may also be related to the discretization into 5 volumes. Actually, the cell 

containing the liquid is represented by a single control volume whose temperature is assumed 

to be homogeneous. In fact, the dynamics of heat transfer within the liquid is in the form of 

convective cells, which, to be faithfully represented, requires the inclusion of a stratification 

of the volume. So, as one might expect, the need for a finer discretization would be 

interesting. That said, the difference between measured and simulated results decreases 

rapidly to become practically zero as it approaches to the steady state. This latter is 

established very slowly by conducto-convective heat exchange with the external environment 

which remains poorly insulated.  Concordance between measurements and simulation results 

proves the validity of the selected heat transfer coefficients. 

 

Given the temporal evolution of the liquid temperature, the transient thermo hydraulic model 

of TP-R seems to estimate well the thermal dynamics with identical slopes between model 

and measures.  

 

 

 

 
Figure 9 : Time evolution of liquid and vapor temperature of (Test 1). 
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Figure 10: Time evolution of liquid and vapor temperature (Test 2). 

 

b) Evolution of liquid and steam pressure 

The temporal evolution of the liquid pressure plotted in figures 11 and 12 is now examined. 

Once again, the bench instrumentation does not give access to the vapor pressure. The 

calculated and measured values agree well during steady states. As for the transitional phase, 

the model generally predicts a monotonic increase in two parts, joining so the experimental 

data. The slopes during the heating phase seem to be well estimated by the model. However a 

slight overestimation of pressure during descent phases is observed. The reason is contained 

in the assumption of thermodynamic equilibrium of the steam. Actually, this assumption leads 

to a vapor pressure always function of density, whereas this pressure is rigorously depending 

on the density but also on the temperature. More experimental tests with different power level 

applied to the heating bloc would measure the validity of this hypothesis. 

 

We should note that the bond graph approach adopted in these work and even making its 

particularity allows with great flexibility to apply the conservation laws on the steam volume 

and deduce the temperature and pressure without using the hypothesis of saturation state, 

which, according to the two validation tests, seems to be not too restrictive. 

 

c) Vapor pressure 

The transient model seems to predict well the temporal evolution of the liquid pressure. This 

shows that: 

 

 Since the liquid pressure is calculated by simple application of hydrostatic law, it is indeed 

pressure vapor which is indirectly validated by the tests. And through this well estimated 

steam pressure, all modeled phenomena (evaporation, condensation and compression-

expansion steam) are finally well modeled. 

 

 The height of the liquid intervening in the hydrostatic law as plotted in Figure 13, is also 

implicitly validated. 
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Figure 11: Time evolution of the pressure of liquid and vapor (Test 1). 

 
Figure 12: Time evolution of the pressure of liquid and vapor (Test 2). 
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Figure 13: Time evolution of the liquid height (left: test 1, right: test 2). 

 

CONCLUSION 
 

This article proposes a pseudo-bond graph model dedicated to the analysis of thermo 

hydraulic dynamics in a TP-R. A detailed description of the complex phenomena and the 

constitutive equations of the different elements constituting the dynamic bond graph model 

are given. The validation of bond graph model is presented. Simulation results for an applied 

power ranging from 0 to 200 W are successfully confronted with experimental. Also, the 

model is validated for densities from 0.0045 to 0.91 3/kg m  and pressures ranging from 0.1 to 

2.5 bar.” 

 

It turns out that the model is able to predict with good accuracy the dynamics of thermo 

hydraulic behavior of the TP-R, except for a slight overestimation of pressure. However, 

analyzes raise two points, which worth to be recalled here: the level of discretization and 

saturation hypothesis both having a tangible impact on the observed differences in pressure. 

 

The model owes its originality first to the bond graph approach, and various thermo hydraulic 

phenomena processed and modeled without any recalibration with experience. The literature 

review presents clearly that no similar modeling work was practiced. Several authors argue 

that the modeling of TP-R integrated into the cooling loops lack of finesse in the way they are 

modeled. Also, remember that the developed model can be used as a basis for the 

development of other more accurate solutions while its structure remains the same. Indeed, as 

previously reported, the bond graph is structural and it is possible to enrich the model taking 

into account other phenomena without any modification of the basic model. For example, it 

would be possible to model other heat fluxes that have not been modeled, or take into account 

the presence of non-condensable gas in the TP-R, or refine the discretization of the liquid and 

the steam volumes or the TP-R walls volume, as it may be possible to model the convective 

cells with more precision... 

 

NOMENCLATURE 
 
Bi  Biot number 

 

-- 

pc  specific heat 

 
/J kg K  

d  internal diameter 

 

m  
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D  Exterior diameter 

 

m  

e  wall thickness 

 

m  

f  coefficient of friction 

 

-- 

F  force N  
g  acceleration of gravity at the surface 

 

2/m s  
Gr  Grashof number 

 

-- 

h  heat transfer coefficient 

 

2/W m K  
H  enthalpy 

 
W  

TP RH 
 Height of the two phase reservoir  m  

condH  specific heat of condensation 

 

 

/J kg s  
'h  specific heat of the liquid portion 

 
/J kg  

"h  specific heat of the vapor portion 

 
/J kg  

H  flow enthalpy 

 
/J s  

I  current intensity 

 
A  

l  

 

length of heating 

 

m  

vL  Specific heat of vaporization. 

 
/J kg s  

m  mass kg  
m  Mass flow 

 
/kg s  

Nu  Nusselt number 

 

-- 

P  electric power 

 
/J s  

Pr  Prandtl number 

 

-- 
q  Density of heat flux 

 

2/W m  
Q  heat flow 

 
/J s  

*R  

 

dimensionless radius 

 

-- 

R  Radius m  

Ra  Rayleigh number 

 

-- 

Re  Reynolds number 

 

-- 

R  thermal resistance 

 
/K W   

S  surface 2m  
t  time s  

T  temperature K  

U  tension V  

V  volume 3m  
x  height 

 

m  

   

   

  thermal diffusivity 

 

2 /m s  
  volume expansion coefficient 

 
1/ K  

  density 

 

3/kg m  
  dynamic viscosity 

 
Pa s  

  interfacial tension 

 

2/J m  
  thickness of the condensate film 

 

2/m s  
  thermal conductivity 

 

/W m K  
  velocity /m s  

condv  Condensate velocity 

 
/m s  

  Density of thermal flux 

 

/J s  

index   

0  initial state 

 

 

acc  accumulation  

air  ambient air 

 

 

boucle  loop 

 

 

cart  cartridge 

 

 

cav  cavity  

cond  condensation  

cons  Set point 

 

 

conv  convection  

SNB  saturated nucleate boiling 

 

 
evap  evaporation  

ext  outside 

 

 

f  friction 
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film  Condensate film 

 

 

int  inside  

GNC  non-condensable gases 

 

 

long  longitudinal  

liq  liquid  

wall  TP-R wall 

 

 

sat  saturation  
vap  vapor  

TP R  Two Phase Reservoir  

  difference 

 

 

LML Laboratoire de mécanique de Lille  
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ANNEX A 

About the thermo physical properties 

The thermo physical properties of the fluid depend on its thermodynamic state. Specific 

correlations, based on data given by [SCH63] are used in the present work. They are proposed 

in the following equations 

Density of liquid in 3/kg m  : 

 

 2 2 2

2 2

174, 9 416, 5 441, 4
527, 3 exp 855, 4 exp 5, 948 exp

165, 9 258, 2 38, 21

389,8 460, 6
0, 01094 exp 9.13 exp

6, 458 26, 57

liq liq liq

liq

iq iq

T T T

T T


  

        

 
     

          
                         

    
         

2

329, 7
0.1026 exp

27, 77

iq
T 

  
    
           

 

A. 1 

 

Density of vapor in 3/kg m : 

 

 2 2 2

493, 3 481, 7 470, 2
2,883 exp 2, 49 exp 2, 45 exp

37, 05 53, 04 79, 93

vap vap vap

vap

T T T


  
        

          
                         

 
A. 2 

 

Specific heat of liquid in /J kg K : 

 

 2 2 2

,

583, 6 48, 77 311, 4
4709 exp 9669 exp 493, 9 exp

408, 7 220 109, 3

liq liq liq

p liq
c

T T T  
        

          
                         

 
A. 3 

 

Specific heat of the vapor in /J kg K : 

 

 6 5 4 3 2

,
0,1 2,2 17,7 70,7 154 267 1912,3

p vap
c P P P P P P               A. 4 

 

Dynamic viscosity of the liquid in Pa s : 

 

 0, 00427 0, 005535 cos(0, 0164 ) 0, 001837 sin(0, 0164 )

0, 001649 cos(2 0, 0164 ) 0, 001581 sin(2 0, 0164 )

0.0001286 cos(3 0, 0164 ) 0, 000389 sin(3 0, 0164 )

liq liq liq

liq liq

liq liq

T T

T T

T T

       

       

       

 

A. 5 

 

Inter-facial tension 

 11/9

561.25 10 1 sat

C

T

T
   
    

 
 

A. 6 

 

 
  

http://webbook.nist.gov/chemistry/fluid/index.html.fr
http://www.20sim.com/
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ANNEX B 
 

Mass flow of condensation 

 

This section has as purpose to establish the analytical expression of the Mass flow of 

condensation condm
.

. Other parameters used in condensation calculation such as film thickness 

and condensate film velocity  ,film condv  are also highlighted. A hypothesis allowing the 

following developments assumes that the condensate flow is laminar 2100Re  . Figure B.1 

represents a condensate film formed on a vertical wall. All notations used are displayed on it. 

To begin, let’s consider the infinitesimal volume constituting a portion of the condensate film: 

 

    2 TP R filmdV L R y dx         B. 1 

 

Inventory of forces applied to the volume : dV  

 Gravity force applied to the condensate film : 

 

    2g liq liq liq TP R filmF m g dV g R y dx g                 B. 2 

 

 Force corresponding to the drained steam: 

 

    2vap vap vap vap TP R filmF m g dV g R y dx g                 B. 3 

 

 Force due to parietal friction : 

This force is due to the friction of the condensate against the inner surface  2 VER dx   : 

 

 
 2cond

f liq TP R

dv
F R dx

dy
         

B. 4 

 

By applying the fundamental principle of Newtonian mechanics we obtain: 

 

 0 fvapg FFF  B. 5 

 

The equation B. 5is simplified and gives: 

 

     cond
liq film vap film liq

dv
g y dx g y dx

dy
                

B. 6 

 

After integration of equation B. 6 between 0y  and y , with considering the initial condition

0)0( yu , the following expression is obtained: 

 

   2

2film

liq vap

cond
liq

g y
v y

 




   
    

 
 

 
B. 7 

 

Then we deduce the condensate mass flow 
condm : 

 
  

0

2cond liq TP R condm R dy v



         
B. 8 
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Finally: 

  
 

3

2
3

liq vap film

cond liq TP R
liq

g
m R

  
 




  
    


 

B. 9 

 

 
Figure B.1: Schema of the condensation process. 

 

To determine the thickness of the condensate film film  it’s considered that the enthalpy flow   

provided by the condensate film to the wall is equal to the latent heat of condensation condH  

equation (50) evacuated by the condensed vapor portion condm
. . Then 

.

cond condm H    

 

 On one hand , the enthalpy flow  supplied by the condensate film to the wall surface 

 2 TP RR dx    is : 

 

 
    sup_int

0

2 2
wall vap

TP R TP R

filmy

T TT
R dx R dx

y
   


 



  
                     

 

B. 10 

 On the other hand, the condensed vapor portion condm
.

can be written in the differential 

form: 

 

      3 3 2

3 3

liq vap film liq vap film liq vap film

liq liq liq
liq liq liq

g g gd d d
dx dx d

dx d dx

        
   

   

        
        

 

     
     
          

 
B. 11 

 

Now, thanks to equations B. 10 and B. 11 we can rewrite the equality: 
 

 cond condm H    B. 12 

 

Under the form: 
 

 
 

 
sup

2
_ int

2
wall vap liq vap film

TP R liq cond
film liq

T T g
R dx d H

  
   

 


     
          

   
   

 

B. 13 

Then, an integration of this equation with the boundary condition exth  leads to the expression 

of the condensate thickness: 
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  
 

sup

1/4

_ int4 liq liq vap wall vap

film

cond liq liq vap

x T T

g H

 


  

     
 
    
  

 

B. 14 

 

The total geometric volume of TP-R is the sum of both volumes: liquid and vapor. We have: 

 

 TP R liq vapV V V    B. 15 

Then: 

 
  _2 2

( )
( ) ( ) ( )

liq acc
vap VE vap TP R liq TP R TP R

liq

m t
V t R x t V V t R H 


  

 
          

 
 

 
B. 16 

 

And: 

 
  _2

2

( )

( )

liq acc

TP R TP R

liq

vap

TP R

m t
R H

x t
R






 



 
     

 



 

B. 17 

 

The mass of the liquid accumulated in the TP-R: _ ( )liq accm t , is calculated in the model. The 

density liq  is calculated from equation A. 1.The viscosity liq  is given by the equation (A. 5). 

 

ANNEX C 

 

 2 2 2

'
0.2626 0,104 0,04696

( ) 263,5 exp 92,88 exp 34,29 exp
0,1546 0,08743 0,05121

vap vap vap

vap

P P P
h P

            
                  
               

 
 

C. 1 

 

 

 2 2 2

"

2

5, 743 0, 06863 0, 03843

( ) 2686 exp 191, 4 exp 79, 63 exp

5, 795 0, 6253 0, 2367

0, 1873 1, 844

464, 5 exp 0, 115 exp

1, 363 0, 001972

vap vap vap

vap

vap vap

P P P

h P

P P

  

        

 

     

          
          
          

   
  
  

2 2

1, 141

955, 8 exp

2, 594

vap
P 

  
     
      
      
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