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[1] A closed eddy core in the Subantarctic Atlantic Ocean was fertilized twice with two tons
of iron (as FeSO4), and the 300 km2 fertilized patch was studied for 39 days to test whether
fertilization enhances downward particle flux into the deep ocean. Chlorophyll a and primary
productivity doubled after fertilization, and photosynthetic quantum yield (FV/FM) increased
from 0.33 to ≥0.40. Silicic acid (<2 μmol L�1) limited diatoms, which contributed <10% of
phytoplankton biomass. Copepods exerted high grazing pressure. This is the first study of
particle flux out of an artificially fertilized bloom with very low diatom biomass. Net
community production (NCP) inside the patch, estimated from O2:Ar ratios, averaged 21
mmol POC m�2 d�1, probably ±20%. 234Th profiles implied constant export of ~6.3 mmol
POC m�2 d�1 in the patch, similar to unfertilized waters. The difference between NCP and
234Th-derived export partly accumulated in the mixed layer and was partly remineralized
between the mixed layer and 100 m. Neutrally buoyant sediment traps at 200 and 450 m
inside and outside the patch caught mostly<1.1 mmol POCm�2 d�1, predominantly of fecal
origin; flux did not increase upon fertilization. Our data thus indicate intense flux attenuation
between 100 and 200 m, and probably between the mixed layer and 100 m. We attribute the
lack of fertilization-induced export to silicon limitation of diatoms and reprocessing of
sinking particles by detritus feeders. Our data are consistent with the view that nitrate-rich but
silicate-deficient waters are not poised for enhanced particle export upon iron addition.

Citation: Martin, P., et al. (2013), Iron fertilization enhanced net community production but not downward particle flux during
the Southern Ocean iron fertilization experiment LOHAFEX, Global Biogeochem. Cycles, 27, 871–881, doi:10.1002/gbc.20077.

1. Introduction

[2] Iron limits primary productivity across large areas of the
oceans, which hence contain perennially high NO3

� and
PO4

3� stocks, but low chlorophyll a [Boyd et al., 2007].
Artificial Fe fertilization experiments (FeAXs) in these regions
have induced blooms of large-celled diatoms, drawdown of
macronutrients and fCO2 in the surface mixed layer, and
enhanced downward particle flux [Boyd et al., 2007; Coale
et al., 2004; de Baar et al., 2005; Smetacek et al., 2012].

Analogous results are found in naturally iron-rich waters
downstream of Southern Ocean islands [Blain et al., 2007;
Pollard et al., 2009]. Ocean Fe fertilization has hence been
proposed as a means to sequester CO2 by increasing the down-
ward flux of particulate organic carbon (POC), although the
viability and side effects remain unclear [Aumont and Bopp,
2006; Lampitt et al., 2008a; Lenton and Vaughan, 2009;
Smetacek and Naqvi, 2008; Zeebe and Archer, 2005].
Downward POC flux clearly influences atmospheric CO2
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[Kwon et al., 2009; Parekh et al., 2006], but we do not fully
understand the links between iron supply and POC flux and
how they are influenced by planktonic community structure.
[3] Only two FeAXs were conducted in low-silicon (Si)

waters (Southern Ocean iron enrichment experiment
(SOFeX) North and SOLAS air-sea gas exchange experiment
(SAGE)). However, diatoms were abundant and, apparently,
not Si limited during SOFeX North [Coale et al., 2004], while
downward particle export was not measured during SAGE
[Harvey et al., 2010]. Recent work has suggested that Fe sup-
ply to low-Si Southern Ocean regions may not enhance POC
flux, although appreciable POC flux occurs there naturally
[Bowie et al., 2011; Henson et al., 2012; Trull et al., 2001a].
[4] It is important to note that the shallow export flux of

POC, often measured at 100 m, generally does not sequester
carbon from the atmosphere for climatically relevant time
scales. Long-term sequestration requires POC to sink below
the permanent thermocline, and it is this deeper flux that would
need enhancing for geoengineering to work [Lampitt et al.,
2008a]. POC flux can decrease sharply between these two
depths, and the magnitude of this decrease depends on the
community structure in the surface and mesopelagic
[Buesseler and Boyd, 2009; Boyd and Trull, 2007; Jacquet
et al., 2011; Lam and Bishop, 2007]. Enhancing POC export
does not necessarily enhance POC sequestration, as heterotro-
phic activity in the mesopelagic might be stimulated [Lomas
et al., 2010]. POC flux past the permanent thermocline must
hence be measured during FeAXs, which so far has only been
done in Si-rich waters [Smetacek et al., 2012].
[5] We measured production, export, and deep POC flux

using multiple independent methods during LOHAFEX
(loha is the Hindi word for iron), a 39 day FeAX in low-Si
waters. We first present results from each method individu-
ally, examine the reasons for the lack of export, and, finally,
discuss the depth horizons where and the processes by which
flux was attenuated.

2. Methods

2.1. Site Selection, Fertilization, and Patch Tracking

[6] LOHAFEX was conducted aboard R/V Polarstern from
26 January to 06 March 2009 in the Atlantic sector of the
Southern Ocean. The closed core of a stable cyclonic eddy in
the Antarctic Polar Frontal Zone (48°S, 15°W; Figure S1 in
the supporting information) was selected for the experiment
based in part on real-time Eulerian and Lagrangian altimetry
analyses, which were continued throughout the experiment
(Okubo-Weiss and Lyapunov exponent techniques [d’Ovidio
et al., 2009; Smetacek et al., 2012, supplementary information]).
[7] Starting on 27 January 2009, 2 t of Fe (10 t of FeSO4 × 7

H2O) were dissolved in SF6-labeled seawater with HCl and
spread across 300 km2 in the putative center of the eddy in a
spiral pattern around two drifting buoys used to mark the patch
center (theoretically yielding 2 nM Fe). Another 2 t of Fe were
applied after 18 days, but an instrument fault prevented more
SF6 injection. The fertilized patch was studied for 39 days,
comparing in-patch measurements to control out-patch obser-
vations in unfertilized waters of the eddy.
[8] The patch drifted within the eddy and was tracked via

the drifting buoys, SF6 concentration, the photosynthetic
quantum efficiency FV/FM of phytoplankton, and the concen-
tration of chlorophyll a. Because the SF6 outgassed within

about 2 weeks, we had to rely mostly on the buoys, chloro-
phyll a, and FV/FM, which were elevated within the patch until
the end of the experiment. A total of five buoys had to be
deployed in succession because the first two became detached
from the main part of the patch.

2.2. Macronutrients and FV/FM

[9] NO3
�+NO2

�, NH4
+, PO4

3�, and Si(OH)4 were mea-
sured at sea on a Skalar autoanalyzer using standard procedures.
[10] Phytoplankton photosynthetic quantum efficiency

(FV/FM) was measured continuously from the underway sea-
water supply using a Chelsea Technology Group fast repetition
rate fluorometer and averaged over 2 min intervals. Due to
strong daytime fluorescence quenching, only FV/FM measure-
ments from 19:00 to 06:00 local time were used.

2.3. Net Community Production (NCP) and
Patch Model

[11] The seawater O2 concentration is governed by biolog-
ical and physical factors, but that of the inert gas argon (Ar) is
governed only by physical factors. The seawater O2:Ar ratio
thus reflects biological O2 supersaturation, ΔO2/Ar [Craig
and Hayward, 1987].
[12] O2:Ar ratio was measured continuously in surface sea-

water by mass spectrometry, calibrated against outside air every
2–4 h, and averaged every 2 min [Cassar et al., 2009]. ΔO2/Ar
was calculated following Craig and Hayward [1987] and
the biological O2 concentration, [O2]Bio, according to Cassar
et al. [2011]. In-patch [O2]Bio was corrected for dilution with
unfertilized waters using the dilution rate from a Lagrangian
model of the patch and a weighting function based on the ven-
tilation history of the mixed layer (see supporting information).
[13] NCP was estimated using both a steady state [Reuer

et al., 2007] and a non–steady state calculation [Hamme et al.,
2012]. The latter accounts for changes in [O2]Bio over time.
[14] The piston velocity k was calculated from wind

speed and water temperature measured in the entire eddy
[Wanninkhof, 1992] (see supporting information).
[15] Routine calibration and instrument problems caused

gaps of <1 h to several days, and there are no data for most
of the final week. Thus, NCP was only analyzed up until Day
30 (ΔO2/Ar at the very end of LOHAFEX was roughly equal
to Day 30 values). Because of the gaps, the mean of the obser-
vations might not reflect the true mean NCP over the period;
hence, loess models were fit to the in-patch data (see supporting
information). NCP was then imputed from the models at 2 min
frequency across all gaps. Mean NCP was calculated as the
overall mean of measured and imputed NCP data up until
Day 30 and converted to carbon as C=O2/1.4 [Laws, 1991].
[16] Postcruise, the extent, trajectory, and dilution of the

patch were modeled hourly using a filament-resolving
Lagrangian model based on satellite altimetry data, FV/FM
measurements, and surface buoy positions [d’Ovidio et al.,
2010] (Figures S1a–S1f). Each O2:Ar measurement was
classed as in-patch, out-patch, or out-of-eddy based on this
model, and the classification adjusted manually by comparison
to FV/FM, chlorophyll, salinity, and ship location. The model
agreed well with a satellite chlorophyll a image (Figure S2).

2.4. 234Th Measurements

[17] Total 234Th was measured in 4-L samples after manga-
nese co-precipitation with a 230Th yield monitor [Cai et al.,
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2006; Pike et al., 2005]. Since 234Th deficits did not change
over time, steady state downward 234Th flux was calculated
[Coale and Bruland, 1985, 1987]. In situ pumps (ISPs) with
sequentially mounted 53 and 10 μm Nitex mesh collected

particles at 10 stations from 100m to measure POC:234Th ratio.
Particles were washed off the mesh with filtered seawater and
sonication and filtered onto precombusted Whatman QMA
filters, dried, and β counted. Following background β counting

Sea Surface Height (cm)

-30 -15 0 3015

-46

-47

-48

-49

-50
-18 -16 -14 -12 -18 -16 -14 -12

(a) 25 Jan 2009 (b) 13 Feb 2009

Figure 1. Satellite altimetry of the cyclonic eddy, in blue, in which a patch was fertilized. The solid black
line shows the buoy (and thus patch) trajectories from (a) Days 0 to 5 and (b) Days 5 to 17. The eddy was
entrained by the neighboring anticyclone (in red) toward the end of the experiment.

Figure 2. Maps of trap and drifting buoy trajectories, modeled patch positions, and nighttime underway
FV/FM values along the ship’s track. Blue ellipses show the patch positions when traps started collecting;
black ellipses show the patch positions when traps stopped collecting. Only FV/FM values taken on the start
and end days of collection are shown; measurements taken on the end day are marked with a small black dot
at the center (this appears as a thin black line due to the high measurement frequency).
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after 234Th decay, filters were acidified with 0.1 M HCl, oven
dried, and C and N measured on a Eurovector C/N element
analyzer. POC:234Th ratios were also measured in six
sediment traps.
[18] Particulate (≥1 μm, QMA filter) and dissolved 234Th

were automatically sampled at 4 h resolution from the under-
way supply [Rutgers van der Loeff et al., 2004, 2006]. Any
automated measurements taken outside of the eddy were
omitted, and the rest were designated as in- or out-patch
measurements based on the patch model up to Day 31. Later
measurements were designated “In” if they were within 10
nautical miles of the buoy. 234Th data are presented as the
activity ratio to 238U (238U=0.0713× salinity ± 3%), which is
1 at secular equilibrium. The activity ratio for particulate
234Th is to total 238U in the water sample.
[19] Since In- and Out-patch 234Th measurements did not

differ, they were not affected by dilution.

2.5. Sediment Traps

[20] Neutrally buoyant PELAGRA traps [Lampitt et al.,
2008b] were deployed inside and outside of the patch at
200 and 450 m for 5–6 days each (Figure S3). Argo
float profiles from the region suggested that 450 m would
be close to, but still below, the winter mixed layer.
Trap cups contained 2% borate-buffered formaldehyde in
0.2 μm filtered seawater with 0.5% wt/vol NaCl. Additional
cups contained polyacrylamide gels [Ebersbach and Trull,
2008].

2.6. Sediment Trap Sample Analyses

[21] Samples from each trap were pooled, divided with a ro-
tary splitter, and swimmers removed at sea (60–120× magnifi-
cation). Samples were filtered on precombusted, preweighed
Whatman GF/F filters (mass +POC+particulate organic nitro-
gen (PON)), polycarbonate filters (0.4 μm, particulate inor-
ganic carbon (PIC) and biogenic silica (BSi)), or QMA filters
(POC:234Th ratios) and rinsed once with MilliQ. Blanks were
prepared by filtering preservative through the different filters.
POC:234Th ratio was measured as for ISP samples; the other
filters were stored at �20°C. Splits for phytoplankton cell
counts and fecal pellet analysis were stored at +4°C.
[22] Dry weight, POC, PON, PIC, and BSi weremeasured as

in Martin et al. [2011]. PIC samples were size fractionated
[Bairbakhish et al., 1999], but since the small fraction
contained foram fragments, not coccoliths, we present the
sum of both fractions.
[23] Fecal pellets were removed manually from one split

onto a precombusted Whatman GF/F filter, acid fumed, oven
dried, and POC analyzed at the University of California
Davis Stable Isotope Facility.
[24] Too little material was available to replicate analyses.

However, sample processing and analytical errors of 10–15%
are likely for POC, PON, PIC, and BSi [Martin, 2011].
[25] Polyacrylamide gels were photographed on board

following Ebersbach and Trull [2008]. Aliquots of each
sample were settled in sedimentation chambers for 48 h and

Table 1. Summary of Sediment Trap Collectionsa

Trap In/Out Collection Period Dry Weight POC PON POC:PON Phyto POC (%) Flagellate POC(%) Opal CaCO3
234Th

D1#210 In 27 Jan 21:30 to 29 Jan 21:25 55 0.46 0.053 8.7 8.7 8.1 0.085 0.12 63
D2#440 Probably In 06 Feb 15:00 to 11 Feb 14:00 81 0.70 0.082 8.5 1.4 1.1 0.16 0.19 NM
D3#200 Probably In 09 Feb 15:30 to 11 Feb 15:30 35 0.40 0.041 9.6 6.9 6.5 0.020 0.086 61
D4#470 Out 13 Feb 10:00 to 17 Feb 13:00 28 0.24 b 0.027 8.7 9.1 8.0 0.060 0.14 NM
D5#440 In 17 Feb 13:00 to 22 Feb 16:00 110 0.77 0.089 8.6 1.9 1.7 0.16 0.29 NM
D6#440 In 19 Feb 10:15 to24 Feb 16:15 310 1.9 b 0.22 8.6 5.0 4.6 0.30 0.49 690
D7#430 Out 20 Feb 04:00 to 25 Feb 16:00 99 0.91 0.11 8.4 2.1 1.7 0.11 0.27 510
D8#230 Out 22 Feb 16:15 to 23 Feb 06:15 140 2.4 0.25 9.4 0.30 0.24 0.10 0.47 780
D9#460 In 24 Feb 16:15 to 01 Mar 16:15 130 1.1 0.12 8.9 2.1 1.9 0.10 0.29 520
D10#440 In 01 Mar 17:00 to 05 Mar 07:00 100 1.1 0.12 8.9 4.1 3.7 0.082 0.32 NM

aTraps are referred to as Deployment Number # Depth. All fluxes are given in millimoles per square meter per day, rounded to two significant figures,
except for 234Th, which is in disintegrations per minute per square meter per day; the POC:PON ratios are in mol mol�1. “NM”= not measured.

bThese values are questionable; see section 3.5.

Figure 3. In- and out-patch NCP time series with 234Th-derived export fluxes for comparison. Out-patch
NCP measurements are color-coded by distance to the modeled patch center. The colored lines show two of
the three loess models that were fit to the data. The solid black bar at 18 days shows when the patch was
refertilized. Crosses indicate the mixed layer depth; the overall mean mixed layer depth was 66 m.
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unicellular organisms counted under inverted light and
epifluorescence microscopy. Mean biovolume was measured
from 10 to 20 specimens per taxon [Hillebrand et al., 1999]
and converted to organic carbon [Menden-Deuer and
Lessard, 2000] to calculate unicellular plankton POC flux.

2.7. Underwater Video Profiler (UVP)

[26] The UVP is a rosette-mounted camera that photographs
particles at ~0.2 m vertical resolution on the conductivity-
temperature-depth downcast [Picheral et al., 2010]. Custom
software calculates equivalent spherical diameter (ESD)
and volume of all particles ≥100 μm and classes particles
≥ 630 μm ESD as either aggregates, fecal sticks/pellets, or
live zooplankton [Gorsky et al., 2010] (Figure S10). Data
were averaged over 5–10 min intervals for each individual
profile. We present the median values of all in- and out-patch
profiles here.

3. Results

3.1. Surface Biological and Biogeochemical Response
to Fertilization

[27] Upon fertilization, FV/FM increased from ~0.33 and
remained elevated at 0.4–0.5. In-patch chlorophyll a approxi-
mately doubled to 1–1.5 mg m�3. Primary productivity from
14C incubations was <80 mmol C m�2 d�1 outside, but
rose up to a peak of 130 mmol C m�2 d�1 in the patch
(M. Gauns, personal communication, 2010). In-patch NO�

3

declined from 20 to 17.5 μmol L�1. Si(OH)4 in the patch
was 0.6–1.6 μmol L�1 and did not decrease over time.
[28] Diatoms were present but small for their species, and fla-

gellates <10 μm contributed >90% of phytoplankton biomass
(I. Schulz et al., in preparation, 2013). The coccolithophore
Emiliania huxleyi declined after fertilization. Copepod grazing
pressure was very high: fecal pellet production rates of
Calanus simillimus implied grazing of >30% of net primary
productivity (range: 0.7%–240%) (H. González et al., in prepa-
ration, 2013). Oithona spp. were particularly abundant: on
average, 100,000m�2 between 0 and 200m in the patch (range:
35,000–235,000) (M. G. Mazzocchi, personal communication,
2010). Bacterial leucine and thymidine uptake increased
somewhat upon fertilization, but cell abundance and species
composition did not change [Thiele et al., 2012].

3.2. Movement of the Patch and Trap Trajectories

[29] The patch rotated inside the eddy core until Day 32 (27
February 2009, Figures S1a–S1f) and was then filamented
when the fertilized eddy was entrained by a nearby anticyclone
centered around 48°S, 13°W (Figure 1). The patch model (see

section 2.3) indicated that the hot spot of the fertilized patch
maintained its integrity until the end of the experiment, albeit
shrinking due to erosion of its borders by stretching along
the frontal jet. The patch model estimated an upper bound of
dilution of the hot spot to 50% by Day 20 and to 20% by
Day 39, mostly due to diffusion (Figure S4).
[30] The trap trajectories mirrored the surface circulation

indicated by the buoys and shipboard acoustic Doppler
current profiler (Figures 2 and S5), implying homogeneous
circulation down to 450 m. Although D7#430 and D8#230
surfaced within the patch model, they were in fact recovered
from waters outside of the patch. During this time, the patch
was squeezed up against the eastern side of the eddy, with a
very sharp boundary to unfertilized waters. Traps were desig-
nated as in or out (Table 1), yet none is truly unambiguous.
Tracking the drift and boundaries of the patch was very
challenging, and we cannot be sure that the In traps only
collected below the patch. Conversely, time constraints
limited how far away the out traps could be deployed, so they
might have been influenced by the patch.

3.3. Net Community Production

[31] Steady state in-patch NCP rose from about 0 to 50
mmol O2 m�2 d�1 by Day 10 and returned to zero by Day
30 (Figures 3 and S6). Out-patch NCP was consistently lower
than in-patch NCP, and the out-patch data least likely to have
been influenced by the patch (orange points in Figure 3)
remained close to zero throughout the experiment. The nomi-
nally out-patch data on Days 10–14 were mostly very close to
the patch, which were collected while steaming back and forth
across the patch boundaries as we tried to map its extent, so
their elevated NCP is likely due to mixing with fertilized
waters. The autocorrelation function of [O2]Bio indicated a
strong diurnal cycle (Figure S7). The non–steady state esti-
mate yielded higher NCP for the first half and lower NCP
for the second half of the experiment (Figure S8). These differ-
ences cancelled each other out such that the overall mean NCP
up to Day 30 was very similar to the steady state NCP
(Table 2). We only discuss the steady state estimate below.
[32] A loess model spanning 15% of points was judged to

fit the data best. Using fewer points yielded unlikely interpo-
lations across gaps (green line in Figure 3), while using a
higher percentage of points did not change the estimate
significantly (Table 2).

Table 2. Mean In-Patch NCP From Days 0–30, Corrected for
Dilution With Unfertilized Watersa

Mean NCP
Steady State

Mean NCP
Non–Steady State

Span of Loess Model (mmol C m�2 d�1) (mmol C m�2 d�1)

10% of data 17 19
15% of data 21 22
20% of data 21 23

aLoess models spanning different percentages of the data were used to im-
pute data across gaps; NCP values quoted are the mean of the measured and
imputed data.
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[33] Our best estimate of mean in-patch NCP is thus
29 mmol O2 m�2 d�1, or 21 mmol C m�2 d�1 (Table 2),
while out-patch NCP was �6.2 mmol O2 m

�2 d�1, or �4.4
mmol C m�2 d�1. The dilution correction only had a modest
effect: uncorrected in-patch NCP was 25 mmol O2 m

�2 d�1,
or 18 mmol C m�2 d�1. This is because mixed layer

ventilation was ~sixfold faster than horizontal dilution, so
most of the O2 produced in the patch was lost to the atmo-
sphere, not by dilution.
[34] Quantifying the uncertainty in NCP is unfortunately

rather difficult. Estimating the piston velocity at high wind
speeds is a major source of uncertainty [Ho et al., 2006].
However, O2:Ar measurements seem to reflect NCP quite
accurately in the Southern Ocean, though they may underes-
timate NCP by around 20% when productivity is high and
Zmix >50 m [Jonsson et al., 2013]. We therefore assume an
uncertainty of at least ±20%, since the dilution correction
and loess interpolation introduce additional uncertainties.

3.4. Export Based on 234Th

[35] We calculated downward 234Th flux assuming steady
state, since the deficit did not change over time (Figure S9).
234Th-derived export at 100 m was 5.2–7.8 mmol POC m�2

d�1 inside and 4.7–6.4 mmol m�2 d�1 outside of the patch
(Figure 4). Most of the deficit was above 75 m, and 234Th
excesses relative to 238U rarely exceeded the analytical error
(Figure S9). The average 234Th-derived in-patch export at
100 m was 6.3 mmol POC m�2 d�1.
[36] There was no evidence of a fertilization-induced

export event: export flux during Days 0–6 varied as much
as during the entire experiment. Since it is bloom collapse
that would trigger enhanced particle export [Buesseler
et al., 1992, 2001; Cochran et al., 2000; Martin et al.,
2011; Smetacek et al., 2012], the range in 234Th-based export
estimates over the first 6 days probably reflects spatial vari-
ability in the patch, not an increase upon fertilization.

Figure 5. Activity ratios of 234Th:238U measured by the au-
tomated sampler from the underway supply. An activity ratio
of 1 means that there is no depletion of 234Th, and ratios <1
indicate depletion of 234Th relative to 238U. Activity ratios
are shown both for particulate 234Th and for total 234Th
(dissolved + particulate). The horizontal black bar at 18 days
indicates the time of second fertilization.
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[37] POC:234Th ratios were 2.9–6.9 μmol dpm�1 in the
>53 μm ISP samples and 2.1–8.2 μmol dpm�1 in the three
200 m traps; the overall mean was 4.6 ± 2.0 μmol dpm�1.
In- and out-patch ratios fell within the same range, so one ra-
tio was used for all stations. However,>53 μmNitex-filtered
particle samples are not necessarily representative of sinking
particles (e.g., fragile particles may disintegrate and pass
through the mesh). Hence, we also calculated the combined
POC:234Th ratio of all particles >10 μm from the ISP sam-
ples, which was 3.1 ± 0.7 μmol dpm�1. Our 234Th-derived
POC export may thus be overestimated by about 30%, in
which case export would actually have been in the range of
3.5–5.3 mmol POC m�2 d�1.

[38] The automated surface measurements did not indicate a
large export event either, and in- and out-patch surface 234Th
depletions were equal (Figure 5). While the total activity ratio
of 234Th:238U declined from 0.8 initially to 0.75 by Day 39,
ranging ±0.1 at any time, this does not indicate increased
234Th depletion to 100 m depth. However, the particulate
234Th fraction nearly doubled byDay 20. This evident increase
in the surface area available for 234Th scavenging could reflect
either buildup of new or fragmentation of existing particles.

3.5. Trap Samples

[39] The traps recorded very low particle flux, and in-patch
versus out-patch differences were not evident (Figure 6 and

Figure 7. Data from the UVP, which detects any particles >100 μm ESD. (a, b) Median abundance of
particles in two different size classes. (c) Volume concentration of all particles. (d) Slope of the size spec-
trum of particles. (e) Mean size of particles. (f–h) Abundances of fecal particles, unrecognizable detrital
particles, and total copepods. Shaded areas show the interquartile range.
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Table 1). POC flux at 450 m was 0.70–1.9 mmol m�2 d�1

inside and 0.24–0.91 mmol m�2 d�1 outside of the patch.
However, the lowest out-patch value (trap D4#470) was
probably due to a sample processing error, while the highest
in-patch value was from a trap that surfaced during adverse
weather and could be recovered only 48 h later (trap
D6#440); both values are hence suspect. At 200 m, POC
flux was 0.46 mmol m�2 d�1 inside the patch (Days 0–2),
but 2.4 mmol m�2 d�1 in one sample outside of the patch.
POC:PON ratios were high: 8.4–9.6. Intact fecal pellets
contributed around 45% of total POC flux (probably
underestimated, as trap recovery and sample splitting might
disintegrate pellets). The polyacrylamide gels were also
dominated by fecal pellets. Unicellular plankton contributed
only 0.3%–9% of total POC flux, mostly as dinoflagellates
and other flagellates (Table 1). Broken and empty diatom
frustules far outnumbered intact diatom cells.
[40] CaCO3 flux exceeded opal flux by a factor of 2–7. Si:

POC ratios were hence low (0.04–0.25), while moderate PIC:
POC ratios were found (0.20–0.59).
[41] Strangely, 234Th flux into the first and third traps was

only 60 dpm m�2 d�1, far lower than the >1000 dpm m�2

d�1 predicted at 100 m from 234Th profiles. The other traps
collected 510–780 dpm m�2 d�1.

3.6. UVP Particle Profiles

[42] Particles <250 μm ESD were most abundant in the
mixed layer, decreasing between 70 and 120 m. Particles
>250 μm ESD peaked at 75 m, decreasing down to 150 m
(Figure 7). Total particle volume peaked at 75 m and de-
creased to about 150 m; while mean particle size and the
slope of the particle size spectrum both indicate a higher pro-
portion of large particles below the mixed layer. Moreover,
while fecal abundance peaked at 50 m and then decreased
sharply to 150 m, unrecognizable detritus (that would include
fecal pellets disintegrated by coprorhexy) [Lampitt et al.,
1990] increased sharply from 50 to 80 m (Figures 7 and
S10). Total copepod abundance peaked at 75–100 m.
[43] Since particles in the 250–630 μm and >630 μm size

classes had very similar depth profiles, the two classes are
combined in Figure 7. However, particles <630 μm ESD
were more abundant inside than outside the patch (Mann-
Whitney U test, W = 196, n = 26, and 9, p = 0.02), and the
mean abundance and volume of particles >630 μm ESD de-
creased with time in 100 m below the mixed layer inside the
patch (Spearman’s rho =�0.55, n = 26, p= 0.004). No other
significant trends with time or in-patch versus out-patch dif-
ferences were found (for time series of abundance and vol-
ume, see Figure S11).

4. Discussion

4.1. Effect of Fertilization on Downward Particle Flux

[44] Neither the 234Th nor the sediment trap data indicate
major fertilization-induced export, despite the clear increase
in NCP. Moreover, the UVP showed no increase in particles
>100 μm upon fertilization. In contrast, evidence is mount-
ing that iron fertilization of Si-replete waters, leading to dia-
tom blooms, can induce severalfold higher export than
during LOHAFEX and enhance flux to deep waters (EIFEX
[Smetacek et al., 2012], CROZEX [Salter et al., 2007;
Morris and Sanders, 2012], SEEDS II [Aramaki et al.,

2009], SERIES [Boyd et al., 2005], SOFeX [Buesseler
et al., 2004], KEOPS [Blain et al., 2007], and IronEx-II
[Bidigare et al., 1999]).
[45] The LOHAFEX data thus suggest that iron fertiliza-

tion of Si-limited Southern Ocean waters, which does not
stimulate diatom blooms, enhances neither shallow export
nor deep POC flux. This is consistent with the view that dia-
toms are major contributors to new production [Dugdale and
Wilkerson, 1998, 2001], given the importance that sinking
may have in diatom ecology [Smetacek, 1985; Salter et al.,
2012]. It has hence been questioned whether Southern
Ocean iron fertilization would work at all to enhance carbon
sequestration if it does not do so under Si limitation, because
Si is already fully utilized in the Southern Ocean [Trull et al.,
2001b]. However, iron fertilization can lower the Si:C ratio
of exported material and, thus, can sequester more carbon
for the same amount of Si [Smetacek et al., 2012; see also
Salter et al., 2012]. Thus, we do not believe that the
LOHAFEX results imply that iron fertilization cannot en-
hance Southern Ocean carbon sequestration.
[46] However, we cannot readily disentangle the effects on

downward POC flux of the lack of diatoms on the one hand
and the very high grazing pressure and particle reprocessing
by zooplankton on the other. Thus, LOHAFEX provides no
conclusive proof that downward POC flux in low-Si sub-
Antarctic waters will never be enhanced by iron fertilization,
especially since significant export and deep POC flux do oc-
cur in low-Si regions [Cardinal et al., 2005; Henson et al.,
2012; Honjo et al., 2008; Planchon et al., 2013; Trull
et al., 2001a]. Organic carbon did accumulate in the mixed
layer (section 4.2), leaving open the possibility that enhanced
export occurred after the end of the experiment, although the
heavy grazing and particle reprocessing by zooplankton
would probably have strongly attenuated any future
export event.
[47] Nevertheless, our results agree with those of SAZ-

SENSE, which reported lower export and greater mesope-
lagic remineralization in naturally iron-replete than in iron-
limited low-Si sub-Antarctic waters [Bowie et al., 2011;
Ebersbach et al., 2011; Jacquet et al., 2011]. Only a modest
response, mostly by nondiatom phytoplankton <20 μm, was
found upon iron fertilization of sub-Antarctic low-Si waters
during SAGE, suggesting that export was probably not
greatly enhanced [Harvey et al., 2010; Peloquin et al.,
2010]. In contrast, POC export at the low-Si sub-Antarctic
SOFeX North site was enhanced by iron fertilization, with
NO3

� depletion similar to LOHAFEX [Bishop et al., 2004;
Coale et al., 2004]. However, Si(OH)4 in SOFeX North
was above limiting concentrations and, apparently,
replenished in the elongated patch by admixture of surround-
ing water. Weakly silicified diatoms contributed 44% to total
phytoplankton POC and aggregated eventually [Coale et al.,
2004]. Thus, while SOFeX North is nominally considered a
“low-Si” experiment, diatoms were not initially Si limited
and did bloom, in strong contrast to LOHAFEX.

4.2. Comparison Between NCP, 234Th, and
Sediment Traps

[48] Comparing these three methods is fraught with com-
plications, since export may lag production, the methods in-
tegrate over different time scales and depths, and each
suffers from biases and uncertainties [Lampitt et al., 2008b;
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Le Moigne et al., 2013; Morris et al., 2007; Savoye et al.,
2008]. However, the long duration and Lagrangian nature
of LOHAFEX mitigate some of these problems, and while
significant uncertainties are associated with each of our esti-
mates, we do not believe that any of the methods is grossly
biased. Figure 8 summarizes our main conclusions.
[49] NCP was 21 mmol POC m�2 d�1, exceeding the 100

m export flux by ~15 mmol m�2 d�1, implying organic
carbon accumulation in the mixed layer and/or flux attenua-
tion between the mixed layer depth (MLD) and 100 m.
Direct measurements do suggest accumulation in the mixed
layer of ≤6 μmol L�1 of total organic carbon in the patch
(S. W. A. Naqvi et al., in preparation, 2013), accounting for
≤13 mmol m�2 d�1 of the NCP. This would allow for export
out of the mixed layer of at least 8 mmol POC m�2 d�1, of
which around 6 mmol m�2 d�1 sank below 100 m (as
diagnosed from 234Th). This implies that POC flux was
attenuated by around 2 mmol m�2 d�1 between the mixed
layer and 100 m. Thus, a little more than half of the in-patch
NCP appears to have accumulated in the mixed layer, while
the remainder was exported below the mixed layer as sinking
POC flux.

[50] The POC flux diagnosed from 234Th exceeded trap
fluxes threefold to sixfold. Since the flux of 234Th itself was
just 2–3 times lower in the traps than that diagnosed from
the profiles, the discrepancy cannot be attributed purely to
biased trap collection. The 234Th and trap data thus indicate
a strong reduction in particle flux from 100 to 200–450 m.
[51] Between the base of the mixed layer and the sediment

traps at 200–450 m, POC flux was probably attenuated about
eightfold, or about sixfold between 100 and 200–450 m.
These estimates must be treated with caution, since the export
estimates at each depth carry significant uncertainty. However,
such intense attenuation contrasts with the higher transfer effi-
ciencies of flux to depth that have been reported upon collapse
of diatom blooms [Buesseler and Boyd, 2009; Martin et al.,
2011; Smetacek et al., 2012]. Interestingly, subsurface 234Th
excesses indicative of remineralization [Maiti et al., 2010;
Savoye et al., 2004] were not consistently found, although ex-
cesses are often confined to narrow depth horizons. They
might hence have been missed by our 50 m vertical resolution
in the mesopelagic.
[52] The UVP data are also consistent with strong flux atten-

uation: particle stocks declined with depth below the MLD,
and there was a shift from intact fecal pellets to unrecognizable
detritus. This shift was most pronounced at the depth of
highest copepod abundance, implying coprorhexy [Lampitt
et al., 1990] and, generally, particle reprocessing by zooplank-
ton. The high abundance of Oithona spp. during LOHAFEX
also suggests substantial flux reprocessing: Oithona spp. are
reported to be coprophagous and, hence, likely to attenuate
POC flux [González and Smetacek, 1994]. However, intact
fecal material contributed ~45% to the sediment trap catches,
underscoring the importance of unreprocessed fecal pellets in
downward POC flux.
[53] This contrasts with the enhanced mesopelagic particle

stocks seen during the Kerguelen Ocean and Plateau
Compared Study (KEOPS) [Jouandet et al., 2011]. Overall,
the UVP revealed that the most intense particle transforma-
tions took place between the base of the mixed layer and
around 150 m (Figures 7 and S8), and flux attenuation prob-
ably took place throughout this depth range.
[54] Mesopelagic communities of high- and low-Si regions

may actually respond differently to iron fertilization: meso-
pelagic remineralization as estimated from excess barium
was a relatively low proportion of export flux in the high-Si
iron fertilized areas of EIFEX and KEOPS [Jacquet et al.,
2008a, 2008b]. In contrast, at the iron-replete low-Si sub-
Antarctic site in SAZ-SENSE a greater proportion of export
flux was remineralized than at either of the iron-limited sites
[Jacquet et al., 2011]. Moreover, export from SOFeX North
was initially reduced owing to a response by mesopelagic
grazers, though an export event did occur later [Bishop
et al., 2004; Lam and Bishop, 2007]. We observed no drastic
changes over time, but the upper mesopelagic community
appeared to attenuate particle flux heavily.

5. Conclusions

[55] Downward particle flux out of the fertilized patch and
through the mesopelagic was tracked successfully for 39
days. Net community production, but not 100 m export flux,
increased relative to unfertilized waters; mixed layer organic
carbon accumulation and flux attenuation above 100 m can

0 1
UVP data, relative

Particles <250 µm
Particles >250 µm
Fecal pellets

Copepods
Unrecognisable detritus

25 20 15 10 5 0

Fluxes, mmol C m  d

ML accumulation
NCP

21 mmol m  d

Th export
6 mmol m  d

Trap fluxes
~1 mmol m  d

ML export

Figure 8. Overview of carbon fluxes and particle profiles
during LOHAFEX. The right side summarizes the carbon
fluxes: NCP averaged 21 mmol m�2 d�1 in the mixed layer,
of which ≤13 mmol m�2 d�1 accumulated in the mixed layer,
leaving at least 8 mmol m�2 d�1 for export below the mixed
layer. The dotted line indicates that mixed layer export is not
very well constrained, and thus, the degree of flux attenuation
between the mixed layer and 100 m is uncertain. 234Th-
derived export exceed the flux caught in sediment traps,
indicating further attenuation from 100 to 200 m. The left
side of the figure summarizes the UVP data, with abundance
of different particle types indicated on a relative axis. The
UVP data collectively indicate that particle transformation
was most intense between the base of the mixed layer and
150 m, most likely owing to zooplankton activity; flux atten-
uation was most likely intense throughout this range.
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account for this difference. Particle flux appeared to decrease
strongly between 100 and 200–450 m. Our results add further
evidence to support the idea that Fe fertilization does not nec-
essarily stimulate POC export and sequestration under Si
limitation in the Southern Ocean. Zooplankton community
composition and activity under the mixed layer may strongly
regulate the export by reprocessing sinking particles and
altering the particle size distribution.
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