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Abstract. The ZX-Calculus is a powerful diagrammatic language for quantum mechanics
and quantum information processing. The completeness of the π

4
-fragment is a main open

problem in categorical quantum mechanics, a program initiated by Abramsky and Coecke. It
has recently been proven that this fragment, also called Clifford+T quantum mechanics, was
not complete, and hence a new rule called supplementarity was introduced to palliate it. The
completeness of the π

4
-fragment is a crucial question, for it is the “easiest” approximately

universal fragment, whereas the π
2

-fragment, the stabiliser quantum mechanics, is known to
be complete but is not approximately universal.
In this paper, we will show that, on the one hand, the π

4
-fragment is still not complete despite

the new supplementarity rule, and that, on the other hand, this supplementarity rule can
be generalised to any natural number n. To prove the incompleteness of the π

4
-fragment, we

can show an equality over scalars that is not derivable from the set of axioms, and that will
lead to a substitute for the inverse rule, and the obsolescence of the zero rule. We can also
show that the generalised supplementarity for any n not a power of 2 is not derivable from
the current set of axioms of the ZX-Calculus, but that the rule for some n can be derived
from some others. The hierarchy of these rules will be discussed.

1 Introduction

The ZX-Calculus is a powerful diagrammatic language for reasoning in quantum mechanics intro-
duced by Coecke and Duncan [1]. Every diagram is composed of three kinds of vertices: red and
green dots which are parametrised by an angle, and a yellow box; and each diagram represents
a matrix thanks to the so-called standard interpretation. Moreover, any quantum transformation
can be expressed using ZX-diagrams, meaning they are universal.

Unlike quantum circuits, the ZX-Calculus comes with a set of equalities between diagrams that
preserve the matrix that is represented. Hence, using locally a succession of these equalities, one
can prove that two diagrams represent the same matrix, because the language is sound i.e. all the
equalities do indeed preserve the matrix.

The converse of soundness is called completeness. Here, it amounts to being able to transform
any diagram into another one as long as both represent the same matrix. It has been proven
that the ZX-Calculus is in general not complete [6]. Yet, some restrictions have been proven to
be complete. The π

2 -fragment – the language restricted to angles that are multiples of π
2 , which

represents the stabiliser quantum mechanics – is complete [2]. The π-fragment – representing the
real stabiliser quantum mechanics – is also complete [5].

A fragment is approximately universal when any quantum transformation can be approached
with arbitrarily great precision using only the angles in the fragment. Sadly, the π

2 -fragment is not
approximately universal, but the π

4 -fragment is. It is called the Clifford+T quantum mechanics.
Completeness for this fragment is still an open question, one of the main ones in the fields of
categorical quantum mechanics – even though a partial answer has been given for the fragment
composed of path diagrams involving angles multiple of π

4 [7].
In this paper, we show that in the non-scalar-free version of the ZX-Calculus, the π

4 -fragment is
not complete, showing that a scalar equality is derivable using matrices, but not diagrammatically.
We propose to replace the “inverse rule” by this equality, and show that it can prove the former
one as well as a third one: the “zero rule”.



We also show that an infinite number of fragments are also incomplete, by proving that a
generalised form of the “supplementarity rule” cannot be derived in them. Some of them, though,
can be deduced from the rule parametrised with other numbers. We show that the rule parametrised
with prime numbers is enough to deduce it for any number, and show that this set – for odd prime
numbers – is minimal. We also give some other ways of deducing the rule from other ones – not
parametrised with prime numbers.

2 ZX-Calculus

2.1 Diagrams and standard interpretation

A ZX-diagram D : k → l with k inputs and l outputs is generated by:

R
(n,m)
Z (α) : n→ m α

· · ·

· · ·

n

m

R
(n,m)
X (α) : n→ m α

· · ·

· · ·

n

m

H : 1→ 1 e : 0→ 0

I : 1→ 1 σ : 2→ 2

ε : 2→ 0 η : 0→ 2

where n,m ∈ N and α ∈ R

and the two compositions:

– Spacial Composition: for any D1 : a → b and D2 : c → d, D1 ⊗D2 : a+ c → b+ d consists in
placing D1 and D2 side by side, D2 on the right of D1.

– Sequential Composition: for any D1 : a→ b and D2 : b→ c, D2 ◦D1 : a→ c consists in placing
D1 on the top of D2, connecting the outputs of D1 to the inputs of D2.

The standard interpretation of the stabiliser ZX-diagrams associates to any diagram D : n→ m
a linear map JDK : C2n → C2m inductively defined as follows:

JD1 ⊗D2K := JD1K⊗ JD2K JD2 ◦D1K := JD2K ◦ JD1K
r z

:=
(
1
) r z

:=

(
1 0
0 1

)
t |

:=
1√
2

(
1 1
1 −1

) r z
:=


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 r z
:=
(
1 0 0 1

) r z
:=


1
0
0
1



Jα K :=
(
1 + eiα

) u

ww
v α

· · ·

· · ·

n

m

}

��
~ := 2m



2n︷ ︸︸ ︷
1 0 · · · 0 0
0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0
0 0 · · · 0 eiα


(
n+m > 0

)

For any n,m ≥ 0 and α ∈ R,

u

www
v

α

· · ·

· · ·

n

m

}

���
~

=

t |⊗m
◦

u

ww
v α

· · ·

· · ·

n

m

}

��
~ ◦

t |⊗n

(
where M⊗0 =

(
1
)

and M⊗k = M ⊗M⊗k−1 for any k ∈ N∗
)
.
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To simplify, the red and green nodes will be represented empty when holding a 0 angle:

· · ·

· · ·
0

· · ·

· · ·
:= and

· · ·

· · ·
0

· · ·

· · ·
:=

Also in order to make the diagrams a little less heavy, when n copies of the same subdiagram
occur, we will use the notation (.)⊗n.

ZX-Diagrams are universal:

∀A ∈ C2n × C2m , ∃D, JDK = A

This implies dealing with an uncountable set of angles, so it is generally preferred to work with
approximate universality – the ability to approximate any linear map with arbitrary accuracy – in
which only a finite set of angles is involved. The π

4 -fragment – ZX-diagrams where all angles are
multiples of π

4 – is one such approximately universal fragment, whereas π
2 -fragment is not.

2.2 Calculus

The diagrammatic representation of a matrix is not unique in the ZX-Calculus. Hence, there exists
a set of axiomatic equalities between diagrams, summed up in figure 1.

When we can show that a diagram D1 is equal to another one, D2, using a succession of
equalities of this set, we write ZX ` D1 = D2. Given that the rules are sound, this means that
JD1K = JD2K. The rules can obviously be applied to any subdiagram, meaning, for any diagram D:

(ZX ` D1 = D2) ⇒
{

(ZX ` D1 ◦D = D2 ◦D) ∧ (ZX ` D ◦D1 = D ◦D2)
(ZX ` D1 ⊗D = D2 ⊗D) ∧ (ZX ` D ⊗D1 = D ⊗D2)

The notion of completeness here will take into account the scalars – diagrams with 0 input and
0 output, hence representing a 1×1 matrix –, while in some versions of the ZX-Calculus, the global
phase or even all the scalars are ignored.

Only Topology Matters is a paradigm stating that any wire of a ZX-diagram can be bent
at will, without changing its semantics:

= = =
= =

α = α α = α

3



· ·
· = α+β

β
· · ·

· · ·· · ·

· · ·
α

· · ·
· · ·

(S1) = (S2)

=
(S3) = (IV)

= (B1) = (B2)

=
π π

π

· · · · · ·
(K1) =

π

α

−α

πα

π
(K2)

π
2

π
2

−π
2

= (EU) α

· · ·

= α

· · ·

· · ·

· · ·

(H)

π = π (ZO)

α α+π 2α+π

= (SUP)

Fig. 1. Rules for the ZX-calculus with scalars, augmented with the supplementarity rule [3]. All of these
rules also hold when flipped upside-down, or with the colours red and green swapped. The right-hand side
of (IV) is an empty diagram. (· · · ) denote zero or more wires, while ( · · · ) denote one or more wires. Note
that it has been proven that (K1) could be derived from the other rules [4], and so will be put aside in the
sets of rules that will appear in the following.

3 The π
4
-fragment is not complete

In the figure 1, we can see that the rule (IV) gives a relation of inverse – in the sense of ⊗ – between
two diagrams, because the empty diagram is instinctively the neutral element for ⊗. We can easily
calculate that the two subdiagrams represent

s {
=
√

2 and

s {
=

1√
2

Hence, we can create any power – negative or positive integer – of
√

2, by placing the right
amount of one of these two diagrams next to each other.

We can represent 1√
2

in other ways. For instance, we can create a diagram that represents

cos(α) for any α ∈ R:

t
−α
α

|

=
(
1 eiα

)
◦ 1√

2

(
1 + e−iα

1− e−iα
)
◦ 1√

2
=
eiα + e−iα

2
= cos(α)
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and in the precise case of α = π
4 , this cos equals 1√

2
. So, simplifying with , we should find:

−π
4

π
4

= (E)

But this equality is not derivable from the rules of the ZX-Calculus expressed in figure 1.

Indeed, let us define the quantities IG and IR:

Definition 1. Let D = (Q,VR, VG, E,EH) be a diagram (of the ZX-Calculus) where Q is the set of
inputs/outputs, VR and VG the sets of red and green vertices, E a list of elements of (Q∪VR∪VG)×
(Q∪VR∪VG) – the links between 2 nodes –, and EH a list of elements of (Q∪VR∪VG)×(Q∪VR∪VG)
– the links between 2 nodes with a Hadamard.
The quantity IG(D) (resp. IR(D)) is defined as:

IG(D) =

∑
g∈VG

δ(g)

+ |EH |

 mod 2

(
resp. IR(D) =

((∑
r∈VR

δ(r)

)
+ |EH |

)
mod 2

)

with δ(v) the degree of vertex v.

In other words, IG(D) is the parity of the degree of green dots plus the number of Hadamard boxes
in the diagram D.

Proposition 1.

Both IG(D) and IR(D) are invariants of any non-null diagram – any diagram representing a non-
null matrix – of the ZX with regards to the rules in figure 1.

Proof. One just has to check if it is true for all the rules in figure 1 but (ZO) (which deals with
null diagrams).

Corollary 1. Since the equality (E) does not deal with null diagrams, and does not hold for the
invariants IG and IR, ZX 0 (E).

Hence, we propose to add this equality (E) to the set of rules. Now, does this new rule imply
another one from the set? The best candidate would precisely be (IV) because it is the only rule
– but (E)– that explicitly includes an empty diagram.

First note that the Hopf law

= (HL)

is derivable from (S1), (S2), (S2), (B1) and (B2)– not (IV). So if (IV) is not in the set anymore,
the Hopf law is still derivable:

= = = =

Proposition 2. (IV) is derivable from the new rule (E)

{(E)} ∪ ZX \ {(IV)} ` (IV)

5



Proof. Using (E), (B1), (HL), (S2), (S1):

=

π/4

-π/4

=

π/4

-π/4 -π/4
=

π/4

=

-π/4

π/4

=

We can actually even go a bit further. Indeed, in equation (E), not only does the empty diagram
appears, but the invariants IG and IR are not respected. This is also the case with rule (ZO). We
can then hope that this rule is derivable from the other ones.

Proposition 3. (ZO) is now derivable from the other rules of the ZX-Calculus:

{(E)} ∪ ZX \ {(IV), (ZO)} ` (ZO)

Proof. In appendix at page 15.

Hence {(E)} ∪ ZX \ {(IV), (ZO)} ` (IV), (ZO) and the new set of rules is represented in figure 3
in appendix.

Remark 1. In this set of rules, we can still prove that (SUP) is not derivable from the other rules,

using the interpretation J.K]k,l defined in [3] with k = 3 and l = 8.

4 Generalised Supplementarity

We can show that the supplementarity rule (SUP) can be generalised to any natural number n.
This generalisation for a number n will be written (SUPn), and the one in figures 1 and 3 will then
be written (SUP2).

In (SUP2), two branches containing α appear, and to each one of them is added either the
angle 0 or the angle π, which are the arguments of the two second roots of unity (1 and -1). In the
general case, with n branches displaying the nth roots of unity

(
2kπ
n for k ∈ J0;n− 1K

)
, the rule

becomes:

=

α+ 2π
n α+n−1

n 2πα

· · ·

nα+

(n−1)π

· · ·
(SUPn)

Notice that there are n green dots, in the left diagram, and n parallel wires in the right diagram.

In order to prove the soundness of (SUPn), let us first define the equality:

α+n−1
n 2πα · · ·α+ 2π

n =
nα+

(n−1)π (1)

Lemma 1. (SUPn) is sound ∀α ∈ R ⇔ (1) is sound ∀α ∈ R.

6



Proof. Notice that
π,

form a basis of C2. Hence, using (K1) and (B1):

(SUPn) is sound
∀α ∈ R ⇔

kπ

α+n−1
n 2π

=

nα+

(n−1)π

· · ·
α

· · ·
α+ 2π

n

kπ

is sound ∀α ∈ R,∀k ∈ {0, 1}

⇔

α+
n−1
n 2π

=

nα+

(n−1)π

· · ·

α

· · ·

α+ 2π
n

kπkπ
kπ

kπ kπ kπ is sound ∀α ∈ R,∀k ∈ {0, 1}

⇔ =
n(α+kπ)+

(n−1)π
· · · α+kπ

+n−1
n 2π

α+kπ

+ 2π
n

α+kπ is sound ∀α ∈ R,∀k ∈ {0, 1}

⇔ (1) is sound ∀α ∈ R

Proposition 4. (SUPn) is sound.

Proof. According to the previous lemma, (SUPn) is sound ∀α ∈ R if and only if (1) is sound
∀α ∈ R. The standard interpretation of the right part of the equality yields 1 + ei(nα+(n−1)π), and
the interpretation of the left part amounts to:

n−1∏
k=0

(1 + ei(α+
2kπ
n )) = ein(α+π)

n−1∏
k=0

(e−i(α+π) − e 2ikπ
n ) = ein(α+π)(e−in(α+π) − 1) = 1 + ei(nα+(n−1)π)

Hence (1) is sound which implies (SUPn) is sound.

4.1 The set of Rules (SUPn) for n Prime

Let P be the set of prime numbers.

Proposition 5. The set of equalities with all n odd prime – {(SUPn) | n ∈ P, n ≥ 3} – is minimal.
The equality (SUPn) for any n ∈ N∗ can be derived from {(SUPn) | n ∈ P}.

To prove this proposition, we will need the lemmas:

Lemma 2. Using (B1), (IV), (K1), (S1):

α

π

β

π
=

β

π

α

π
=

π

α β α+β

π

=

Lemma 3. Using (S1), (K2), 2, (IV), (S3), (K1) and the 2π-periodicity of the green dot:

α
=

α

π

π
−α

=
π

α

π
=

π
== =

π

π

=

π

=

7



Proof (Proposition 5).

Derivability: If n is not prime, its supplementarity can be derived. Indeed, suppose n can be
decomposed in two numbers p and q (n = pq), for which we know the supplementarity rule.

p

p

p

pq

=

α+2π
pq

α+

p−1
pq

2π
α

· · · · · ·

α+2π
q

α+

pq−1
pq

2π

α+2π
q

· · ·

α
α+

q−1
q

2π

· · ·
α+

pq−1
pq

2π

α+2π
pq

α+

2π
pq

+2π
q

α + 2π
pq

+
q−1
q

2π

· · ·
qα

+(q−1)π

qα+2π
p

+(q−1)π
· · ·
qα+

p−1
p

2π

+(q−1)π

= =

pqα+

(pq−1)π

with p-ticked edge representing p parallel wires.

If p or q are not prime numbers, then we can inductively derive their supplementarity rule by
decomposing them. Finally:

∀n ∈ N∗, ZX, (SUPp)p∈P ` (SUPn)

Necessity: Let p ∈ P and p ≥ 3. Let us consider the interpretation J.K]⊗21,p−1 which amounts to
multiplying all the angles of a diagram by p, and duplicating the result.

– Since p is odd, all the rules of the ZX hold [3].

– The rule (E) also holds thanks to the duplication. First notice that, using lemmas 2 and 3:

α

π

−α
π π

= =

We can show that, using (S1), (K2), (H), and the previous result:

π

π

π
π

=
−pπ4

pπ4

⊗2
(p−4)π4

−(p−4)π4

⊗2

(p−4)π4

π

−(p−4)π4

= π

⊗2

(p−4)π4

−(p−4)π4

=

⊗2

(p−4)π
4

π

−(p−4)π
4

π

=

(p−4)π4

−(p−4)π4

⊗2

Finally, using the previous result k times:

=
−pπ4

pπ4

⊗2 (p−4k)π
4

=

−(p−4k)π
4

⊗2

π
4

−π4
7→

π
4

−π4

⊗2

−π4

π
4

⊗2

if p = 3 mod 4

= ←[

if p = 1 mod 4

– The rule (SUPn) when n ∈ P, n 6= p holds, since p ∧ n = 1:

=

α + 2π
n α + n−1

n
2πα ...

pnα+

(n− 1)π

...

7→
← [

pα+
2pπ
n

pα ...
pα+

n−1
n

2pπ

⊗2

pα+2π
n

pα ...
pα+

n−1
n

2π

=
...

nα+

(n− 1)π

⊗2
⊗2
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– The rule (SUPp) does not hold:

6=

α + 2π
p α +

p−1
p

2πα ...
p2α

...

7→

pαpα ... pα

← [
...

pα
pα...pα pα

...

p2α

We can show that the two interpretations are different for any angle of the π
2p -fragment. Using

the same reasoning as for the proof of soundness, an angle α verifying the equality would verify:{
1 + eip

2α = (1 + eipα)p

1− eip2α = (1− eipα)p

By taking the square of the modulus of the two equations, we get:{
2 + 2 cos(p2α) = (2 + 2 cos(pα))p

2− 2 cos(p2α) = (2− 2 cos(pα))p
⇒ 4 = (4− 4 cos2(pα))p

by adding the two lines. So an angle α verifying the two initial equations would also necessarily

be of the form α = ± 1
p arccos

√
1− 4

1
p−1 + 2kπ

p , and none of the angles of the π
2p -fragment are.

More straightforwardly, if α = kπ
2p , then

(4− 4 cos2(pα))p =

(
4− 4 cos2

(
kπ

2

))p
=

{
0 if k = 0 mod 2
4p if k = 1 mod 2

6= 4

Every rule but the p-supplementarity (with p ∈ P and p ≥ 3) holds with this interpretation, so it
cannot be derived from the others:

∀p ∈ P, p ≥ 3, ZX, (SUPn)n∈P,n6=p 0 (SUPp)

Remark 2. It is important to notice that we have not proven that (SUP2) could not be derived
from the rest. Indeed, the family of interpretations used above only works when p is odd.

Remark 3. We can also notice that all the rules (SUPn) respect the quantity IG, so that the rule
(E) is still necessary, even if we add this new set of rules.

4.2 Discussion on the Supplementarity’s Derivability Structure

Let p and q be two natural numbers. We have previously shown that ZX ∪ {(SUPp), (SUPq)} `
(SUPpq), meaning that we can deduce the supplementarity equality of a number from the equalities

of the numbers it is a multiple of. Now, can we deduce this same equality from the equality of
some of its multiples? The first result is when p is odd:

Proposition 6.

∀p, q ∈ N∗ (p = 1 mod 2) ⇒ {(HL), (IV), (SUPp), (SUPpq)} ` (SUPq)

Proof. With (HL) the Hopf Law and (IV) the inverse rule, which are both derivable from any of
the three sets of rules given:

p p p
pq q

α α+ 2π
q α+ q−1

q 2π

. . .

=

α+ q−1
q 2πα

. . .

α+ 2π
q

⊗q(p− 1)

α
p

+2π
p

. . .

(α +
q−1
q

2π)/p

+ p−1
p 2π

α
p

=
Hopf (SUPp)

⊗q(p− 1)

⊗q(p− 1)

=
(SUPpq)

qα

Hopf

=

qα

9



With p-ticked edge representing p parallel wires. Those are created – always by multiples of two –
using the Hopf Law. The 3rd diagram is obtained by rearranging the branches so that we can use
(SUPpq).

There exists another – weaker – derivation when p is even.

Proposition 7.

∀p, q ∈ N∗ {(HL), (IV), (SUPp), (SUPp2q)} ` (SUPpq)

Proof. If p is odd, then the previous proposition implies the wanted result.
Now, if p = 0 mod 2:

p
p

p

p2qpq

α α+ 2π
pq α+ pq−1

pq 2π

...

=

α+

p2q−1
pq

2π

+π

α+π

...

α+2π
pq

+π
α
p

+ 2π
p2q

...

α
p

+
p2q−1

p2q
2π

α
p

=

Hopf

(SUPp)

⊗pq(p− 1)

=
(SUP

p2q
)

pqα+ π

Hopf

=

pqα+ π

⊗pq(p− 1) ⊗pq(p− 1)

α+

p2q−1
pq

2π

+π

α+ π

⊗pq

...

(SUPp)

=

...

⊗pq

pα+ π

pα+

q−1
q

2π

+π

=
(SUPp)

...α+ π

α+

p2q−1
pq

2π

+π

=

For the 5th equality, we use the equality 1. The last equality is just a rearranging of the branches.

To sum up, with the rules of the ZX-Calculus depicted in figure 3:

ZX ∪ {(SUPp), (SUPq)} ` (SUPpq)

ZX ∪ {(SUPp), (SUPp2q)} ` (SUPpq)

(p = 1 mod 2) ⇒ ZX ∪ {(SUPp), (SUPpq)} ` (SUPq)

After all this, we propose to add the generalisation of the supplementarity rule to the set of rules
of the ZX-Calculus, and to restrict to the set necessary when dealing with particular fragments.
The new set of rules of the ZX-Calculus is shown in figure 2.

4.3 The General ZX-Calculus is still not complete

The argument given by Schröder de Witt and Zamdzhiev [6] to show the incompleteness of the
general ZX-Calculus is not valid any more – when multiplying the angles by any integer, there is
at least one supplementarity that does not hold. But we can patch the demonstration to make it
valid again.

Proposition 8. The general ZX-Calculus is incomplete with the set of rules in figure 2.

Proof. Consider the following diagrams:

D1 := and
π
2

π
4

π
4

α

D2 :=

α

π
3

π

θ

10



· ·
· = α+β

β
· · ·

· · ·· · ·

· · ·
α

· · ·
· · ·

(S1) = (S2)

=
(S3)

−π
4

π
4

= (E)

= (B1) = (B2)

π
2

π
2

−π
2

= (EU) α

· · ·

= α

· · ·

· · ·

· · ·

(H)

=
π

α

−α

πα

π
(K2) =

α+ 2π
n α+n−1

n 2πα

· · ·

nα+

(n−1)π

· · ·
(SUPn)

n ∈ N∗ or n ∈ P

Fig. 2. New set of rules for the ZX-calculus with scalars. All of these rules also hold when flipped upside-
down, or with the colours red and green swapped. The right-hand side of (IV) is an empty diagram. (· · · )
denote zero or more wires, while ( · · · ) denote one or more wires.

with α = arccos
(√

1
3

)
and θ = arccos

(√
2
2 +

√
3
6

)
.

Then we can compute JD1K = JD2K.

α is not a rational multiple of π:
One can check that eiα is a root of the polynomial 3X4 + 2X2 + 3 which is irreducible in Z (since
30203 is a prime number, thanks to Cohn’s irreducibility criterion, 3X4 + 2X2 + 3 is irreducible in
Z). The polynomial is not cyclotomic because its coefficient of higher degree is not 1, hence eiα is
not a root of unity, i.e. α is not a rational multiple of π.

No more than four values for α are possible when decomposing D1 in the form D2:
When applying the π green state on top and the 0 green state at the bottom of both D1 and D2,
we end up with:

D1 : π
2

π
4

π
4

π

= π

π
4

−π
2

11



And, using (SUP2):

D2 :

α

α

π
3

π

θ

π

=

α

π
π
3θ

α+π

=

2α+π
θ

π
3ππ

π
3

θ

2α+π

=

Their interpretations are equal, which means:

ei
π
4

√
2e−i

π
4 =

1

2
eiθ(1 + ei

π
3 )(1 + ei(2α+π))

i.e.

√
2

2
= ei(θ+

π
6 +α+π

2 ) cos
(π

6

)
cos
(
α+

π

2

)
So using the modulus, cos

(
α+ π

2

)
=
√

2
3 , thus α = ±π2 ± arccos

(√
2
3

)
.

Now assume ZX ` D1 = D2, then there exists a finite sequence of rules of the ZX: R1,...,Rn
that when correctly applied transform D2 into D1. We will write D1 = R1...RnD2, no matter
where the rules are applied.
Now, let

q = max{p | (SUPp) ∈ {R1, ..., Rn}}

S = {k(q + 4)! + 1 | k ∈ N}

It is easy to show that, ∀q′ ∈ S and for J.Kq′ the interpretation that multiplies the angles by q′,
∀i, ZX ` JRiKq′ and JD1Kq′ = D1.
Then, D1 = R1...RnD2 ⇒ JD1Kq′ = JR1Kq′ ... JRnKq′ JD2Kq′ .
Since ∀i, ZX ` JRiKq′ and JD1Kq′ = D1, we can prove ZX ` D1 = JD2Kq′ . D1 has a finite number
of decompositions in the form D2, but {JD2Kq′ | q′ ∈ S} is infinite – since α is an irrational multiple
of π – and all these diagrams are decompositions of D1 in the form D2, hence we end up with a
contradiction.
So ZX 0 D1 = D2, which proves the incompleteness.

5 Application to Trigonometry

First of all, we need a way to create the scalars cos(α) and sin(α). To do so, we may notice that:

u

w
v

2α

π
2

π

-α

}

�
~ =

√
2e−iα

(
1 0
0 i

)
◦
√

2eiα
(

cos(α)
−i sin(α)

)
× 1

2
=

(
cos(α)
sin(α)

)

Using the 0-red state in the first case, and the π-red-state in the second case, we can define:

Definition 2. The scalars cos(α) and sin(α) are defined as follows:

cos(α) =

t

2α
π

−α

|

sin(α) =

u

ww
v2α−π

π

π
2
−α

}

��
~

We also define the trivial scalars:

Definition 3.

1 =
r z

0 = Jπ K − 1 =

s

π

π
{

so (−1)k =

t

kπ

π
|

The following lemmas will be used to prove the upcoming propositions:

12



Lemma 4. Using (S1), (S3) and (B1):

= = =

Lemma 5. Using 3, (IV), (SUP2), (EU), (S1) and (K2):

= π=
π

α−π
−α

π

α+π
2

=
π

π

π α

−α
α

−π
2

= −α

α

−α
−π

2

=

−α
2α

α−π2

2α
α
−α

=
π

−2α
α

5.1 Results that do not use the Generalised Supplementarity

Proposition 9. Using the previous definitions, we can derive cos(kπ) = (−1)k, sin(kπ) = 0,
cos(π/2 + kπ) = 0 and sin(π/2 + kπ) = (−1)k.

Proof. Obvious when using 4 and (IV).

Proposition 10. Using the previous definition, we can show that the equality cos(−α) = cos(α)
is derivable in the ZX-Calculus.

Proof. The result is obvious when using the lemma 5.

Proposition 11. Using the previous definition, we can show that the equality cos
(
π
2 − α

)
= sin(α)

is derivable in the ZX-Calculus.

Proof. Replacing α with
(
π
2 − α

)
and using the previous result:

2
(
π
2−α

) π

−
(
π
2
−α

) = π−2α

α−π
2

π
2α−π

π
=

π
2
−α

Proposition 12. With the previous definition, the equality 2 sin(α) cos(α) = sin(2α) is derivable
in the ZX-Calculus.

Proof. Using (SUP2), (IV) and lemma 2:

2α−π
π

π
2
−α

π
2α−α

=
π

4α−π
π
2
−2α

Another interesting vector can be defined this way:

(
cos(α) cos(β) + sin(α) sin(β)
cos(α) sin(β) + sin(α) cos(β)

)
=

u

wwwwww
v

2α
π
2 π

−α−β

π
2

2β

}

������
~

=

(
1 0 0 1
0 1 1 0

)
◦


cos(α) cos(β)
cos(α) sin(β)
sin(α) cos(β)
sin(α) sin(β)




Proposition 13. Using the previous diagram and the definitions of cos and sin, we can derive the
equalities cos(α) cos(β) + sin(α) sin(β) = cos(β −α) and cos(α) sin(β) + sin(α) cos(β) = sin(α+ β)

13



Proof. Using (S2), (S1), (K2) and lemma 2:

2α
π
2π

−α−β

π
2

2β

=

2α

π

−α−β
2β

π
2βπ

−2α

=

α−β

=
π

−(β−α)

2(β−α)

and

2α
π
2π

−α−β

π
2

2β

π

=

2α+π

π

π
2−α−β

2β

π

2(α+β)−π

=

π
2−(α+β)

5.2 Results that use the Generalised Supplementarity

Proposition 14. With the previous definition of cos, we can derive the equality cos
(
π
3

)
= 1

2 .

Proof. Using the lemma 5, (H), (EU), (SUP3), (HL), (IV):

2π3π

−π
3

=

−π3

π
3

−π
3

π
3

= =

π
2

+π
3

π
2
−π

3

−π
2

=

− 3π
2

=

− 3π
2

=

This last equality is generalisable. Indeed, using only derivable equalities, we can show from

cos
(
π
3

)
= 1

2 that
3∏
k=1

2 cos
(

2k−1
4×3 π

)
=
√

2.

Proposition 15. The equality
n∏
k=1

2 cos
(
2k−1
4n π

)
=
√

2 can be derived with the latest version of

the ZX-Calculus (figure 2).

Proof. In appendix at page 15.

Proposition 16. This equality cannot be derived in the ZX-Calculus without the generalised sup-
plementarity and the new rule (E).

Proof. If n is an odd prime number, then the interpretation J.K]⊗21,n−1 – used to show the necessity
of (SUPn)– holds for all the rules of the ZX without the generalised supplementarity, but does not
hold for the equality parametrised by n. Moreover, (E) is used to show the equality for all n ≥ 2.

6 Conclusion

In this paper, we have proved that the π
4 -fragment was not complete when taking the scalars into

account, showing that a semantically true equality could not be derived in the ZX-Calculus. We
have added this equality to the set of rules, which relieved us from 2 other axioms. We have also
shown that a generalised version of the supplementarity rule was semantically correct and that it
was not derivable in an infinite number of fragments.

With the most complete version of the ZX-Calculus in figure 2, we have shown that the rule
(E) was necessary – not derivable from the other rules – and that the rules (SUPp) with p an odd
prime are also necessary. (SUP2) seems to be also necessary, but no proof has been found yet to
show it – the interpretation used in [3] does not work any more when the generalised version of
the supplementarity rule is present.
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7 Appendix

Proof (Proposition 3). Using (B1), (SUP), (HL):

π

=

π π

=

π

=

Using (S2), (S1), the previous result, (B1):

π =
π π

= = π

Using (IV), (S1), 3 and the previous results:

= ππ
α

=α
α

π π= = π

Notice that so far we have not used (E). It becomes necessary in the following, since IG does not
hold there. Using (E), the previous results, (S1) and lemma 4:

π =

−π/4

π/4

π

π
4

=

−π4

π π

π/4

= = π π=

Finally:

π = = =π π π

Proof (Proposition 15). Using the lemma 5, the equation can be expressed as:

2k−1
4n π

=

- 2k−1
4n

π

π2k−1
2n πn⊗

k=1

=

- 2k−1
4n

π

n⊗
k=1
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· ·
· = α+β

β
· · ·

· · ·· · ·

· · ·
α

· · ·
· · ·

(S1) = (S2)

=
(S3)

−π
4

π
4

= (E)

= (B1) = (B2)

=
π π

π

· · · · · ·
(K1) =

π

α

−α

πα

π
(K2)

π
2

π
2

−π
2

= (EU) α

· · ·

= α

· · ·

· · ·

· · ·

(H)

α α+π 2α+π

= (SUP)

Fig. 3. Intermediate set of rules for the ZX-calculus with scalars. All of these rules also hold when flipped
upside-down, or with the colours red and green swapped. The right-hand side of (IV) is an empty diagram.

(· · · ) denote zero or more wires, while ( · · · ) denote one or more wires.

First note that when applied to n = 1, the equality amounts to the rule (E). We can notice
that when n is even, proving this equality amounts to showing it for n

2 :

=

2k−1
2n π

− 2k−1
4n

π

π − 2k−1
2n π

2k−1
4n

π

π π − 2l−1
2n π

2l−1
4n

π − π
2

π

π − 2k−1
n π

=

π

2k−1
2n

π − π
2

=

π2l−1
2(n/2)π

− 2l−1
4(n/2)

π

n⊗
k=1

n
2⊗

k=1

n
2⊗
l=1

n
2⊗

k=1

n
2⊗
l=1

16



Hence, any of these equalities can be reduced to the case where n is odd. Let us consider the
original equality with n replaced by (2m+ 1), and let us also assume that this m is even. Then:

= π
2 + 2kπ

2m+1
(2m+1)π

2
π
2 =

m⊗
k=−m

π
2 + 2kπ

2m+1

π

= −π2−
2kπ

2m+1
π
2 + 2kπ

2m+1

π
3π
2 −

2kπ
2m+1

π
2 + 2kπ

2m+1

m⊗
k=m

2 +1

−(m2 +1)⊗
k=−m

m
2⊗

k=−m2

4k−1
2(2m+1)

π

π

8m−4k+5
2(2m+1)

π
− 4k−1

2(2m+1)
π

4k−3
2(2m+1)

π
4k−1

2(2m+1)
π

=

π
m
2⊗

k=1

m+1⊗
k=1

m⊗
k=m

2 +1

= 2k−1
2(2m+1)

π

π
−
m/2∑
1

4k−1
2(2m+1)

π+

m∑
m/2+1

8m−4k+5
2(2m+1)

π

2m+1⊗
k=1

Since:

−
m/2∑
1

4k − 1

2(2m+ 1)
π +

m∑
k=m

2 +1

8m− 4k + 5

2(2m+ 1)
π =

mπ

4(2m+ 1)
− 4π

2(2m+ 1)

(
m∑
k=1

k

)
+
mπ

4
+

2m+ 3m2

2(2m+ 1)
π

=
mπ +m(2m+ 1) + 4m+ 6m2 − 4m(m+ 1)

4(2m+ 1)
=
mπ

2

−mπ2

π
= 2k−1

2(2m+1)
π

π

π/4
π

π/4

−π/4

π/4

= π
2

−π/4

π
π/4

π
=π

2=
π

−mπ2

π

−mπ2

π

−mπ2

2m+1⊗
k=1

And finally:

− 2k−1
4(2m+1)

π

π
2k−1

2(2m+1)
π

= −
2m+1∑
k=1

2k−1
4(2m+1)

π
2k−1

2(2m+1)π

π

=
π

−mπ2

π/4

π

− 2m+1
4

π

=

π

=
2m+1⊗
k=1

2m+1⊗
k=1

because

−
2m+1∑
k=1

2k − 1

4(2m+ 1)
π =

2m+ 1

4(2m+ 1)
− π

2(2m+ 1)

2m+1∑
k=1

k = −2m+ 1

4
π

and since m is even:

π

4
− mπ

2
− 2m+ 1

4
π = −mπ = 0 mod 2π

The reasoning is the same – up to the indexing – when m is odd.
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