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Introduction
The modelling of metabolic pathways is developed here for application to sugar metabolism of tomatoes during fruit expansion. In the now classic calculation of
network fluxes, we add concentrations. Under assumptions of steady state and of "minimal effort" as proposed in [1], fluxes and concentrations, respecting constraints
of experimental measurements and of thermodynamics, are searched. In order to obtain a well-posed problem, a preliminary mathematical study is in progress.

Backgrounds and Basics
The development time of tomato fruit is about 50 days. This period is subdivided in 50 daily phases numbered by l. At the scale of a phase (day), we suppose that the
flux vector is at steady state and follows some fixed constraints. But at the scale of the development, these constraints will change. So we formulate a general problem
at a phase scale l and solve it for l = 1 · · · 50.

Notations
1. X = (X1, · · · , Xm) the vector of internal metabolites,

2. V = (v1, · · · , vn) the flux vector composed by the rate
vj of each reaction j in the network.

3. S = (sij)i=1···m,j=1···n the stoichiometry matrix
(only refers to the internal metabolites) where sij is the
stoichiometric coefficient of metabolite Xi in reaction j.

4. S̃ = (s̃ij)i=1···m,j=1···ni a submatrix extracted from
the stoichiometry matrix containing only the stoichiomet-
ric coefficients of internal reactions (reactions between in-
ternal metabolites).

Previous approach and results: problem no1
Constraints Steady-state (for all internal metabolites) assumption

dX/dt = SV = 0

Bounds on the fluxes (the values vl,j,min and vl,j,max are constants)

vl,j,min ≤ vj ≤ vl,j,max for j = 1 · · ·n

Proposition. min
V ∈Al

||V ||2 admits a unique solution where Al is the non empty following feasible set

Al = {V ∈ Rn, SV = 0, vl,j,min ≤ vj ≤ vl,j,max for j = 1 · · ·n}

Thermodynamics Basics
Let us recall that the Gibbs free energy change for a reaction ri
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is a constant,R the gas constant, and T the absolute temperature

in Kelvin.
Generalisation: With m metabolites et ni internal reactions, let us set

∆Gr(X) =

 ∆Gr1 (X)
...
∆Grni

(X)

 Y (X) =

 ∆G0′
fX1

+RT ln(X1)

...

∆G0′
fXm

+RT ln(Xm)


Proposition.

∆Gr(X) = tS̃Y (X)

Simple Example: problem no1

S =


1 0 0 0 −1 −1 −1 0 0 0
0 1 0 0 1 0 0 −1 −1 0
0 0 0 0 0 1 0 1 0 −1
0 0 0 0 0 0 1 0 0 −1
0 0 0 −1 0 0 0 0 0 1
0 0 −1 0 0 0 0 0 1 1


if vl,j,min = 0 ∀j 6= 1, 2, 8 and
vl,j,min = vl,j,max = 1 for j = 1, 2
then the unique solution is
V ≈ (1, 1, 1.31, 0.69, 0, 0.31, 0.69, 0.38, 0.61, 0.69)

S̃ =


−1 −1 −1 0 0 0

1 0 0 −1 −1 0
0 1 0 1 0 −1
0 0 1 0 0 −1
0 0 0 0 0 1
0 0 0 0 1 1



New Approach
In this new modelling, in addition to the fluxes, we introduce metabolite concentrations (as in [2]), which are also supposed to be at steady state. In order to ensure
thermodynamic reliability, we add the Gibbs free energy change of each reaction. Still assuming some “minimal effort”, we simultaneously minimize ||V ||2 and
||∆Gr(X)||2. We add an other set of constraints Bl for the metabolites to take into account some experimental measurements.

Mathematical Formulation
min

(V,X)∈Kl

(
||V ||2, ||∆Gr(X)||2

)
with

Kl = {(V,X) ∈ Al ×Bl, ∆Gri(X) vi < 0 for i = 1 · · ·ni}

and
Bl = {X ∈ Rm

+ ,MlX = Tl}.

This problem is a multi-objective optimization with uncoupled functions but with constraints (respect the
second law of thermodynamics ∆Gri(X) vi < 0) that may be conflicting. So a rigorous answer to this
problem comes from understanding the separated problems.

Study of problem no2
Proposition. min

X∈Rm
+

||∆Gr(X)||2 admits a space of

solutions of dimension equals to dim(ker(tS̃)).

The problem without constraints is solved...

Simple example: problem no2
dim(ker(tS̃)) = 1, so X = (X1, · · · , X6)

with Xi = exp (
α−∆G0′

fXi

RT
), α ∈ R are the only

solutions.

Conclusion
Why a mathematical study ?
With only numerical computations, the set of op-
timal solutions may not be exhaustively described.
To find all the solutions (if they exist) of the multi-
objective problem, understand each separated prob-
lem is a pre-requisite. Moreover this formal out-
come will fit to any other network.
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