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Introduction

The modelling of metabolic pathways is developed here for application to sugar metabolism of tomatoes during fruit expansion. In the now classic calculation of network fluxes, we add concentrations. Under assumptions of steady state and of "minimal effort" as proposed in [START_REF] Holzhütter | The principle of flux minimization and its application to estimate stationary fluxes in metabolic networks[END_REF], fluxes and concentrations, respecting constraints of experimental measurements and of thermodynamics, are searched. In order to obtain a well-posed problem, a preliminary mathematical study is in progress.

Backgrounds and Basics

The development time of tomato fruit is about 50 days. This period is subdivided in 50 daily phases numbered by l. At the scale of a phase (day), we suppose that the flux vector is at steady state and follows some fixed constraints. But at the scale of the development, these constraints will change. So we formulate a general problem at a phase scale l and solve it for l = 1 • • • 50.

Notations 1. X = (X 1 , • • • , X m ) the vector of internal metabolites, 2. V = (v 1 , • • • , v n ) the flux
vector composed by the rate v j of each reaction j in the network.

3. S = (s ij ) i=1•••m,j=1••
•n the stoichiometry matrix (only refers to the internal metabolites) where s ij is the stoichiometric coefficient of metabolite X i in reaction j.

S = (s

ij ) i=1•••m,j=1•••n i a submatrix
extracted from the stoichiometry matrix containing only the stoichiometric coefficients of internal reactions (reactions between internal metabolites).

Previous approach and results: problem n o 1

Constraints Steady-state (for all internal metabolites) assumption

dX/dt = SV = 0
Bounds on the fluxes (the values v l,j,min and v l,j,max are constants)

v l,j,min ≤ v j ≤ v l,j,max for j = 1 • • • n Proposition. min V ∈A l
||V || 2 admits a unique solution where A l is the non empty following feasible set

A l = {V ∈ R n , SV = 0, v l,j,min ≤ v j ≤ v l,j,max for j = 1 • • • n}

Thermodynamics Basics

Let us recall that the Gibbs free energy change for a reaction r i

n 1 X 1 + n 2 X 2 ←→ n 3 X 3 + n 4 X 4
is defined by

∆G r i = ∆G 0 r i + RT ln X n 3 3 X n 4 4 X n 1 1 X n 2 2
where ∆G 0

r i = n 3 ∆G 0 f X 3 + n 4 ∆G 0 f X 4 -n 1 ∆G 0 f X 1 -n 2 ∆G 0 f X 2
is a constant, R the gas constant, and T the absolute temperature in Kelvin.

Generalisation: With m metabolites et n i internal reactions, let us set

∆G r (X) =   ∆G r 1 (X) ... ∆G r n i (X)   Y (X) =    ∆G 0 f X 1 + RT ln(X 1 ) ... ∆G 0 f X m + RT ln(X m )    Proposition. ∆G r (X) = t SY (X)
Simple Example: problem n o 1

S =        1 0 0 0 -1 -1 -1 0 0 0 0 1 0 0 1 0 0 -1 -1 0 0 0 0 0 0 1 0 1 0 -1 0 0 0 0 0 0 1 0 0 -1 0 0 0 -1 0 0 0 0 0 1 0 0 -1 0 0 0 0 0 1 1       
if v l,j,min = 0 ∀j = 1, 2, 8 and v l,j,min = v l,j,max = 1 for j = 1, 2 then the unique solution is V ≈ (1, 1, 1.31, 0.69, 0, 0.31, 0.69, 0.38, 0.61, 0.69)

S =        -1 -1 -1 0 0 0 1 0 0 -1 -1 0 0 1 0 1 0 -1 0 0 1 0 0 -1 0 0 0 0 0 1 0 0 0 0 1 1       

New Approach

In this new modelling, in addition to the fluxes, we introduce metabolite concentrations (as in [START_REF] Hoppe | Including metabolite concentrations into flux balance analysis: thermodynamic realizability as a constraint on flux distributions in metabolic networks[END_REF]), which are also supposed to be at steady state. In order to ensure thermodynamic reliability, we add the Gibbs free energy change of each reaction. Still assuming some "minimal effort", we simultaneously minimize ||V || 2 and ||∆G r (X)|| 2 . We add an other set of constraints B l for the metabolites to take into account some experimental measurements.

Mathematical Formulation

min (V,X)∈K l ||V || 2 , ||∆G r (X)|| 2 with K l = {(V, X) ∈ A l × B l , ∆G r i (X) v i < 0 for i = 1 • • • n i } and B l = {X ∈ R m + , M l X = T l }.
This problem is a multi-objective optimization with uncoupled functions but with constraints (respect the second law of thermodynamics ∆G r i (X) v i < 0) that may be conflicting. So a rigorous answer to this problem comes from understanding the separated problems.

Study of problem n o 2

Proposition. min X∈R m + ||∆G r (X)|| 2 admits a space of solutions of dimension equals to dim(ker( t S)).

The problem without constraints is solved...

Simple example: problem

n o 2 dim(ker( t S)) = 1, so X = (X 1 , • • • , X 6 ) with X i = exp ( α -∆G 0 f X i

RT

), α ∈ R are the only solutions.

Conclusion

Why a mathematical study ? With only numerical computations, the set of optimal solutions may not be exhaustively described. To find all the solutions (if they exist) of the multiobjective problem, understand each separated problem is a pre-requisite. Moreover this formal outcome will fit to any other network.