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Abstract

When integrating unsteady problems with continuous finite element methods, one faces the
problem of inverting a mass matrix. In some cases, one has to recompute this mass matrix
at each time steps, in some methods that are not directly formulated by standard variational
principles, it is not clear how to write an invertible mass matrix. Hence, in this paper, we show
how to avoid this problem for hyperbolic systems, and we also detail the conditions under which
this is possible. Analysis and simulation support our conclusions, namely that it is possible to
avoid inverting mass matrices without sacrifycing the accuracy of the scheme. This paper is an
extension of [3] and [19].

1 Introduction

We are interested in the numerical approximation of the hyperbolic problem

∂u

∂t
+ div f(u) = 0 x ∈ Ω ⊂ Rd (1)

with the initial condition and boundary conditions, by mean of a finite element like technique.
More precisely, the physical space is covered by a conformal tessaletion T . For ease of exposure, we
assume that

Ω = ∪K∈TK.

The solution of the problem is approximated in the space V h defined by:

V h = {uh ∈ C0(Ω) such that for any K,uh|K is a polynomial of degree r}.

We denote by Pr the set of polynomials of degree r.
It is well known that any finite element technique applied to (1) will lead to a formulation of

the type

M
dU

dt
+ F = 0

where U denotes the vector of degrees of freedom, F is an approximation of div f and M is a
mass matrix. In the case of continuous elements, this matrix is sparce but is not block diagonal,
contrarily to what happens for the Discontinuous Galerkin methods where the global continuity
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requirement is not made. Hence, in order to use any standard ODE solver, we need to invert M .
This is considered by cumbersome by many practitioners and this has been, in our opinion, one
of the factors that has led to supremacy of DG methods in the current development of high order
schemes. Another drawback appears when we need to reconstruct frequently the mass matrix, such
as in ALE algorithms, or by using the SUPG method. In some cases, we do not even know if
the mass matrix is invertible, nor even what is the clear variational formulation of the discrete
problem. This seemingly strange behavior comes from the fact that the scheme may only have a
purely discrete formulation, and then one can come up to a variational formulation that may not
be unique, see [1], for one example.

Hence there is a need to construct time integrators for problems of the type (1) that does not
require the inversion of a mass matrix while the spatial approximation is done via a continuous
element. However, practitioners have often spent years in designing their spatial approximation,
and it is out of question to modify this. This paper is precisely trying to give an answer to this
apparent contradiction, and to do so we will provide several examples.

The rest of the paper is organized as follows. First, we detail our version of problem (1), and
recall the notion of weak solutions. In a second section, we make a short presentation of Defect-
Correction (DeC) time integrators that will be at the core of our method. The fourth section
presents a detailed description of our method, as well as its analysis. The fifth section presents
numerical tests, both for linear and non linear problems, with several space integrators. Accuracy
and stability are tested extensively. A conclusion follows. In the appendix, we present several
variants of the method that can be of interest, for example when wishes other time integrators.

In the text, C is any constant, and we apply the usual rule stating that C × α → C for any
positive α ∈ R+.

2 Continuous problem setting

We consider
∂u

∂t
+ div f(u) = 0 x ∈ Ω ⊂ Rd (2a)

with the initial condition and boundary conditions. The initial condition is

u(x, 0) = u0(x) x ∈ Ω, (2b)

and we also consider boundary conditions on the inflow boundary. Let us give a precise meaning to
this. In order to impose a condition u = g on the inflow boundary, we assume, for any real a and
b, and any vector n, the existence of ∇uf(a, b) such that

• ∇uf(a, a) = ∇uf(a) · n and,

• f(b) · n− f(a) · n = ∇uf(a, b) (b− a).

This is a reminscence of the Roe average. As soon as f is C1, such average exists and is unique.
Then the boundary conditions are set such that

max
(
0,∇uf(u, g) · n

)
(u− g) = 0 on Γ. (2c)

We introduce the flux F defined by:

F(a, b) =
1

2

(
f(a) · n + f(b) · n +

∣∣∇uf ∣∣(a, b)).
2



We introduce the space

C1
0,t(Ω× R+) = {ϕ ∈ C1(Ω× R+) such that there exists Tu for which for any x ∈ Ω,

u(x, t) = 0 when t > Tu}.

The weak form of (2) is: find u ∈ L1(Ω× R+) ∩ L∞loc(Ω× R+) such that for any ϕ ∈ C1
0,t(Ω× R+)∫

Ω×R+

∇ϕ · f(u)dxdt+

∫
Ω
ϕ(x, 0)u0(x)dx−

∫
R+

∫
Γ
ϕ(x, t)

(
f(u) · n−F(u, g,n)

)
dω = 0 (3)

This is a direct generalization of what is done for f(u) = βu when β is constant. See [7] for more.
For existence and uniqueness results, see for example [12].

3 Short review of DeC schemes for ODEs

We consider the problem:
dy

dt
= f(y, t)

y(0) = y0

(4)

with suitable conditions on f to guaranty existence and uniqueness of the solution. There exists a
considerable number of methods to solve numerically (4): Runge-Kutta methods, multistep meth-
ods, etc. They can be explicit, implicit or semi-implicit. In the case of implicit methods, there are
several options depending on where the user wants to put the complexity. One of the strategies is to
use a Differed Correction scheme. Let us write formally the (discrete) problem to solve as L2 = 0; it
is a complex one because it is implicit and in general f in (4) is non linear. Assume we have a cheap
way to solve it by a method written formally as L1 = 0. Since it is cheap, the results can be of poor
quality. The idea is to use the solution problems L1 = b, for b well chosen, to construct a sequence
of approximations of y. In DeC, the choice of b enable to make a controlled and small number of
iterations, so that the final term of the sequence is an accurate approximation of L2 = 0. The aim
of this section is to make this series of statements more precise. These schemes have recently been
revisited by [11, 8, 18], see also the references therein.

We know that the solution of (4) satisfies:

y(t) = y(0) +

∫ t

0
f(y(s), s)ds.

The idea is to mimic as much as possible the Picard iteration:

yn+1(t) = y(0) +

∫ t

0
f(yn(s), s)ds (5)

which is known to converge if t is small enough (and related to the maximum (in t) Lipschitz
constant of f( . , t).)

Let us be given a time step ∆t and we define as usual tk = k∆t, k ∈ N. It is possible to mimic
the Picard iterations (5) on [tn, tn+1] by using the following procedure:

• We choose interpolation points in [tn, tn+1], namely: tn,` = tn + ξ`∆t, ` = 0, . . . , r and
0 = ξ0 < . . . < ξ` < ξ`+1 < . . . < ξr = 1. In particular, tn,0 = tn and tn,r = tn+1. An
approximation of y(tn,`) is denoted by y`, ` = 0, . . . , r
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• We define the forward method as : for any 0 ≤ ` ≤ r − 1,

y`+1 = y` + ξ`∆t f(y`, tn,`). (6)

This is the forward Euler method.

We introduce the vector (y1, . . . , yr+1)T solution of

L1(y1, . . . , yr) = 0 (7)

where L1 is defined by

L1(y1, . . . , yr) =


yr − yr−1 − ξr−1 ∆t f(yr−1, tn,r−1)

...
y1 − y0 − ξ0 ∆t f(y0, tn,0)

 . (8)

Here, y0 ≈ y(tn). Introducing I0 the piecewise constant interpolant of (f(y0, tn,0)), . . . , f(yr+1, tn,r+1):
for any s ∈ [tn,0, tn,r] = [tn, tn+1], define

if s ∈ [tn,l, tn,l+1[ for 0 ≤ l ≤ r − 1, I0(f(y0, tn,0)), . . . , f(yr+1, tn,r+1); s) = f(yl, tn,l),

we can rewrite (8) as

L1(y1, . . . , yr+1) =


yr − y0 −∆t

∫ tn,r

tn,0

I0(f(y0, tn,0), . . . , f(yr+1, tn,r+1); s)ds

...

y1 − y0 −∆t

∫ tn,1

tn,0

I0(f(y0, tn,0), . . . , f(yr+1, tn,r+1); s)ds

 (9)

• Define L2 by:

L2(y1, . . . , yr) =


yr − y0 −∆t

∫ tn,r

tn,0

Ir(f(y0, tn,0), . . . , f(yr, tn,r); s)ds

...

y1 − y0 −∆t

∫ tn,1

tn,0

Ir(f(y0, tn,0), . . . , f(yr, tn,r); s)ds

 (10)

where Ir is the interpolant of degree r at the tn,l of the f(yl, tn,l). Clearly there exists real
θl,m such that ∫ tn,m

tn,0

Ir(f(y0, tn,0), . . . , f(yr, tn,r); s)ds =
r∑
l=0

θl,mf(yl, tn,l)

so that we can rewrite (10) as:

L2(y) =


yr − y0 −∆t

r+1∑
l=1

θl,rf(yl, tn,l)

...

y1 − y0 −∆t
r+1∑
l=1

θl,1f(yl, tn,l)

 (11)
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The method is defined as follows: We are given y0 = y(0), then we construct {yk}k≥0 by induction:

1. Start from y(0) = (yn, . . . , yn)T where yn ≈ y(tn). This means that y0 = yn.

2. Define y(1) as the solution of L1(y(1)) = 0

3. for m = 1, . . . ,M , define y(m+1) as the solution of:

L1(y(m+1)) = L1(y(m))− L2(y(m)).

4. Set yn+1 = y
(M)
r+1 .

In practice, provided conditions recalled in section 4.2.1 are met, at most M iterations are needed
to have a min(M + 1, r + 1)th order accurate approximation of the solution.

We have a variant of this method by replacing the operator L1 by:

L1(y) =

yr − y0 − αr∆tf(y0, tn,0)
...

y1 − y0 − α1∆tf(y0, tn,0)

 (12)

with αl =
l∑

j=1
ξj .

Remark 3.1 (Notations.). In order to siplify the notations, if is a function g defined on R, and
Ip its lagrange interpolant at some stencil of p + 1 distinct points t0 < t1 < . . . < tp+1. Instead of
writing Ip(g(t0), . . . , g(tp+1)), we write in the sequel Ip(g) since there will be no ambiguity on the
stenci. For example (10) writes:

L2(y1, . . . , yr) =


yr − y0 −∆t

∫ tn,r

tn,0

Ir(f ; s)ds

...

y1 − y0 −∆t

∫ tn,1

tn,0

Ir(f(; s)ds


4 Application to the convection problem

We are interested in solving
∂u

∂t
+ div f(u) = 0 (13)

subjected to u(x, 0) = u0(x). We assume to work in R2 to simplify the text. The case with boundary
conditions is similar. We are given a triangulation of Rd. Here d = 2, but the discussion is general.
The elements are denoted by K and are (assumed to be) convex. In each element, we assume that
the solution is approximated by a polynomial of degree r and that the approximation is globally
continuous. Let us denote this by uh. The function uh is fully defined by its control parameter uσ
at all the degrees of freedom σ. We define by S the set of degrees of freedom, so that

uh =
∑
σ∈S

uσϕσ.
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We denote by Vh = span {ϕσ, σ ∈ S}. For now on, we can think of uσ as the value of uh at σ and
thus as the ϕσ as the Lagrange basis, but we will need slightly less conventional approximations
later. Note that DeC time stepping methods have already been used for convection dominated
problems, see for example [17].

We assume that we have a good integrator of the steady version of (13), and that this scheme
writes: for any degree of freedom σ , uh satisfies:∑

K3σ
ΦK,x
σ (uh) = 0. (14)

Examples are given by:

• The SUPG residual [13]:

Φx
σ(uh) =

∫
∂K

ϕσf(u
h) ·n−

∫
K
∇ϕσ ·f(uh)+hK

∫
K

(
∇uf(uh) ·∇ϕσ

)
τ

(
∇uf(uh) ·∇uh

)
(15)

with τ > 0.

• The Galerkin scheme with jump stabilization, see [9] for details:

Φx
σ(uh) =

∫
∂K

ϕσf(u
h) · n−

∫
K
∇ϕσ · f(uh) +

∑
edges of K

Γh2
e

∫
e
[∇u] · [∇ϕσ] (16)

with Γ > 0. Here, since the mesh is conformal, any edge e (or face in 3D) is the intersection
of the element K and an other element denoted by K+. For any function ψ, we define
[∇ψ] = ∇ψ|K −∇ψ|K+ .

• The limited Residual distributive scheme (RDS), see [5, 4, 2], namely

Φx
σ = βσ

∫
∂K

f(uh) · n + hK

∫
K

(
∇uf(uh) · ∇ϕσ

)
τ

(
∇uf(uh) · ∇uh

)
(17)

or
Φx
σ(uh) = βσ

∫
∂K

f(uh) · n +
∑

edges of K

Γh2
e

∫
e
[∇u] · [∇ϕσ]. (18)

We notice that the SUPG and the limited RDS residuals write as

ΦK
σ =

∫
K
ψσdiv f(u)dx

where:

• Ψσ = ϕσ + hK

(
∇uf(uh) · ∇ϕσ

)
τ for the SUPG scheme,

• for the limited RDS (15), we take

ψσ = βσ + hK

(
∇uf(uh) · ∇ϕσ

)
τ.
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This implies that formally at least, the exact solution cancels the SUPG and RDS residuals. In the
case of the stabilisation by jumps (18), we can only write that

ΦK
σ =

∫
K
ψσdiv f(u)dx+Rσ(uh)

with
Rσ =

∑
edges of K

Γh2
e

∫
e
[∇u] · [∇ϕσ].

We note that

• for the RDS scheme (18),
(
ψσ)|K = βKσ

• and for the Galerkin scheme stabilized by jumps,

•
∑
σ∈K

Rσ = 0.

The additional term Rσ is not zero, except for the exact solution unless this solution has continuous
normal gradients, see [9] for more details. In any case, we note that∑

σ∈K
ψσ = 1. (19)

Remark 4.1 (Variational formulation). It is well known that the SUPG and Galerkin method with
jump stabilisation emanate from a variational formulation, namely (and forgetting the boundary
conditions to avoid introduce additional notations at this point)

• For SUPG

a(u, v) = −
∫

Ω
∇v·f(u)dx+

∑
K

hK

∫
K
∇f(uh)·∇vh τ ∇f(uh)·∇xhdx+ Boundary conditions.

• For Galerkin with jump stabilisation

a(u, v) = −
∫

Ω
∇v · f(u)dx+

∑
internalfaces

h2
eΓe

∫
e
[∇uh][∇vh] + Boundary conditions.

this is not the case of the RDS formulations in general, see [1].

4.1 Formulation for unsteady problems

Similar to the ODE problem, we could integrate (13) in time and get:

u(x, t) = u(x, 0) +

∫ t

0
div f(u(x, s))ds,

and the approximate by

u(x, t) ≈ u(x, 0) + t
r∑
l=0

ωldiv f(u(x, sl)ds,

this with the same conventions as in the ODE case. This suggests the algorithm we describe now
where V0 plays the role of un and is fixed. For any V ∈ Vh, V σ is the control parameter at the
degree of freedom σ: V =

∑
σ∈S V

σϕσ. Then,
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• For any σ ∈ S, define L1
σ as:

L1
σ(V1, . . . , Vr) =


|Cσ|(V σ

r − V σ
r−1) +

∑
K3σ

∫ tn,r

tn,0

I0

(
Φx
σ(V ), s)

)
ds

...

|Cσ|(V σ
1 − V σ

0 ) +
∑
K3σ

∫ tn,1

tn,0

I0

(
Φx
σ(V ), s)

)
ds

 (20a)

The quantity |Cσ|, which plays the same role as the measure of a dual cell, will be defined
later in the text.

• and define L2
σ by

L2
σ(V1, . . . , Vr) =



∑
K3σ

(∫
K

Ψσ

(
Vr − V0

)
dx+

∫ tn,r

tn,0

Ir+1

(
Φx
σ(V ), s

)
ds

)
...∑

K3σ

(∫
K

Ψσ

(
V1 − V0

)
dx+

∫ tn,1

tn,0

Ir+1

(
Φx
σ(V ), s

)
ds

)


(20b)

To make the analysis more compact, we introduce the operators L1
σ,K and L2

σ,K that are defined
on the set of NK degrees of freedom in K, namely

L1
σ,K(V1, . . . , Vr) =


|Cσ,K |(V σ

r − V σ
r−1) +

∫ tn,r

tn,0

I0

(
Φx
σ(V ), s)

)
ds

...

|Cσ,K |(V σ
1 − V σ

0 ) +

∫ tn,1

tn,0

I0

(
Φx
σ(V ), s)

)
ds

 , (21a)

and

L2
σ,K(V1, . . . , Vr) =



∫
K

Ψσ

(
Vr − u

)
dx+

∫ tn,r

tn,0

Ir+1

(
Φx
σ(V ), s

)
ds

...∫
K

Ψσ

(
V1 − u

)
dx+

∫ tn,1

tn,0

Ir+1

(
Φx
σ(V ), s

)
ds

 (21b)

Clearly we have L1
σ =

∑
K L1

σ,K if

|Cσ| =
∑
σ3K
|Cσ,K |

and we also have L2
σ =

∑
K L2

σ,K .

Last, we define the operators L1 and L2 defined on Vh, the finite element set where the solution
is sought for, as

L1 = (L1
σ)σ∈S , L2 = (L1

σ)σ∈S .

We also introduce space and time operators for L1
σ,K and L2

σ,K defined component by component:

(L1
σ,K,t)p = |Cσ,K |(Vp+1 − Vp), (L2

σ,K,t)p =

∫
K

Ψσ

(
Vp − V0

)
dx (22)
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and

(L1
σ,K,x)p =

∫ tn,p

tn,0

I0

(
Φx
σ(V, s)

)
ds, (L2

σ,K,x)p =

∫ tn,p

tn,0

Ir+1

(
Φx
σ(V, s)

)
ds. (23)

More explicitly, we have as in the ODE case, expressions for each step:

• For the Euler step, the p-th component of L1 is:

L1
σ(V1, . . . , Vr)p = |Cσ|

(
V σ
p − V σ

0 ) + ∆t
∑
K3σ

( p−1∑
l=1

ξlΦ
x
σ(Vl)

)
It is purely explicit and solving L1(V ) = 0 amounts to solving several Euler forward steps.

• For the corrector L2, the p-th component of L2 is

L2
σ(V1, . . . , Vr+1)p =

∑
K3σ

(∫
K

Ψσ

(
Vp − V0

)
dx+

r+1∑
l=0

θl,rIr+1

(
Φx
σ(Vl)

))
.

Then, we evaluate un+1
σ as in the ODE case:

• Evaluate V (0) = (V
(0)

1 , . . . , V
(0)
r+1) as the solution of L1

σ(V (0)) = 0. This amounts to using the
Euler forward method.

• Knowing V (m) = (V
(m)

1 , . . . , V
(m)
r+1 ), m > 0, evaluate V m+1 = (V

(m+1)
0 , . . . , V

(m+1)
r+1 ) as the

solution of
L1
σ(V (m+1)) = L1

σ(V (m))− L2
σ(V (m)).

More explicitly, we have:

• Euler step: for p = 1, . . . , r, knowing that V0 = unσ,

V (1)
p = V (0)

p − ∆t

|Cσ|
∑
K3σ

p−1∑
l=1

αpΦ
x
σ(V

(1)
l ).

• Correction step #m:

|Cσ|
(
V (m+1)
p − V0) + ∆t

∑
K3σ

p−1∑
l=1

αlΦ
x
σ(V

(m+1)
l )

= |Cσ|
(
V m
p − V0) + ∆t

∑
K3σ

p−1∑
l=1

αlΦ
x
σ(V (m)

p )

−
∑
K3σ

(∫
K

Ψσ

(
V (m)
p − V0

)
dx−

∫ tn,p

tn,0

Ir+1

(
Φx
σ(V (m); s)

))
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i.e.

|Cσ|
(
V (m+1)
p − V0) + ∆t

∑
K3σ

p−1∑
l=1

αlΦ
x
σ(V

(m+1)
l )

= |Cσ|
(
V (m)
p − V0) + ∆t

∑
K3σ

p−1∑
l=1

αlΦ
x
σ(V (m)

p )

−
∑
K3σ

(∫
K

Ψσ

(
V (m)
p − V0

)
dx−

r+1∑
l=1

θl,r+1Ir+1

(
Φx
σ(V (m)); s)

))

i.e. after simplifications,

V (m+1)
p = V (m)

p +
∆t

|Cσ|
Φp+1,m+1,m (24a)

with

Φp+1,m+1,m =

p−1∑
l=1

αl

∫
ψσ div

(
f(V

(m+1)
l )− f(V

(m)
l )

)
dx

−

(∫
ψσ
(
V (m)
p − V0

)
dx+

∫
ψσdiv

( r+1∑
l=1

θl,r+1f(V
(m)
l )

)) (24b)

In the case we use L1
σ defined by

L1
σ(V1, . . . , Vr+1) =


|Cσ|(Vr+1 − V0) + ∆t Φx

σ(V0)
|Cσ|(Vr − V0) + ξr ∆t Φx

σ(V0)
...

|Cσ|(V1 − V0) + ξ1 ∆t Φx
σ(V0)

 (25)

then (24b), because ξp = α1 + . . .+ αp, is modified into

Φp+1,m+1,m =

p∑
l=1

αl

∫
ψσ div

(
f(V

(m+1)
l )− f(V0)

)
dx

Φp+1,m+1,m = −
∫
ψσ
(
V (m)
p − V0

)
dx−

∫
ψσdiv

( r+1∑
l=1

θl,r+1f(V
(m)
l )

) (26)

The advantage of (24a)-(26) with respect to (24a)-(24b) is that one can compute only one
residual for the Euler step.

For now, we have worked in a very formal way, for example several assumptions were implicitly
done for all this to be defined. In the next section, we give a more precise statement on the
assumptions we make, and also answer the main question: how to choose |Cσ| and to check what
are the conditions on the finite element space to get a meaningful approximation.
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4.2 Analysis

4.2.1 Introduction

It is well known that

Proposition 4.2. If two operators L1
∆ and L2

∆ defined on Rm, which depend of a parameter ∆, are
such that:

1. There exists α1 > 0 independent of ∆ such that for any U , V ,

α1||U − V || ≤ ||L1
∆(U)− L1

∆(V )||, (27)

2. There exists α2 > 0 independent of ∆ such that for any U , V ,∣∣∣∣∣∣∣∣(L1
∆(U)− L2

∆(U)
)
−
(
L1

∆(U)− L2
∆(U)

)∣∣∣∣∣∣∣∣ ≤ α2∆||U − V ||. (28)

This last condition is nothing more than saying that the operator L1
∆ −L2

∆ is uniformly Lips-
chitz continuous with Lipschitz constant α2∆

We also assume there exist a unique U?∆ such that L2
∆(U?∆) = 0. Then if ν = α2∆ < 1 the defect

correction is convergent, and after p iterations the error is smaller than νp

α1
.

We recall the proof for the sake of completeness.

Proof. We drop the dependency in term of ∆ to simplify the text. Let us denote by U? the solution
of L2(U?) = 0 We obviously have L1(U?) = L1(U?)− L2(U?), so that

L1(Um+1)− L1(U?) =
(
L1(Um)− L1(U?)

)
−
(
L2(Um)− L2(U?)

)
=
(
L1(Um)− L2(Um)

)
−
(
L1(U?)− L2(U?)

)
so that

α||Um+1 − U?|| ≤ ||L1(Um+1)− L1(U?)|| =
∣∣∣∣(L1(Um)− L2(U?)

)
−
(
L1(U?)− L2(U?)

)∣∣∣∣
≤
∣∣∣∣L1 − L2

∣∣∣∣ ||Um − U?||
≤ α2∆||Um − U?|| ≤ (C∆)m||U0 − U?||

So we see that after m iteration, we have an error at most (α2∆)m/α1.

Let us turn back to our problem. The question is twofold:

• Under which condition, the L1 operator is invertible and satisfy an inequality of the type
(27) ?

• Under which conditions do we have

||L1 − L2|| = O(∆t) +O(h). (29)

Here the parameter ∆ is h+ ∆t.

11



4.2.2 Choice of norms

First, we need to define a relevant norm. We equip V h with the H1 norm:

||v||2H1(Ω) =

∫
Ω
v2dx +

∫
Ω
∇v2dx,

and, for any two u ∈ L2(Ω), Φ ∈ L2(Ω), we set

〈u,Φ〉 =

∫
Ω
u(x)Φ(x)dx.

It is well known from the Cauchy-Scwarz inequality and the fact that H1(Ω) ⊂ L2(Ω) that the
quantity

||Φ|| = sup
u∈H1(Ω)

〈u,Φ〉
||u||H1(Ω)

(30a)

defines a norm on L2(Ω). For Φ = (Φ1, . . . ,Φm) ∈ (L2(Ω))m, we set

||Φ|| = max
i=1,...,m

||Φm||. (30b)

4.2.3 Galerkin scheme

It is useful in the following to introduce the Galerkin residuals:

Φ(Vl,K)G,xσ = −
∫
K
ϕσf(Vl,K)dx +

∫
∂K

ϕσf(Vl,K) · n. (31)

We see that ∑
σ∈K

Φ(Vl,K)G,xσ =

∫
K
f(Vl,K) · n =

∑
σ∈K

Φ(Vl,K)xσ (32)

for any of the spatial residuals defined above.

4.2.4 Coercivity of L1

We have a first result on the behavior of L1.

Lemma 4.3. We assume that the residuals Φx
σ are Lipschitz continuous.

1. If |Cσ| > 0 for any σ ∈ Σ, then L1 is invertible.

2. From now on, we assume in addition:

|Cσ,K | > 0 if σ ∈ K,
|Cσ,K | = 0 else. (33a)

We also assume
|Cσ| =

∑
K3σ
|Cσ,K |. (33b)
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If there exists constants C1 > 0 and C2 > 0, independent of the mesh family such that

C1 ≤
|Cσ,K |
|K|

≤ C2, (34)

then there exists α1 > 0 independent of the mesh family such that for any U and V in (20)
and (21).

α||U − V || ≤ ||L1(U)− L1(V )||. (35)

Before proving this lemma, we have a first one:

Lemma 4.4. Under the conditions of lemma 4.3, the solution of L1
σ(V1, . . . , Vr+1) =

|Cσ|(A1, . . . , Ar+1)T satisfies

V1 = A1 + V0,

V2 = H2(V0 +A1, A2),

...
Vl = Hl(V0 +A1, A2, . . . , Al),

...
Vr+1 = Hr+1(V0 +A1, A2, . . . , Ar+1)

(36)

where the Hj are Lipschitz continuous with respect to their arguments.

Proof. The proof is immediate thanks to the explicit nature of the scheme and condition (34), and
because the residuals Φx

σ are Lipschitz continuous.

Proof of lemma 4.3. 1. Clearly, if A = (Aσ)σ∈Σ is a vector of R|Σ|, we can solve L1(V ) = A if
and only if |Cσ| 6= 0. Since Cσ > 0 is positive, we have our first condition.

2. Consider U and V in R|Σ|, and we are interested in

||L1(U)− L1(V )|| = max
v∈H1(Ω)

∑
σ vσ

(
L1
σ(U)− L1

σ(V )
)

||v||H1

.

We set L1(U) = |Cσ|A and L1(V ) = |Cσ|B whereA = (Aσl )σ∈Σ,1≤l≤r+1 andB = (Bσ
l )σ∈Σ,1≤l≤r+1.

In order to prove (35), it is sufficient to show a similar condition on each of the components
of L1. We first have:

|Cσ|(Uσp − Uσ0 ) = |Cσ|Ap −
∫ tn,p

tn,0

I0(Φx
σ(U0),Φx

σ(U1), . . . ,Φx
σ(Up−1))

|Cσ|(V σ
p − V σ

0 ) = |Cσ|Bp −
∫ tn,p

tn,0

I0(Φx
σ(V0),Φx

σ(V1), . . . ,Φx
σ(Vp−1))

and, because I0 is linear,

|Cσ|(Uσp − V σ
p ) = |Cσ|(Ap −Bp)−

∫ tn,p

tn,0

I0(0,Φx
σ(U1)− Φx

σ(V1), . . . , Up−1)− Φx
σ(Vp−1).
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We introduce the notation:
Φx
σ(Up)− Φx

σ(Vp) := δpΦ
x
σ,K .

Then we multiply by a test function, and get∑
σ

vσ|Cσ|(Uσp − V σ
p ) =

∑
σ

vσ|Cσ|(Aσp −Bσ
p )−

∑
σ

vσ
∑
K3σ

∫ tn,p

tn,0

I0(δ1Φx
σ,K , . . . , δpΦ

x
σ,K)

=
∑
σ

vσ|Cσ|(Aσp −Bσ
p )−

∑
K

∑
K3σ

vσ

∫ tn,p

tn,0

I0(δ1Φx
σ,K , . . . , δpΦ

x
σ,K)

Using the Galerkin residuals and the notation ∆Φσ(U) := Φσ(U)− ΦGal
σ (U), we obtain∑

K3σ
vσ

∫ tn,p

tn,0

I0(δ1Φx
σ, . . . , δpΦ

x
σ) =

∫ tn,p

tn,0

I0

( ∫
K
∇v ·

(
f(U1)− f(V1)

)
dx
)
, . . . ,∫

K
∇v ·

(
f(Up)− f(Vp)

)
dx
))
dx

+
∑
σ

(
vσ − vσ′

) ∫ tn,p

tn,0

I0

(
∆Φx

σ(U1)−∆Φx
σ(V1), . . . ,∆Φx

σ(Up−1)−∆Φx
σ(Vp−1)

Here σ′ is any fixed degree of freedom in K. Since the flux f is Lipschitz continuous, as well
as the residuals, and since we see that:∫ tn,p

tn,0

I0

( ∫
K
∇v ·

(
f(U1)− f(V1)

)
dx
)
, . . . ,

∫
K
∇v ·

(
f(Up − f(Vp

)
dx
))
dx

=

p∑
l=1

αl

∫
K
∇v ·

(
f(Ul)− f(Vl)

)
dx,

we have ∣∣∣∣ ∫ tn,p

tn,0

I0

( ∫
K
∇v ·

(
f(U1)− f(V1)

)
dx
)
, . . . ,

∫
K
∇v ·

(
f(Up − f(Vp

)
dx
))
dx

∣∣∣∣
≤ ||v||H1

p∑
l=1

αl L
∣∣∣∣Ul − Vl∣∣∣∣2

Similarly, using lemma A.1, |Φσ,K(U)− Φσ,K(V )| ≤ LhK
∑

σ′∈K |Uσ − Vσ′ |, and then∣∣∣∣∑
σ

(
vσ − vσ′

) ∫ tn,p

tn,0

I0

(
∆Φx

σ(U1)−∆Φx
σ(V1), . . . ,∆Φx

σ(Up−1)−∆Φx
σ(Vp−1)

∣∣∣∣
≤

p−1∑
l=1

al
∑
σ

∣∣(vσ − vσ′∣∣ ∣∣∆Φx
σ(Ul)−∆Φx

σ(Vl)
∣∣

≤ CK ||∇v||2,K
p−1∑
l=1

||Ul − Vl||2,K

where CK depends on the number of vertices of K. Then we conclude by using lemma 4.4
which states that |Ul − Vl| is bounded by C

∑l
j=1 |Cσ| |Aj − Bj |. Thanks to condition (34),

we get the result.
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4.2.5 Error estimate for L1 − L2

We write, for any σ, L`σ = (L`σ,0,L`σ,1, . . . ,L`σ,m)T and look for: maxk=0,m ||L1
k − L2

k||.
We have

||L1
k(V )− L2

k(V )|| = sup
v∈H1(Ω)

∑
σ vσ(L1

σ(V )− L2
σ(V ))

||vh||H1

.

Here, V = (V1, . . . , Vr+1) to simplify the notations. Since∑
σ

vσ(L1
σ(V )− L2

σ(V )) =
∑
K

∑
σ∈K

vσ(L1
σ(V )− L2

σ(V ))

it is enough to look at
∑

σ∈K vσ(L1
σ(V )− L2

σ(V )).
We can write

L1
σ,p(V ) = |Cσ,K |(Umσ − unσ) +

∫ tn,p

tn

∫
K
ψσI0(Φx

σ(V0), . . . ,Φx
σ(Vr+1))ds,

L2
σ,p(V ) =

∫
K
ψσ(Vp − V0) +

∫ tn,p

tn

Il(Φx
σ(V0), . . . ,Φx

σ(Vr+1))ds

so that

L1
σ,p(V )− L2

σ,p(V ) = |Cσ,K |(Umσ − unσ)−
∫
K
ψσ(Um − un)

+

∫ tn+1

tn

(
I0(Φx

σ(V0), . . . ,Φx
σ(Vr+1))− Il(Φx

σ(V0), . . . ,Φx
σ(Vr+1))

)
ds

We see that to get the estimate (29), a sufficient condition is:∑
σ∈K
|Cσ,K |(V σ

m − V σ
0 ) =

∫
K

(Vm − V0)dx (37)

so that: ∑
σ∈K
|Cσ,K |(V σ

m − V σ
0 ) =

∑
σ∈K

∫
K
ψσ(Vm − V0)

because
∑
σ∈K

ψσ = 1 =
∑
σ∈K

ϕσ

Proposition 4.5. Under the asumptions of lemma 4.3, there exists C > 0 such that

||L1(V )− L2(V )|| ≤ C(h+ ∆t)||V ||.

Proof. The proof is rather similar to that of lemma 4.3. We first have

L1
σ,p(V )− L2

σ,p(V ) = |Cσ,K |(Umσ − unσ)−
∫
K
ψσ(Um − un)

+

∫ tn+1

tn

(
I0(Φx

σ(V0), . . . ,Φx
σ(Vr+1))− Il(Φx

σ(V0), . . . ,Φx
σ(Vr+1))

)
ds
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so that∑
σ∈K

vσ
(
L1
σ,p(V )− L2

σ,p(V )
)

= |Cσ,K |
∑
σ∈K

vσ(V σ
m − V σ

0 )−
∫
K
ψσ(Vm − V0)

+
∑
σ∈K

∫ tn+1

tn

(
I0(Φx

σ(V0), . . . ,Φx
σ(Vr+1))− Il(Φx

σ(V0), . . . ,Φx
σ(Vr+1))

)
ds

Let us have a look at
∑
σ∈K

vσ(V σ
m − V σ

0 )−
∫
K ψσ(Vm − V0). we have, for any σ0 ∈ K:

∑
σ∈K

vσ(V σ
m − V σ

0 )−
∫
K
ψσ(Vm − V0) = vσ0

∑
σ∈K

(V σ
m − V σ

0 )−
∫
K
ψσ(Vm − V0)

+
∑
σ∈K

(vσ − vσ0)(V σ
m − V σ

0 )−
∫
K
ψσ(Vm − V0)

=
∑
σ∈K

(vσ − vσ0)(V σ
m − V σ

0 )−
∫
K
ψσ(Vm − V0)

so that∑
K

|Cσ,K ||
∣∣ ∑
σ∈K

(vσ − vσ0)(V σ
m − V σ

0 )−
∫
K
ψσ(Vm − V0)

∣∣ ≤ h( ∫
Ω
||∇v||2dx)1/2

(∑
K

|Cσ,K
∑
K

(V σ
m − V σ

0 )2
)1/2

= Ch||v||H1 ||Vm − V0||2

Using condition (34) and lemma A.1.
The second term is handled similarly, with the same technique as in the proof of lemma 4.3:∑

σ∈K
vσ

∫ tn+1

tn

(
I0(Φx

σ(V0), . . . ,Φx
σ(Vr+1))− Il(Φx

σ(V0), . . . ,Φx
σ(Vr+1))

)
ds

=
∑
σ∈K

vσ

∫ tn+1

tn

(
I0(∇v · f(V0), . . . ,∇v · f(Vr+1))− Il(ΦG,x

σ (V0), . . . ,ΦG,x
σ (Vr+1))

)
+
∑
σ∈K

∫ tn+1

tn

(vσ − vσ′)
(
I0(∆Φx

σ(V0), . . . ,∆ΦG,x
σ (Vr+1))− Il(∆Φx

σ(V0), . . . ,∆Φx
σ(Vr+1))

)
Since clearly for any Uj ,

||I0(U0, . . . , Ur+1)− Il(U0, . . . , Ur+1)||2 ≤ C ∆t

r+1∑
l=1

||Ul||2,

since the flux f and the residuals are Lipschitz continuous, we get the result using again the same
estimates as in the proof of lemma 4.3.

As a consequence, we see that not all finite element can be used with this technique: A sufficient
condition is that ∫

K
ϕσdx > 0 (38)
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This condition is met for any Qr approximation where the degree of freedom correspond to Gaussian
points, for example a Cartesian product of one dimensional Gaussian points. For simplicies, we
know that the integral of Lagrange basis functions can be of both sign and even vanish: think of
the quadratic case for a triangle. This is why we consider, as in [6, 10] Bézier approximations: if
λ1, . . . λd+1 are the barycentric coordinates with respect to the vertices of a simplex, we define, for
the multi-index (i1, . . . , id+1) with i1 + . . .+ id+1 = r

Bi1,...,id+1
(x) =

r!

i1! . . . id+1!
λi11 (x) . . . λ

id+1

d+1 (x).

We have ∑
i1,...id,

∑
ij=r

Bi1,...,id+1
(x) = 1

because
∑d+1

j=1 λj = 1. In addition for x ∈ K, Bi1,...,id+1
(x) ≥ 0 and∫

K
Bi1,...,id+1

(x)dx > 0.

Similar properties can be stated for NURBS. In the case of Bézier, the Bi1,...,id+1
span Pr(K),

but in order to indicate clearly which type of approximaton we use, we denote by Br the space Pr
when it is spanned by Bézier polynomials.

4.3 Stability restriction on the time step.

For each iteration, the scheme is written as

L1(V (m+1)) = L1(V (m))− L2(V (m)) = O(h)

so that after K iterations, we get:
L1(V (K)) = O(h).

Since L1(V ) = 0 essentially amounts to a two level scheme for each of the sub-time steps tn,m,
m = 0, . . . ,K, we see that the solution V K

k is obtained from a two-level schemes that is perturbed
by an O(h) term. From a result in [20], we see that, give a norm, the stability condition of the
method is that of L1. Since the Euler forward method is used, we see that for a method of order r
in space, the time step must be divided by r with respect to the time step needed for the first order
in space scheme.

4.4 Maximum principle

Here we are interested in the maximum principle. We drop the time subscript, l is the sub-time
subscript, uσ is the solution at the beginning of the computation. In what follows, we use L1 defined
by (25). The L2 operator, i.e. for each element and each subtime step p,∫

K
ψσ(V (l)

p − V0)dx+

∫
∂K

ψσ

( r+1∑
k=1

θk,r+1f(V
(l)
k )

)
· n
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writes

|K|
∑
σ′∈K

aKσσ′(V
(l)
p,σ′ − uσ′) + ∆t

r+1∑
k=1

θk,r+1

{ ∑
σ′∈K

ckσσ′(V
(l)
k,σ − V

(l)
k,σ′)

})
.

Here we assume that

• aKσσ = γKσ
|K|

#DOF with γKσ ∈ [0, 1] and #DOF is the number of degrees of freedom in K

• and ckσσ′ ≥ 0.

This can be made possible by using the nonlinear RDS schemes described in sections 4 and 5.3, see
annex B. We can also assume that θk,r+1 ≥ 0, for example by using the strong stability preserving
Deferred correction schemes of [17]; they have been designed up to fourth order accuracy. The
iterative steps are then:

|Cσ|(V l+1
p,σ − uσ) = |Cσ|(V l

p,σ − uσ)

−
(∑
k3σ
|K|γKσ

|K|
#DOF

(V (l)
p,σ − uσ) + ∆t

K∑
k=1

ωk

{ ∑
σ′ 6=σ

ckσσ′(V
(l)
k,σ − V

(l)
k,σ′)

})
(39)

with ckσσ′ ≥ 0, K the number of sub-time steps. This can be rewritten as:

|Cσ|V l+1
p,σ =

(
|Cσ| −

∑
k3σ
|K|γKσ

|K|
#DOF

−∆t

K∑
k=1

ωk{
∑
σ′ 6=σ

ckσσ′}
)
V l
p,σ

+ ∆t
K∑
k=1

ωk
∑
σ′ 6=σ

ckσσ′V
(l)
k,σ′

+
∑
k3σ
|K|γKσ

|K|
#DOF

uσ.

Since |Cσ| =
∑

k3σ
|K|

#DOF , γ
K
σ ∈ [0, 1] and if ωk ≥ 0, we have a maximum principle under a CFL

like condition.

5 Applications

We present results with the second, third and fourth order temporal schemes and P1, B2 and B3

elements (the last one for the one dimensional for the one dimensional case). More specifically, the
time schemes rely on the following quadrature formula:

• Second order in time: it relies on a linear Lagrange interpolation on [0, 1], so:∫ 1

0
I1(f)ds =

1

2

(
f(0) + f(1)

)
.

This gives back the scheme of [19].
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• Third order in time: It is based on the Lagrange interpolation in [0, 1], where the data are
given at the points t = 0, 1

2 and 1. This results in the following formula that defines the
operator L2: ∫ 1/2

0
I2(f)ds =

5

24
f(0) +

1

3
f(

1

2
)− 1

24
f(1)∫ 1

0
I2(f)ds =

1

6
f(0) +

4

6
f(

1

2
) +

1

6
f(1)

We have used the same temporal scheme for P1 and B2 elements.

• Fourth order in time: it relies on the Lagrange interpolation approximation with the points
t = 1

2(1 + cos(kπ/3), k = 0, . . . , 3. We have∫ 1/4

0
I3(f)ds =

59

576
f(0) +

47

288
f(

1

4
)− 7

288
f(

1

2
) +

5

576
f(1)∫ 3/4

0
I3(f)ds =

3

64
f(0) +

15

32
f(

1

4
) +

9

32
f(

3

4
)− 3

64
f(1)∫ 1

0
I3(f)ds =

1

18
f(0) +

4

9
f(

1

4
) +

4

9
f(

3

4
) +

1

18
f(1)

We also have used in experiments that are not reported the equidistributed sequence. Since
the order is still low, it does not change the results.

The space and time residuals that are tested are:

• Burman’s (16)

• SUPG (15)

• the nonlinear RDS schemes

Φσ(uh) = βσ(uh)Φtot

+
∑

edges of ∂K

h2
e||∇uf ||

∫
∂K

[∇uh] · [∇ϕσ]d`
(40)

where the choice of βσ(uh) is done as follows

– Choice 1:

βPSIσ (uh) =

(
ΦLxF
σ

Φtot

)+

∑
σ′∈K

(
ΦLxF
σ′

Φtot

)+ ,

Here the scheme is named PSI (for historical reasons),
– or Choice 2:

βσ(uh)Φtot = (1− θ)βPSIσ (uh)Φtot + θΦLxF
σ

θ =
|Φtot|∑

σ′∈K |Φσ
LxF |

here it is denoted as Blended PSI.
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Other choices are possible, for example to blend the Burman or SUPG residual with a Lax
Friedrichs one, the blending parameter is defined by θ in choice 2. We nickname this schemes
as Blended Burman with Jump stabilisation (or Blended SUPG with Jump stabilisation).

5.1 A one dimensional example.

The test case is the problem
∂u

∂t
+
∂u

∂x
= 0

on [0, 1] with Neuman boundary conditions. The initial condition is

u(x, 0) = e−80(x−0.4)2 .

The results are given on table 1: we obtain the expected accuracy.
We also have considered the initial condition given by :

u0(x) =


(G(x, β, z − δ) +G(x, β, z + δ) + 4G(x, β, z))/6. if − 0.8 ≤ x ≤ −0.6
1 if − 0.4 ≤ x ≤ −0.2
1−

∣∣10(x− 1)
∣∣ if 0 ≤ x ≤ 0.2

1
6

(
F (x, α, a− δ) + F (x, α, a+ δ) + 4F (x, α, z)

)
if 0.4 ≤ x ≤ 0.6

0 otherwise

(41)

with G(x, β, z) = e−β(x−z)2 and F (x, α, a) =
√

max(1− α2(x− a)2, 0). In the present case, we have
taken a = 0.5, z = −0.7, δ = 0.005, α = 10 and β = log(2)/(36δ2) as in [15, 14]. The boundary
conditions are periodic, and we are looking at the solution at t = 8. This is quite a challenging case
since the solution presents smooth parts and discontinuous features simultaneously.

We have first run the method for quadratic elements and the Galerkin+Jump scheme. The
final time is T = 8. For 3 iterations the results are plagued by oscillations that are created by
the discontinuous figures. Note that for perfectly regular solutions (as in the previous case), the
scheme with 3 iteration is fine. For 4 iterations, the Gaussian bump is very well represented, but
we still have oscillations where the solution should be vanishing. This has completely disappeared
with 5 iterations and more. We note that the smooth parts of the solutions are aways very well
represented, and the resolution improves for the discontinuous part when we increase the number
of iterations. Then we have run the same case with non linear schemes, the results are displayed
in figure 2. Only 3 iterations are used, the final time is T = 8. The results are non oscillatory as
expected, and of course more dissipated as in the Galerkin+Jump scheme. This is not a surprise.

5.2 2D linear example

The velocity field at (x, y) is given by a = 2π(−y, x). The initial condition is given by:

u0(x, y) = e−40(x2+y2).

The domain is a circle with center (0, 0) and radius R = 1. The mesh representing all the degrees
of freedom is displayed in Figure 3: the quadratic elements have 6 degrees of freedom (the vertices
and the mid-points of the edges). These degrees of freedom are also used for the linear element
just by mesh refinement. There are 7047 degrees of freedom here, so h ≈

√
π

7047 ≈ 0.021 which is
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B2 B3

L1 error
log10 h log10(err) slope log10(err) slope

-1.00000000 -1.77300358 - -.2088D+01 -
-1.30103004 -3.09956264 4.40673304 -.4004D+01 6.35
-1.60205996 -3.92077780 2.72801828 -.5237D+01 4.09
-1.90309000 -4.74021816 2.72212148 -.6425D+01 4.09
-2.20411992 -5.61343765 2.90077305 -.7632D+01 4.09
-2.50515008 -6.50857687 2.97358656 -.8835D+01 4.09

L2 error
log10 h log10(err) slope log10(err) slope

-1.00000000 -1.63971663 - -.2310D+01 -
-1.30103004 -2.85121393 4.02450657 -.3498D+01 3.94
-1.60205996 -3.66986251 2.71949244 -.4681D+01 3.93
-1.90309000 -4.47560310 2.67661190 -.5879D+01 3.98
-2.20411992 -5.34178400 2.87739134 -.7082D+01 3.99
-2.50515008 -6.23404074 2.96401119 -.8286D+01 3.99

L∞ error
log10 h log10(err) slope log10(err) slope

-1.00000000 -1.23617887 - -.1617D+01 -
-1.30103004 -2.30927277 3.56474018 -.2843D+01 4.07
-1.60205996 -3.08773041 2.58598089 -.3943D+01 3.65
-1.90309000 -3.87637067 2.61980581 -.5105D+01 3.86
-2.20411992 -4.73004484 2.83584499 -.6299D+01 3.96
-2.50515008 -5.61776066 2.94892645 -.7499D+01 3.96

Table 1: Errors for u(x, 0) = e−80(x−0.4)2 and linear advection. t = 0.25. B2/3rd order in time,
B3/4th order in time.

relatively coarse. On the same figure, we represent the exact solution. The time step is evaluated
as the minimum of the ∆tK defined by:

∆tK = CFL
hK
||aK ||

where hK is the length of the smallest edge of K and aK is the speed at the centroid. Since
the elements for the P1 simulations are obtained from those of the B2 simulation by splitting, the
parameter hK , for the P1 simulations, is half of the one for the B2 simulations. For that reason, the
CFL number for the quadratic approximation is half of the one chosen for the linear simulations,
namely 0.6 instead of 0.3: we run with the same time step. By the way, we have not yet conducted
a rigorous study of the CFL condition, but all experiments indicate that the quadratic simulations
can be safely run with CFL = 0.5.
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(a) Burman, 4 and 5 iterations (b) Burman, 5 and 10, 30 iterations

Figure 1: Results for the convection problem with initial conditions(41), at T = 8. The mesh has
200 cells (300 degrees of freedom). The results are obtained with the Burman residual.

Figure 4 displays the results for the P1 approximation, while Figure 5 shows those obtained for
the quadratic approximation. The baseline schemes are the SUPG and the Galerkin scheme with
jumps.

In Figure 4, the same isolines are represented for the three results. We can see that after 10
rotations, the results of the Galerkin+jump scheme look pretty good despite the coarse resolution.
The minimum and maximum are −0.012 and 0.762. For the SUPG results, after 1 rotation, the
minimum/maximum are −0.004 and 1.02. After 2 rotations we have −0.047 and 1.02. This is better
that what is obtained for Figure 4-(c), but the dispersive effects are much more important for the
SUPG scheme as it can be seen on Figure 4-(b): this is why we have not shown further results for
the SUPG/P1 case.

In Figure 5, we show similar results obtained with the quadratic approximation. Again, the
Galerkin+jump method is way less dispersive that the SUPG (stopped after only one rotation this
time). We have found that if we perform 4, 6 or 8 iterations of the defect correction, the quality
of the SUPG improves a lot, but the cost becomes prohibitive with respect to the Galerkin+Jump
method for which, after 10 rotations, the min/max are −0.0044 and 0.95. We also see that the
solution improves a lot with respect to linear elements, for example in terms of min/max values.
There is however some dispersion, if we compare with the exact solution. The table 2 display the
error in the L1, L2 and L∞ norm.

5.3 2D, non linear case: the KPP problem.

The second example is the KPP (Kurganov-Petrov-Petrova) test case, see [16]. The problem is
described by

∂u

∂t
+ div f(u) = 0

u(x, 0) = u0(x)
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Figure 2: Results for the convection problem with initial conditions(41), at T = 8 with quadratic
elements. The results are obtained with PSI and Blended Burman schemes. Only 3 iterations are
made

f = (cosu, sinu) and

u0(x) =

{
7
2π if ||x|| < 1
π
4 else.

The flux is non convex, and we have two main difficulties:

• existence of composite waves, i.e. shock attached to fans, because the problem is not convex

• There exists a sonic points on ||x|| = 1 (at ≈ 112.5◦).

Because of these two difficulties, if the scheme does not dissipate enough, then a shock wave is
attached to the sonic point, this is not correct. If on contrary the scheme dissipates too much, then
the solution can be blurred. This problem is more difficult than a standard problem with the flux
f = (u

2

2 , u) which is convex.
Since the pure SUPG method is kind of disapointing, we have considered a spatial approximation

using jump filtering, i.e. the approximation (40) with choices 1 and 2 for β. Some results are
displayed on Figures 6 and 7. The mesh has been constructed by a mesh generator (gmesh). The
second and third order simulations are done with exactly the same number of degrees of freedom
(here 34353): the quadratic elements are subdivided into 4 linear elements. The second order
solution uses a second order time discretisation, while the third order one a third order discretisation.
We notice that the second order solution presents crisper discontinuities. Indeed, in both case,

the width of a discontinuity is of the order of 1.5 elements, but the size of the quadratic elements
is twice as large as the one of the linear elements. Both solutions are correct, if one compares to
published results, for example [16]. They have been obtained with choice 2 (Blended PSI). If choice
1 (PSI) is applied, the solution is not correct since the initial discontinuity stays attached, and then
the composite wave cannot be created. In fact the Blended PSI is slightly more dissipative than the
PSI one. We have not represented this solution to save space.
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(b) Solution

Figure 3: Exact solution after n rotations (n ∈ N) and plot of the degrees of freedoms.

6 Conclusions and perspectives

In this paper, we have shown how one can get rid-off mass matrix for continuous finite element
method. This method relies on a iterative interpretation of the time stepping, in the spirit of
Differed Correction method with the use of finite elements where each basis function has a stricktly
positive mass. Some analysis indicates that one can get the expected accuracy, this is confirmed
by the numerical results obtained on typical liner problems in one and two dimension. A formal
extension is provided for non linear problems.

A natural perspective of this work is to apply the same approach to systems of conservation
laws such a the Euler equations. Semi-implicit versions of the schemes can also be constructed in
the same spirit.
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A Technical results

Lemma A.1. Assume that K is convex and its aspect ratio is bounded by a constant C. If v ∈
Pr(K), and v =

∑
σ∈K vσϕσ, then∑

σ

|vσ − vσ′ | ≤ CK
∑
σ

|v(σ)− v(σ′)
∣∣

where CK is the L∞ norm of the inverse of the matrix (ϕσ(σ′))σ,σ′. and

hK
∑
K

|vσ| ≤ CK ||v||2,K

where CK only depends on K via C.
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(a) P1 elements (b) B2 elements

Figure 6: KPP problem, solution at t = 1 for the second and third order scheme.

Proof. We have v(σ) =
∑

σ′∈K v(σ′)ϕσ′(σ), so that∑
σ∈K
|v(σ)| ≤ C1

∑
σ∈K
|v(σ)|2 ≤ C1||A−1||2

∫
K
v2(x)dx

where A is the matrix A = (
∫
K ϕσ′ϕσ)σ,σ′∈K , and C1 is the square root of the number of degrees of

freedom in K.
By a scaling argument, ||A−1||2 ≤ CKh−1

K where CK depends on the aspect ratio of K. Hence,∑
σ∈K
|vσ − vσ′ | ≤ CK

∑
σ∈K
|v(σ)− v(σ′)| ≤ CK

hK

∫
K
|v(x)− v(σ′)|dx

where Ck is the L∞ norm of the matrix (ϕσ′)σ,σ′∈K . We have:

v(x)− v(σ′) =

∫ 1

0
∇v((1− s)x + sσ′) · (x− σ)ds,
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(a) P1 elements (b) B2 elements

Figure 7: KPP problem, solution at t = 1 for the second and third order scheme. Zoom of the
solution, the degrees of freedom are represented.

so that ∫
K
|v(x)− v(σ′)|dx ≤

∫
K

∫ 1

0
||∇v((1− s)x + sσ′)|| ||x− σ′||dx

≤ hK
∫
K

(∫ 1

0
||∇v((1− s)x + sσ′)||2ds

)1/2

dx

≤ hK
(∫

K

( ∫ 1

0
||∇v((1− s)x + sσ′)||2ds

)
dx

)1/2

since s 7→
√
s is concave. Using Fubini, we then have∫

K

( ∫ 1

0
||∇v((1− s)x + sσ′)||2ds

)
dx =

∫
K×[0,1]

||∇v((1− s)x + sσ′)||2 =

∫
K
||∇v(x)||2x

because K is convex.
Collecting all the pieces, we get:∑

σ∈K
|vσ − vσ′ | ≤ CK ||∇v||L2(K)

where CK only depends on the aspect ratio of K.
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B Some properties of non linear RDS schemes.

This annex is devoted to the justification of some fact stated in section 4.4, namely that the L2

operator, i.e. for each element and each sub-time step p,∫
K
ψσ(V (l)

p − V0)dx+

∫
K
ψσ

( r+1∑
k=1

θk,r+1f(V
(l)
k )

)
can write

|K|
∑
σ′∈K

aKσσ′(V
(l)
p,σ′ − uσ′) + ∆t

r+1∑
k=1

θk,r+1

{ ∑
σ′∈K

ckσσ′(V
(l)
k,σ − V

(l)
k,σ′)

})
.

with

• aKσσ = γKσ
|K|

#DOF with γKσ ∈ [0, 1] and #DOF is the number of degrees of freedom in K

• and ckσσ′ ≥ 0.

We consider the following kind of nonlinear RDS. The Galerkin residuals are defined by

ΦK,Gal
σ =

∫
∂K

ϕσ

( r+1∑
k=1

θk,r+1f(V
(l)
k )

)
· n−

∫
K
∇ϕσ

(
(
r+1∑
k=1

θk,r+1f(V
(l)
k )

)
, (42)

from this one writes a “Rusanov” residual:

ΦK,Rus
σ =

|K|
#K

(
(V (l)
p,σ − V0,σ

)
+ ∆tΦK,Gal

σ + ∆tαK

({ r+1∑
k=1

θk,r+1V
(l)
k

}
− V

)
with

V =
1

#K

(∑
σ∈K

r+1∑
k=1

θk,r+1V
(l)
k

)
and αK larger than the maximum of the spectral radii of the Jacobians of the flux evaluated at the
states V (l)

k , or even larger. Then one forms

ΦK,?
σ = βKσ ΦK

xt (43)

where the total residual ΦK is defined by

ΦK
xt =

∫
K

(V (l)
p − V0)dx+

∫
∂K

( r+1∑
k=1

θk,r+1f(V
(l)
k )

)
· n(=

∑
σ∈K

ΦK,Gal
σ )

and βKσ by

βKσ =
max(0, ΦK,Rusσ

ΦKxt
)∑

σ′∈K max(0, ΦK,Rusσ

ΦKxt
)
. (44)

Let us prove now that

aKσσ = γKσ
|K|

#DOF
with γKσ ∈ [0, 1] and #DOF is the number of degrees of freedom in K. (45)

and
ckσσ′ ≥ 0. (46)
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Proof. We note that
βKσ ΦK

xt = γKσ ΦK,Rus
σ

with

γKσ =


0 if max(0, ΦK,Rusσ

ΦKxt
) = 0

1∑
σ′∈K max(0, ΦK,Rusσ

ΦKxt
)

else

Since
∑

σ∈K ΦK,Rus
σ = ΦK

xt, we have that:∑
σ′∈K

max(0,
ΦK,Rus
σ

ΦK
xt

) +
∑
σ′∈K

∈ (0,
ΦK,Rus
σ

ΦK
xt

) =
∑
σ′∈K

ΦK,Rus
σ

ΦK
xt

) = 1,

so that ∑
σ′∈K

max(0,
ΦK,Rus
σ

ΦK
xt

) ≥ 1

and then γKσ ∈ [0, 1]. We get the first property (45).
The second one (46) comes from the very definition of βKσ .

Remark B.1. In many practical applications, the residual that is considered is not (43) but

ΦK,?
σ = βKσ ΦK

xt +
∑

edges of K

h2
KΓ

∫
e

[
∇ϕσ

][
∇
( r+1∑
k=1

θk,r+1V
(l)
k

)]
(47)

with βKσ defined as (44). Then (45) is still true because the term∫
∂K

( r+1∑
k=1

θk,r+1f(V
(l)
k )

)
· n(=

∑
σ∈K

ΦK,Gal
σ )

does not contain any time increment.
In some other, we modify the definition of the Rusanov residual into

ΦK,Rus
σ = ΦK,Gal

σ + ∆tαK

({ r+1∑
k=1

θk,r+1V
(l)
k

}
− V

)
with now

ΦK,Gal
σ =

∫
K

(V (l)
p − V0)ϕσdx∆t

∫
∂K

ϕσ

( r+1∑
k=1

θk,r+1f(V
(l)
k )

)
· n−∆t

∫
K
∇ϕσ

(
(
r+1∑
k=1

θk,r+1f(V
(l)
k )

)
and we consider

ΦK,?
σ = (1− `)

{
ΦK,Gal
σ +

∑
edges of K

h2
KΓ

∫
e

[
∇ϕσ

][
∇
( r+1∑
k=1

θk,r+1V
(l)
k

)]}
+ `ΦK,Rus

σ (48)

with

` =
|ΦK |∑

σ∈K |Φ
K,Rus
σ |

. (49)

Then none of the properties hold formally true but we get a maximum principle experimentally.
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