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Abstract

Possibilistic networks offer a qualitative approach for modeling epistemic uncer-
tainty. Their practical implementation requires the specification of conditional
possibility tables, as in the case of Bayesian networks for probabilities. The
elicitation of probability tables by experts is made much easier by means of
noisy logical gates that enable multidimensional tables to be constructed from
the knowledge of a few parameters. This paper presents the possibilistic coun-
terparts of usual noisy connectives (and, or, max, min, . . . ). Their interest and
limitations are illustrated on an example taken from a human geography model-
ing problem. The difference of behavior between probabilistic and possibilistic
connectives is discussed in detail. Results in this paper may be useful to bring
possibilistic networks closer to applications.

Keywords: possibility theory, belief networks, noisy gates, expert knowledge,
human geography

1. Introduction

A belief network is a convenient way of representing the interaction between
uncertain variables in the form of a directed graph, each node of which repre-
sents a variable. The graphical structure takes advantage of known conditional
independence between these variables. Each variable is directly influenced only5

by its parent variables in the graph. Given such a directed graph between vari-
ables and local conditional probability tables, the joint probability distribution
of these variables can be retrieved; see [20] for an introduction to Bayesian belief
networks. In fact they can be built in two ways: they can be extracted from data
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or made up by a human expert. In the first case, a supposedly large dataset in-10

volving a number of variables is available, and the Bayesian network is obtained
by some machine learning procedure. The probability tables thus obtained have
a frequentist flavor, and the simplest network possible is searched for. On the
contrary, when Bayesian networks can be specified using expert knowledge, the
structure of a network relating the variables is first given, often relying on causal15

connections between variables and conditional independence relations the expert
is aware of. Then, subjective probability tables must be filled by the expert.
They consist, for each variable in the network, of conditional probabilities for
that variable, conditioned on each configuration of its parent variables. Note
that, even if causal relations as perceived by the expert are instrumental in20

building a simple and interpretable network, the joint probability distribution
obtained by combining the probability tables no longer accounts for causality.
Another difficulty arises for subjective expert-based Bayes networks: if vari-
ables are not binary and/or the number of parent variables is more than two,
the task of eliciting numerical probability tables becomes tedious, if not impos-25

sible to fulfill. Indeed, the number of probability values to be supplied increases
exponentially with the number of parent variables.

To alleviate the elicitation task, the notion of noisy logical gate (or con-
nective) has been introduced, based on the assumption of independent causal
influences that can be combined. As a result, one small conditional probability30

table is elicited per parent variable, and the probability table of each variable
given its parents is obtained by combining these small tables via a so-called noisy
connective [10, 19], which may include a so-called leakage factor summarizing
the causal effect of variables not explicitly present in the network.

While the notion of noisy connective solves the combinatorial problem of col-35

lecting many probability values to a large extent, the issue remains that people
cannot always provide precise probability assessments. Let alone the fact that
the probability scale is too fine-grained for human perception of belief or frequen-
cies, some conditional probability values may be ill-known or plainly unknown
to the experts. The usual Bayesian recommendation in the latter case is to use40

uniform distributions, but it is well-known (see for instance [15, 16]) that these
distributions do not properly model ignorance. Alternatively, one may use im-
precise probability networks (called credal networks) [21], qualitative Bayesian
networks [23] or possibilistic networks [5]. While the two first options extend
probabilistic networks to ill-known parameters (with an interval-based approach45

for the first extension and an ordinal approach for the second), possibilistic net-
works represent a more drastic departure from probabilistic networks. In their
qualitative version, possibilistic networks can be defined on a finite chain of
possibility values and do not refer to numerical values. This feature may make
the collection of expert information on conditional tables easier than requiring50

precise numbers obeying the laws of probability. However, when it comes to fill-
ing conditional uncertainty tables, the dimensionality issue present in Bayesian
networks remains the same in the possibilistic environment.

This is why in this paper, we propose possibilistic counterparts of noisy con-
nectives of probabilistic networks. As possibilistic uncertainty is merely epis-55
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temic and due to a lack of information, we shall speak of uncertain connectives.
The idea of possibilistic uncertain gates was first considered empirically by Par-
son and Bigham [22] directly in the setting of possibilistic logic, at a time when
possibilistic networks had not yet been introduced. It seems that the question
of possibilistic uncertain gates has not been reconsidered ever since, if we ex-60

cept a recent study in the broader setting of imprecise probabilities [1]. The
basic ideas pervading this paper first appear in a French conference paper by
the authors [8], then more formally in the SUM conference proceedings [11].

This paper elaborates on these preliminary versions. In particular, we ex-
plain the construction of possibilistic gates in greater detail. Moreover, we65

introduce the leaky version of several such gates, as well as variants needed for
describing the reinforcement of the possibility of effects due to the presence of
multiple causes. A comparison between probabilistic (noisy) gates and possi-
bilistic gates is carried out, emphasizing their difference in terms of expressive
power and respective concerns. Lastly, an extensive account of the application70

to human geography is provided.
The paper is structured as follows. After recalling probabilistic networks

with noisy gates in Section 2, we present the corresponding approach for possi-
bilistic networks and present various uncertain gates, especially the AND, OR,
MAX, and MIN functions in Section 3. In Section 4, we compare the uncertain75

OR-gate and the noisy OR-gate in detail, and propose a variant of the uncertain
MAX that behaves more in agreement with the noisy MAX. Algorithms needed
to implement this approach are discussed in Section 5. Finally, the approach, in-
cluding algorithmic issues, is illustrated in Section 6 on a belief network dealing
with an application to human geography.80

2. Probabilistic Networks with Independent Causal Influences

Consider a set of independent variables X1, . . . , Xn that influence the value
of a variable Y . In the ideal case, there is a deterministic function f such that
Y = f(X1, X2, . . . , Xn). In order to account for uncertainty, one may assume
the existence of intermediary variables Z1, . . . , Zn, such that Zi expresses the85

fact that Xi will have a causal influence on Y , and which value of Y it enforces
(Zi has the same range as Y ). It is assumed that the relation between Xi and Zi
is probabilistic and that Zi is independent of other variables given Xi. Besides,
we consider the deterministic function as affected by the auxiliary variables Zi
only. In other words, we get a probabilistic network such that90

P (Y,Z1, . . . , Zn, X1, . . . , Xn) = P (Y,Z1, . . . , Zn) ·
n∏
i=1

P (Zi | Xi), (1)

where P (Y, Z1, . . . , Zn) = 1 if Y = f(Z1, . . . , Zn) and 0 otherwise. This is called
a noisy function. In particular, notice that the dependence tables between Y and
X1, . . . , Xn can now be obtained by combining simple conditional probability
distributions pertaining to single factors. For any effect value y of Y , and every
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n-tuple (x1, . . . , xn) of input values :95

P (y | x1, . . . , xn) =
∑

z1,...,zn:y=f(z1,...,zn)

n∏
i=1

P (zi | xi). (2)

This is the assumption of independence of causal influence (ICI) [10]. In the
case of Boolean variables, it is assumed that P (Zi = 0 | Xi = 0) = 1 (if no
cause, then no effect), while P (Zi = 0 | Xi = 1) could be positive (the effect
may or may not appear when the cause is present).

Canonical ICI models are obtained by means of specific choices of functions100

f . For instance, if all variables are Boolean, f will be a logical connective. In
this case, we speak of noisy OR (f = ∨), noisy AND (f = ∧); if the range of the
Zi’s and Y is a totally ordered set, usual gates are the noisy MAX (f = max),
or MIN (f = min).

The approach may be further refined by allowing f to summarize the poten-105

tial effect of external variables not taken into account: this is the leaky model.
Then, Y also depends on a leakage variable ZL not explicitly related to identi-
fied causes, i.e., Y = f(Z1, Z2, . . . , Zn, ZL). The range of ZL is supposed to be
the range of f , i.e., the range of Y and this variable is independent of the other
ones. Hence, the leaky model may be written as:110

P (Y, Z1, . . . , Zn, ZL,x) = P (Y,Z1, . . . , Zn) · P (ZL) ·
n∏
i=1

P (Zi | Xi),

so that for any value y of Y and any configuration (x1, . . . , xn) of parent vari-
ables:

P (y | x1, . . . , xn) =
∑

z1,...,zn,zL:y=f(z1,...,zn,zL)

P (zL) ·
n∏
i=1

P (zi | xi). (3)

For instance, in the case of Boolean variables, P (Y = 1 | X1 = 0, . . . , Xn = 0)
may be positive due to such external causes.

We will now turn to the question whether the same kind of ICI approach115

can be used to elicit possibilistic networks as well.

3. Uncertain logical gates in Canonical Possibilistic Networks

Possibility theory [12, 26] is based on maxitive set functions associated to
possibility distributions. Formally, given a universe of discourse U , a possibility
distribution π : U → [0, 1] pertains to a variable X ranging on U and represents
the available (incomplete) information about the more or less possible values
of X, assumed to be single-valued. Thus, π(u) = 0 means that X = u is
impossible. The consistency of information is expressed by the normalization of
π : ∃u ∈ U, π(u) = 1, namely, at least one value is fully possible for X. Distinct
values u and u′ may be simultaneously possible at degree 1. A state of complete
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ignorance is represented by the distribution π?(u) = 1,∀u ∈ U . The degree of
possibility of an event A ⊆ U is defined by the set function

Π(A) = sup
u∈A

π(u)

called a possibility measure. Possibility measures are maxitive, i.e.,

∀A,∀B,Π(A ∪B) = max(Π(A),Π(B)).

The underlying assumption is that the agent focuses on the most plausible values
compatible with event A, neglecting other ones. A dual measure of necessity
N(A) = 1−Π(U \A) expresses the degree of certainty of event A as the degree120

of impossibility of non-A.
A possibilistic network [5] has the same structure as a Bayesian network. The

joint possibility for n variables linked by an acyclic directed graph is defined by
the chain rule:

π(x1, . . . , xn) = ∗i=1,...,nπ(xi | pa(Xi)),

where xi is an instantiation of the variable Xi, and pa(Xi) an instantiation of
the parent variables of Xi. The operation ∗ is generally chosen as the minimum
(in the qualitative case) [3], or the product (in the numerical case) [6], and
this is what we shall assume in the sequel. Note that the behavior of product-125

based possibilistic nets is very close to the one of Bayes nets, while min-based
possibilistic networks have specific properties. For instance, starting from pos-
sibilistic conditional tables, and building the joint possibility distribution using
the chain rule, one cannot generally retrieve the same conditional tables, due to
the drowning effect of the min operation [5].130

3.1. Uncertain causal functions in possibilistic networks

Deterministic models Y = f(X1, . . . , Xn) are defined like in the probabilistic
case:

π(y | x1, . . . , xn) =

{
1 if y = f(x1, . . . xn);

0 otherwise.
(4)

Note that if y = f(x1, . . . xn), then π(y | x1, . . . , xn) = 1 indicates the certainty
of y because other values of Y are treated as impossible since f is a function.135

Let us define possibilistic models with independent causal influences (ICI).
We use a deterministic function Y = f(Z1, . . . , Zn) with n intermediary causal
variables Zi, as for the probabilistic models, which indicate that the cause Xi

has produced its effect. Now, π(y | x1, . . . , xn) is of the form:

π(y | z1, . . . , zn) ∗ π(z1, . . . , zn | x1, . . . , xn),

where π(y | z1, . . . , zn) obeys Equation 4. Again, each variable Zi only de-
pends (in an uncertain way) on the variable Xi. Thus, we have π(z1, . . . , zn |
x1, . . . , xn) = ∗i=1,...,nπ(zi | xi). This leads to the equality

π(y | x1, . . . , xn) = max
z1,...,zn:y=f(z1,...,zn)

∗i=1,...,nπ(zi | xi), (5)
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whose similarity with Eq. 2 is striking. Notice that, when ∗ = min, Eq. 5 boils
down to applying the extension principle [26] to function f , assuming fuzzy-140

valued inputs F1, . . . , Fn, where the membership function of Fi is defined by
µFi(zi) = π(zi | xi).

In case we suppose that y also depends in an uncertain way on other causes
summarized by a leakage variable ZL, giving birth to a leaky ICI model, we
then get the counterpart of Eq. 3, which reads:145

π(y | x1, . . . , xn) = max
z1,...,zn,zL:y=f(z1,...,zn,zL)

∗i=1,...,nπ(zi | xi) ∗ π(zL). (6)

In the following, we provide a detailed analysis of possibilistic counterparts of
noisy gates.

3.2. Uncertain OR

The variables are assumed to be Boolean (i.e., Y = y or ¬y, etc.). The
uncertain OR (counterpart of the probabilistic “noisy OR”) assumes that Xi =150

xi for at least one variable Xi represents a sufficient cause for getting Y = y, and
Zi = zi indicates that Xi = xi has caused Y = y. This gives f(Z1, . . . , Zn) =∨n
i=1 Zi. The uncertainty indicates that the causes may fail to produce their

effects. Zi = ¬zi indicates that Xi = xi did not cause Y = y due to the presence
of some inhibitor that prevents the effect from taking place. We assume it is155

more possible that Xi = xi causes Y = y than the opposite (otherwise one
could not say that Xi = xi is sufficient for causing Y = y). Then we must
define π(zi | xi) = 1 and π(¬zi | xi) = κi < 1. Besides, π(zi | ¬xi) = 0, since
when Xi is absent, it does not cause y. Hence the elementary causal possibility
table, where each column should contain 1, to get normal conditional possibility160

distributions:

π(Zi|Xi) xi ¬xi
zi 1 0
¬zi κi 1

Table 1: Elementary causal possibility table

Note that in the case of a probabilistic network, π(zi | xi) = 1 is replaced
by P (zi | xi) = 1− κi in Table 1.

Let x be a configuration of (X1, . . . , Xn), where xi denotes a literal (xi or
¬xi) for Xi (and the same convention for Zi). We can then obtain the table of
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the conditional possibility distribution π(Y | X1, . . . , Xn) by means of Eq. 5.

π(y | x) = max
Z1,...,Zn:Z1∨···∨Zn=y

∗ni=1π(Zi | xi)

=
n

max
i=1

π(zi | xi) ∗ (∗j 6=i max(π(zj | xj), π(¬zj | xj))

=
n

max
i=1

π(zi | xi);

π(¬y | x) = max
Z1,...,Zn:Z1∨···∨Zn=¬y

∗ni=1π(Zi | xi)

= π(¬z1 | x1) ∗ · · · ∗ π(¬zn | xn).

Note that in the second line of the computation of π(y | x), one must enforce
Zi = y for one variable Zi, while other variables take arbitrary values (we165

have n possible choices of Zi). Of course max(π(zj | xj), π(¬zj | xj)) = 1
due to normalisation. Besides, in the computation of π(¬y | x), the condition
Z1 ∨ · · · ∨ Zn = ¬y can be obtained for sure only if pa(Y ) = (¬z1, . . . ,¬zn).

Let I+(x) = {i : Xi = xi} and I−(x) = {i : Xi = ¬xi}. Then, if the above
causal elementary possibility table is adopted, we get:170

• π(¬y | x) = ∗i=1,...,nπ(¬zi | xi) = ∗i∈I+(x)κi;

• π(y | x) = 1 when x 6= (¬x1, . . . ,¬xn) ( since the term π(zi | xi) = 1
appears for some i in maxni=1 π(zi | xi));

• π(¬y | ¬x1, . . . ,¬xn) = 1, π(y | ¬x1, . . . ,¬xn) = 0: ¬y (no effect) can be
obtained for sure only if all the causes are absent.175

For n = 2, this gives the conditional tables:

π(y | X1X2) x1 ¬x1

x2 1 1
¬x2 1 0

π(¬y | X1X2) x1 ¬x1

x2 κ1 ∗ κ2 κ2

¬x2 κ1 1

Table 2: Uncertain OR for 2 inputs

More generally, if there are n causes, we have to provide the values of n
parameters κi.

For the uncertain leaky OR, we now assume that the function f takes the
form f(Z1, . . . , Zn) =

∨n
i=1 Zi ∨ ZL, where ZL is an unknown external cause.180

We assign π(zL) = κL < 1 (hence, π(¬zL) = 1) considering that zL is not a
usual cause. We thus obtain

• π(¬y | x) = ∗i=1,...,nπ(¬zi | xi) ∗ π(¬zL) = ∗i∈I+(x)κi;

• π(y | x) = 1, if x 6= (¬x1, . . . ,¬xn);

• π(¬y | ¬x1, . . . ,¬xn) = 1;185
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• π(y | ¬x1, . . . ,¬xn) = κL (even if the causes xi are absent, there is still a
possibility for having Y = y, namely if the external cause is present).

Indeed, we get (letting ¬x = (¬x1, . . . ,¬xn)),

π(y | ¬x1, . . . ,¬xn) = max(π(y | ¬x, zL) ∗ π(zL), π(y | ¬x,¬zL) ∗ π(¬zL)))

= max(1 ∗ κL, 0 ∗ 1) = κL.

For n = 2, the conditional table becomes:

π(y | X1X2) x1 ¬x1

x2 1 1
¬x2 1 κL

π(¬y | X1X2) x1 ¬x1

x2 κ1 ∗ κ2 κ2

¬x2 κ1 1

Table 3: The leaky uncertain OR for 2 inputs

The only 0 entry has been replaced by the leakage coefficient. For n causes,
we have now to provide the values of n+ 1 parameters κi.190

3.3. Uncertain AND

Let us consider Boolean variables (Y = y or ¬y, etc.). The uncertain AND
(counterpart of the probabilistic “noisy AND”) uses the same local conditional
tables but it assumes that Xi = xi represents a necessary cause for Y = y. We
again build the conditional possibility tables π(Y | X1, . . . , Xn) by means of
Eq. 5 using f(Z1, . . . , Zn) =

∧n
i=1 Zi instead. This is the De Morgan dual to

the uncertain OR gate:

π(y | x) = max
Z1,...,Zn:Z1∧···∧Zn=y

∗ni=1π(Zi | xi)

= π(z1 | x1) ∗ · · · ∗ π(zn | xn);

π(¬y | x) = max
Z1,...,Zn:Z1∧···∧Zn=¬y

∗ni=1π(zi | xi)

=
n

max
i=1

π(¬zi | xi) ∗ (∗j 6=i max(π(zj | xj), π(¬zj | xj))

=
n

max
i=1

π(¬zi | xi).

We notice that
∧n
i=1 Zi = y can be obtained only if pa(Y ) = (z1, . . . , zn).

Thus, we find

• π(¬y | x1, . . . , xn) = maxni=1 π(¬zi | xi) = maxni=1 κi;

• π(y | x1, . . . , xn) = 1;195

• π(¬y | x) = 1, π(y | x) = 0 if x 6= (x1, . . . , xn) (if at least one of the causes
is absent, the effect is necessarily absent).
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π(y | X1X2) x1 ¬x1

x2 1 0
¬x2 0 0

π(¬y | X1X2) x1 ¬x1

x2 max(κ1, κ2) 1
¬x2 1 1

Table 4: Uncertain AND for 2 inputs

For n = 2, Eq. 5 yields the conditional tables for the uncertain AND:

More generally, if there are n causes, we have to assess n values for the
parameters κi.200

The case of the uncertain AND with leak corresponds to the possibility
π(zL) = κL < 1 that an external factor ZL = zL causes Y = y independently
of the values of the Xi. Namely f(Z1, . . . , Zn, ZL) = (

∧n
i=1 Zi) ∨ ZL. For n =

2, Eq. 5 then gives the combined conditional possibility in Table 5, similar to
Table 3. The difference is that the leakage coefficient appears in three entries205

of the matrix for y, as the effect is then given a chance to appear when the two
causes are not simultaneously present.

π(y | X1X2) x1 ¬x1

x2 1 κL
¬x2 κL κL

π(¬y | X1X2) x1 ¬x1

x2 max(κ1, κ2) 1
¬x2 1 1

Table 5: Leaky uncertain AND for 2 inputs

3.4. Uncertain MAX

The uncertain MAX is a multiple-valued extension of the uncertain OR,
where the output variable Y (hence the variables Zi) is valued on a finite,
totally ordered, severity or intensity scale L = {0 < 1 < · · · < m}. We assume
that Y = max(Z1, . . . , Zn). The statement Zi = zi ∈ L represents the fact
that Xi alone has increased the value of Y at level zi. In this subsection, y, zi
denote any values in L, and xi any value in the range of Xi. The elementary
conditional possibility distributions π(y | xi) are supposed to be given. We can
then compute the conditional tables π(y | x) where x = (x1, . . . , xn), as:

π(y | x) = max
(z1,...,zn)∈Ln:y=max(z1,...,zn)

∗ni=1π(zi | xi)

=
n

max
i=1

π(Zi = y | xi) ∗ (∗j 6=iΠ(Zj ≤ y | xj)) .

In a causal setting, we assume that y = 0 is a normal state (no effect), and y > 0
is more or less abnormal, y = m being fully abnormal (strong effect). Suppose210

that the range of Xi is L as well. It is natural to assume that:

• if Xi = j then Zi = j is completely possible, which means Π(Zi = j |
Xi = j) = 1;

9



• if Xi = 0 then Zi = 0, which means Π(Zi 6= 0 | Xi = 0) = 0 (no cause, no
effect);215

• 0 < Π(Zi < j | Xi = j) < 1 (a cause having strong intensity possibly
induces an effect with weak severity, or may even have no effect at all, but
this is abnormal);

• an effect with severity weaker than the intensity of a cause is all the
less plausible as the effect is weaker. This leads to suppose the following220

inequalities:

π(Zi = 0 | Xi = j) ≤ π(Zi = 1 | Xi = j) ≤ · · · ≤ π(Zi = j | Xi = j) = 1.

• an effect with severity higher than the intensity of a cause is all the less
plausible as the effect is stronger. This leads to suppose the following
inequalities:

π(Zi = m | Xi = j) ≤ π(Zi = m−1 | Xi = j) ≤ · · · ≤ π(Zi = j | Xi = j) = 1.

This leads to state the elementary conditional table on the left-hand side of225

Table 6 (for 3 levels of strength 0, 1, 2).

π(Zi | Xi) Xi = 2 Xi = 1 Xi = 0
Zi = 2 1 κ21

i 0
Zi = 1 κ12

i 1 0
Zi = 0 κ02

i κ01
i 1

π(Zi | Xi) Xi = 2 Xi = 0
Zi = 2 1 0
Zi = 1 κ12

i 0
Zi = 0 κ02

i 1

Table 6: Elementary conditional tables in the many-valued case

where κ02
i ≤ κ12

i . In case we have m levels of strength, we have to assess
m(m+1)

2 + m(m−1)
2 = m2 coefficients. There are two interesting special cases:

• κ21
i = Π(Zi > j | Xi = j) = 0: if we assume that a cause having a weak230

intensity cannot induce an effect with strong severity;

• κ21
i = κ01

i = 1: if we remain in total ignorance of what a cause having a
weak intensity can produce.

On the right-hand side is the corresponding table when the variables Xi are
Boolean (then the middle column is dropped).235

The global conditional possibility tables are then obtained by applying Eq. 5,
using the values of π(Zi | Xi), as given in the above Table 6.

π(y|x) =
n

max
i=1

π(Zi = y|xi) ∗ (∗j 6=iΠ(Zj ≤ j|xj)).

10



As above, in the case of the leaky uncertain max, we consider the output
Y is of the form max(Z1, . . . , Zn, ZL) where ZL is an unknown cause that may
affect Y . The expression π(y | x) is now expressed as

π(y | x) = max
(z1,...,zn,zL)∈Ln+1:y=max(z1,...,zn,zL)

∗ni=1π(zi | xi) ∗ π(zL)

= max

{
maxni=1 π(Zi = y | xi) ∗Π(ZL ≤ y) ∗ (∗j 6=iΠ(Zj ≤ y | xj)) ,
π(ZL = y) ∗ (∗ni=1Π(Zi ≤ y | xi))

The possibility distribution for the leak variable is given by m+1 values πL(i) =
κiL, where κ0

L = 1 (it is completely possible that the external cause has no effect
on Y , and κiL ≥ κi+1

L (it is all the more unlikely that the external cause is
present as the observed effect is strong). Under these assumptions the above
expressions simplify since Π(ZL ≤ y) = 1.240

For n = 2, m = 2, the conditional Table 7 is obtained when the Xi’s are
three-valued. Let us justify some expressions appearing in this table.1

• π(2 | 11) = max


π(Z1 = 2 | X1 = 1) ∗ π(Z2 ≤ 2 | X2 = 1),

π(Z1 ≤ 2 | X1 = 1) ∗ π(Z2 = 2 | X2 = 1),

κ2
L ∗ π(Z1 ≤ 2 | X1 = 1) ∗ π(Z2 ≤ 2 | X2 = 1)

= max(κ21
1 ∗ 1, 1 ∗ κ21

2 , κ
2
L ∗ 1 ∗ 1) = max(κ21

1 , κ
21
2 , κ

2
L)

• π(1 | 22) = max


π(Z1 = 1 | X1 = 2) ∗ π(Z2 ≤ 1 | X2 = 2),

π(Z1 ≤ 1 | X1 = 2) ∗ π(Z2 = 1 | X2 = 2),

κ1
L ∗ π(Z1 ≤ 1 | X1 = 2) ∗ π(Z2 ≤ 1 | X2 = 2)

245

= max(κ12
1 ∗ κ12

2 , κ
12
2 ∗ κ12

1 , κ
1
L ∗ κ12

1 ∗ κ12
2 ) = κ12

1 ∗ κ12
2

• π(1 | 21) = max


π(Z1 = 1 | X1 = 2) ∗ π(Z2 ≤ 1 | X2 = 1),

π(Z1 ≤ 1 | X1 = 2) ∗ π(Z2 = 1 | X2 = 1),

κ1
L ∗ π(Z1 ≤ 1 | X1 = 2) ∗ π(Z2 ≤ 1 | X2 = 1)

= max(κ12
1 ∗ 1, κ12

1 ∗ 1, κ1
L ∗ κ12

1 ∗ 1) = κ12
1

• π(y | 00) = max


π(Z1 = y | X1 = 0) ∗ π(Z2 ≤ y | X2 = 0),

π(Z1 ≤ y | X1 = 0) ∗ π(Z2 = y | X2 = 0),

κyL ∗ π(Z1 ≤ y | X1 = 0) ∗ π(Z2 ≤ y | X2 = 0)

= max(0 ∗ 1, 1 ∗ 0, κyL ∗ 1 ∗ 1) = κyL if y > 0 and 1 otherwise.250

Note that in general, we can expect the fact that the external cause is less likely
to produce a strong effect than a regular cause, so that in column π(2 | x),
we may assume κ2

L ≤ min(κ21
1 , κ

21
2 ) so that the leakage coefficient should only

appear in the last line of Table 7.

1The expressions of π(1 | 21) and π(1 | 22) were erroneous in [8, 11] for the uncertain
MAX, and are corrected here.

11



x π(2 | x) π(1 | x) π(0 | x)
(2, 2) 1 κ12

1 ∗ κ12
2 κ02

1 ∗ κ02
2

(2, 1) 1 κ12
1 κ02

1 ∗ κ01
2

(2, 0) 1 κ12
1 κ02

1

(1, 2) 1 κ12
2 κ01

1 ∗ κ02
2

(1, 1) max(κ21
1 , κ

21
2 , κ

2
L) 1 κ01

1 ∗ κ01
2

(1, 0) max(κ21
1 , κ

2
L) 1 κ01

1

(0, 2) 1 κ12
2 κ02

2

(0, 1) max(κ21
2 , κ

2
L) 1 κ01

2

(0, 0) κ2
L κ1

L 1

Table 7: Uncertain leaky MAX

x π(2 | x) π(1 | x) π(0 | x)
(2, 2) 1 κ12

1 ∗ κ12
2 κ02

1 ∗ κ02
2

(2, 0) 1 κ12
1 κ02

1

(0, 2) 1 κ12
2 κ02

2

(0, 0) κ2
L κ1

L 1

Table 8: Uncertain MAX with Boolean inputs

When the Xi’s are Boolean, we get Table 8, where only 4 lines remain:255

More generally, if we have m levels of strength, and n causal variables, we
need nm2 coefficients for defining the uncertain MAX. If we take into account

the leak, we have to add m(m+1)
2 coefficients per variable, in order to replace

the 0 by a leak coefficient in the conditional tables π(Zi | Xi) (assuming that an
effect of strong severity may take place even if the causes present have a weak260

intensity).

3.5. Uncertain MIN

As for the uncertain MAX wrt uncertain OR, the uncertain MIN is a multiple-
valued extension of the uncertain AND, where variables are valued on the inten-
sity scale L = {0 < 1 < · · · < m}. We assume that Y = max(min(Z1, . . . , Zn), ZL),
taking into account a leak variable. We can then compute the conditional tables,
under the same assumptions as before, as

π(y | x1) = max
(z1,...,zn,zL)∈Ln+1:y=max(min(z1,...,zn),zL)

(∗ni=1π(zi | xi)) ∗ π(zL)

= max

{
maxni=1 π(Zi = y | xi) ∗Π(ZL ≤ y) ∗ (∗j 6=iΠ(Zj ≥ y | xj)) ,
π(ZL = y) ∗ (maxni=1 Π(Zi ≤ y | xi))

The conditional possibility tables are thus obtained by applying Eq. 5, using
the same values of π(Zi | Xi), and κyL as in the case of the uncertain leaky
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MAX. For n = 2, m = 2, this gives the following conditional Table 9 for ternary265

inputs: Note that the leakage coefficients are more present in the leaky MIN

x π(2|x) π(1|x) π(0|x)
(2, 2) 1 max(κ12

1 , κ
12
2 ) max(κ02

1 , κ
02
2 )

(2, 1) max(κ21
2 , κ

2
L) 1 max(κ02

1 , κ
01
2 )

(2, 0) κ2
L κ12

1 ∗ κ1
L 1

(1, 2) max(κ21
1 , κ

2
L) 1 max(κ01

1 , κ
02
2 )

(1, 1) max(κ21
1 ∗ κ21

2 , κ
2
L) 1 max(κ01

1 , κ
01
2 )

(1, 0) κ2
L κ1

L 1
(0, 2) κ2

L κ12
2 ∗ κ1

L 1
(0, 1) κ2

L κ1
L 1

(0, 0) κ2
L κ1

L 1

Table 9: Uncertain leaky MIN

than in the leaky MAX, even if the leakage coefficients are small. This is not
surprizing as it is enough to miss one of the two causes to fail the regular effect,
and the external cause may then emerge as the reason for some unexpected
effect in these more numerous situations. For binary inputs, it reduces to the270

conditional Table 10.

x π(2|x) π(1|x) π(0|x)
(2, 2) 1 max(κ12

1 , κ
12
2 ) max(κ02

1 , κ
02
2 )

(2, 0) 0 κ12
1 1

(0, 2) 0 κ12
2 1

(0, 0) 0 0 1

Table 10: Uncertain MIN with Boolean inputs

4. Comparison with Probabilistic Gates

It is interesting to compare the possibilistic and probabilistic tables as they
do not behave in the same way. The elementary probabilistic causal table takes
the following form, where κi = P (¬zi | xi):

P (Zi|Xi) xi ¬xi
zi 1− κi 0
¬zi κi 1

Table 11: Elementary causal probability table
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275

Consider the conditional table of the noisy OR [10] (Table 12), to be com-
pared with the conditional table of the uncertain OR (Table 2):

P (y | X1X2) x1 ¬x1

x2 1− κ1κ2 1− κ2

¬x2 1− κ1 0

P (¬y | X1X2) x1 ¬x1

x2 κ1κ2 κ2

¬x2 κ1 1

Table 12: Noisy OR

We shall distinguish between min-based and product based possibilistic net-
works.

4.1. The min-based case280

There is an important difference between the behavior of conditioning in the
probabilistic and the possibilistic cases. In the qualitative possibility setting, the
conditional possibility Π(Y | X) is the largest value λ such that min(λ,Π(x)) =
Π(Y ∧X), that is

Π(Y | X) =

{
1 if Π(Y ∧X) = Π(X);

Π(Y ∧X) if Π(Y ∧X) < Π(X).

and the conditional necessity is N(Y | X) = 1− Π(¬Y | X). As a consequence285

it is impossible to have that Π(Y ) < Π(Y | X) < 1, which dually reads the
impossibility that the certainty of an event can decrease while remaining some-
what certain (one cannot have the strict inequality N(Y ) > N(Y | X) > 0)
[13]. The framework thus does not capture the idea of graceful degradation of
belief in the min-based case.290

This is a striking difference with conditional probability where this limitation
of expressive power does not occur. While this property is sometimes viewed
as a major impediment to considering qualitative possibility as a reasonable
representation of belief ([25] p. 265), this pessimistic view can be challenged.
Note that one may simultaneously have N(y) > 0 and N(y | x) = 0 (and295

even N(¬y | x) > 0), so that the qualitative framework allows for severe belief
change. Moreover, this limitation just indicates that the qualitative setting is
rougher than the quantitative one, and that qualitative necessity degrees are
not proportional to intensity of belief. In some situations this rough model is
sufficient for the purpose at hand, as being more expressive than classical logic300

(since it allows for non-monotonic reasoning [4]).
A similar lack of expressiveness occurs when comparing the conditional pos-

sibility and probability tables in case of the OR connective (Tables 2 and 12).
In the possibilistic table, we see (using the associated necessity measure N) that

N(y | x1x2) = max(N(y | x1¬x2), N(y | ¬x1x2)) = 1−min(κ1, κ2)

14



while

P (y | x1x2) = 1−κ1·κ2 > max(P (y | x1¬x2), P (y | ¬x1x2)) = max(1−κ1, 1−κ2),

so that in qualitative possibility networks, the uncertain OR gate does not
allow the reinforcement the certainty of the effect in the presence of two causes,
because connectives are idempotent.

4.2. The product-based case305

If possibility degrees are numerical and ∗ = product, the conditional possi-

bility is just defined by the usual division (Π(Y | X) = Π(X∧Y )
Π(X) ), so that we

can model the graceful degradation of beliefs (Π(Y ) < Π(Y | X) < 1 may oc-
cur). The possibilistic network then behaves like a probabilistic network because
N(y | x1x2) = 1− κ1 · κ2 > max(N(y | x1¬x2), N(y | ¬x1x2)) is also retrieved.310

However, another major difference in behavior between uncertain and noisy
OR-gates will occur in case the effects of causes are not frequent (weak causes),
namely when P (¬zi | xi) = κi > 0.5, i = 1, 2. Then it may happen that
P (y | x1x2) = 1 − κ1κ2 > 0.5, that is the simultaneous presence of two causes
that individually do not frequently produce an effect may make this effect more315

frequent than not. Then a possibilistic rendering of this case must be such that
π(¬zi | xi) = 1 > π(zi | xi) = λi. Then the uncertain OR-gate with two weak
causes behaves as follows:

π(y | X1X2) x1 ¬x1

x2 max(λ1, λ2) λ2

¬x2 λ1 0

π(¬y | X1X2) x1 ¬x1

x2 1 1
¬x2 1 1

Table 13: Uncertain OR for 2 weak causes

However, there is no way of observing a reversal effect, since π(y | x1x2) =
max(λ1 ∗ λ2, λ1, λ2) = max(λ1, λ2) < 1. Hence π(¬y | x1x2) = 1 and N(y |320

x1x2) = 0. In other words, using the uncertain OR, two causes that are in-
dividually insufficient to make an effect plausible are still insufficient to make
it plausible if joined together, because on the one hand there is no reinforce-
ment effect in this case, and there is no way of producing 1 from operands
that are less than 1. Note that this fact reminds of the property of closure un-325

der conjunction for necessity measures in possibility theory (N(y1) > N(¬y1)
and N(y2) > N(¬y2) imply N(y1 ∧ y2) > N(¬(y1 ∧ y2)) which fail to hold in
probability theory, where a reversal effect is possible in this case.

The case with one weak cause and one strong one is also worth studying,
say cause 1 is weak (π(¬z1 | x1) = 1 > π(z1 | x1) = λ2) and the other is strong330

(π(z2 | x2) = 1 > π(¬z2 | xi) = κ2).
Then, one observes that the strong cause alone makes the effect somewhat

certain to the same degree as in the elementary causal table, independently of
the presence or not of the weak one. When the strong cause is absent, the
effect is absent with a weak certainty as per the presence or not of the weak335
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π(y | X1X2) x1 ¬x1

x2 1 1
¬x2 λ1 0

π(¬y | X1X2) x1 ¬x1

x2 κ2 κ2

¬x2 1 1

Table 14: Uncertain OR for strong and weak causes

cause. Note that in the possibilistic case, we need the three tables 2, 13, 14 that
represent a distinct behavior each case, while the probability table 12 is valid in
the three cases, while the believed effects depend on the numerical values given
in the table.

4.3. Should possibilistic logical gates be mended ?340

Note that insofar as the behavior of the uncertain possibilistic gates is judged
counterintuitive in a given context, it would be possible to change the combina-
tion of the elementary conditional tables. For instance one may define the global
conditional possibility tables π(Y | X1, X2) enforcing π(y | x1x2) > π(¬y | x1x2)
even if π(y | x1) < π(¬y | x1) and π(y | x2) < π(¬y | x2), which is perfectly345

compatible with possibility theory. However, one may also claim that the pos-
sibilistic OR gate behaves as expected and that the behavior of the noisy OR
is questionable, depending on what we intend to model. Consider the case
when P (zi | xi) = P (¬zi | xi) = κi = 0.5 for i = 1, 2. Note that then
P (y | x1x2) = 0.75.350

• Interpreting κi as a frequency: Then this result can be easily explained.
As when cause xi is present irrespective of the other cause, the effect y is
present 50% of the results, and causes are independent of each other, this
effect is produced 25% of the time when x1 is present and x2 is absent,
25% of the time when x2 is present and x1 is absent, and 25% of the time355

when x1 and x2 are present. So no surprize that the reinforcement effect
in favor of y can be observed. However, the possibilistic model has no way
of representing equiprobability, hence cannot model this situation.

• Interpreting κi as a degree of belief: then κi = 0.5 represent the agent’s
ignorance whether xi causes y or not. Under this view, the probabilis-360

tic approach produces a counterintuitive result. Indeed, it is very hard
to make sense of the reasoning line whereby given that the agent ignores
whether xi causes y or not, for i = 1, 2, this agent should believe that
the presence of both causes makes the effect y more likely than its nega-
tion. It is one more example of production of knowledge out of sheer365

ignorance, which is usual when uniform probability is interpreted as lack
of information.

Actually, the uncertain OR gate behaves consistently with the situation of
ignorance: if it is believed that each xi causes ¬y, rather than y, then there is
no way of starting to believe y when observing two reasons not to believe it.370

And in the case of ignorance, the uncertain OR-gate just produces ignorance.
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These results extend to other gates like the uncertain MAX, for instance.
Again, the simultaneous presence of a number of causes, which, taken in isola-
tion, do not normally produce an effect, may lead to a plausible effect under a
noisy MAX, which can never be the case with an uncertain MAX.375

However, in the following, we are interested in representing the same dataset
by probabilistic and possibilistic networks for the sake of comparing both models
on an application. Then we try to modify the construction of the conditional
possibilistic table from elementary ones in order to get closer to the probabilistic
model. Note that we can imagine various ways of completing the possibilistic380

conditional tables from the knowledge of local conditional tables Π(Zi | Xi)
For instance we may use an aggregation operation ⊗ [2] on the possibility scale
and define Π(Y | X1X2) as Π(Z1 | X1) ⊗ Π(Z2 | X2) with the constraint
Y = Z1 = Z2. However, since aggregation operations are order-preserving and
such that 1⊗1 = 1 and 0⊗0 = 0, we cannot address the case when weak causes385

join to make a strong one in the possibilistic setting using this approach.

4.4. Uncertain MAX with Thresholds

As observed in Section 4 when comparing the uncertain OR to the noisy
OR, the simultaneous presence of a number of causes, which, taken in isolation,
do not normally produce an effect, may lead to a plausible effect under a noisy390

MAX, which can never be the case with an uncertain MAX. Yet, situations of
this kind do arise in applications and are fully compatible with the expression
of a conditional table in possibility theory.

In order to make the construction of possibility tables in agreement with
the mutual reinforcement of weak causes an appropriate uncertain gate has to395

be designed, by means of a suitable uncertain function f which can produce
this effect. One idea we have tested in order to approximate such behavior
is the proposal of uncertain MAX with thresholds. In addition to the usual
parameters of an uncertain MAX, this uncertain gate requires that a threshold
θj be specified for each value yj of the effect variable Y . Such threshold is an400

integer expressing the minimum number of causes that have to simultaneously
occur in order for effect yj to become possible. To this end, a cause Xi may
be considered to “occur” if the value of its corresponding intermediary causal
variable Zi differs from the zero level, i.e., Zi > 0. Note that threshold gates
also exist in the probabilistic setting [10]405

More precisely, as in the case of the uncertain MAX, we assume that the
output variable Y and the variables Zi are valued on a finite, totally ordered,
severity or intensity scale L = {0 < 1 < · · · < m}, but the function f describing
this gate is based upon may be written as

Y = max(Z1, . . . , Zn,
m

max
i=1
{i · 1[‖{j:Zj>0}‖≥θi]}),

using the inverson bracket notation, whereby410

1
[condition ]

=

{
1, if condition is true;

0, otherwise.
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For instance, suppose n = 4,m = 3, θ1 = 1, θ2 = 2, θ3 = 3, θ4 = 4. Then
f(1, 1, 0, 0) = 2, f(1, 1, 1, 0) = 3, f(1, 1, 1, 1) = 4.

We can then express the conditional table of the uncertain MAX with thresh-
olds by applying the extension principle, as in the case of the uncertain MAX,
although the resulting analytical expression is much less legible:

πf (y | x1, . . . , xn) = max
Z1,...,Zn:y=max(Z1,...,Zn,maxmi=1{i·1[‖{j:Zj>0}‖≥θi]})

∗ni=1π(Zi | xi)

= max

(
1[‖{i|xi>0}‖≥θy ],

n
max
j=1

π(Zj = y | xj) ∗ (∗j 6=iΠ(Zj ≤ y | xj))
)
.

More intuitively, by default π(y | x1, . . . , xn) has the same value as with the un-
certain MAX, except when the number of occurring causes exceeds the threshold
for value y, in which case π(y | x1, . . . , xn) = 1.415

The global conditional tables are then obtained by applying Eq. 5, using
the same values of π(Zi | Xi) as in the case of the uncertain MAX. For n = 2,
m = 2 (i.e., Y and the Xi’s three-valued), θ2 = 2, and θ1 = m + 1 (i.e., no
threshold set for Y = 1), the following conditional Table 15 is obtained. The
only cell where possibility is raised to 1 due to the thresholds is marked by a420

dagger (†): the fact that two causes weakly present ((1, 1)) as input cause the
strongest effect with full possibility.

It is easy to check that πf is less specific than πMAX , which means that
the imitation of the noisy MAX is imperfect. For instance, one may wish to
decrease the value π(1 | (1, 1)) in Table 15, since the value π(2 | (1, 1)) has been425

set to 1; this would occur in a probabilistic approach as the sum of probabilities
in each line is 1. However, this is not possible using the definition of f . But we
are allowed to decrease the value π(1 | (1, 1)) manually, as long as the maximum
of values in each line of Table 15 is 1.

x π(2 | x) π(1 | x) π(0 | x)
(2, 2) 1 max(κ12

1 , κ
12
2 ) κ02

1 ∗ κ02
2

(2, 1) 1 1 κ02
1 ∗ κ01

2

(2, 0) 1 κ12
1 κ02

1

(1, 2) 1 1 κ01
1 ∗ κ02

2

(1, 1) 1† 1 κ01
1 ∗ κ01

2

(1, 0) κ21
1 1 κ01

1

(0, 2) 1 κ12
2 κ02

2

(0, 1) κ21
2 1 κ01

2

(0, 0) 0 0 1

Table 15: Uncertain MAX with thresholds
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Algorithm 1 uncertain-MAX(Y, prm).
Generate a conditional possibility table for variable Y given its causes
X1, . . . , Xn using the uncertain MAX with its given parameters prm.

Input: Y : the effect variable;
prm = {〈cond i,ki〉}: a set of normalized possibility distributions ki =
(κi1, . . . , κi‖Y ‖), maxj=1,...,‖Y ‖{κij} = 1, which apply when condition cond i
holds; cond i = (〈Xi, xi〉), a (possibly empty) pair of a cause variable Xi

and one of its values xi; cond i holds if Xi = xi holds; an empty condition
always holds.

Output: π(Y | X1, . . . , Xn): a conditional possibility distribution of Y given
its causes X1, . . . , Xn.

1: π(Y | X1, . . . , Xn)← 0
2: for all x ∈ X1 × . . .×Xn do
3: K ← {k : 〈cond ,k〉 ∈ prm,x |= cond} {Select the elementary possibility

distributions that apply to x}
4: for all y = (y1, . . . , y‖K‖) ∈ Y ‖K‖ do
5: β ← mini=1,...,‖K‖{κiyi}
6: ȳ ← maxi=1,...,‖K‖{yi}
7: π(ȳ | x)← max{β, π(ȳ | x)}
8: end for
9: end for

10: return π(Y | X1, . . . , Xn)

5. Implementation430

A prototype involving the uncertain connectives defined above, allowing to
execute possibilistic models such as the one described in Section 6 has been im-
plemented in R. Here, we give some details about the practical implementation
of the uncertain connectives defined in the paper. We focus in particular on
the uncertain MAX (and its variant with thresholds), whose implementation is435

non-trivial.
The way the uncertain MAX is implemented is shown in Algorithm 1. The

parameter prm taken as input by this algorithm may be thought of as repre-
senting a set of rules of the form

(Xi = xi)⇒ Y ∼ (κi,y0 , . . . , κi,ym), (7)

where Xi on the left-hand side is a parent variable of Y in the possibilistic440

graphical model, xi are one of their values, and (κi,y0 , . . . , κi,ym) is a normalized
possibility distribution over the values of variable Y , i.e., for all y ∈ Y , κi,y ∈
[0, 1], and maxy∈Y κi,y = 1. Note that the Xi’s in the above rules can in fact
represent vectors of more elementary interacting variables, and allow to encode
multi-condition tables not representable by combining simple conditional tables445

involving such variables in isolation.
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The left-hand side of a rule may be empty : in that case, the rule is inter-
preted as if it were statements of the form

Y ∼ (κL,y0 , . . . , κL,ym). (8)

Such rules may be used to represent leakage coefficients, which apply to all
possible combinations of causes.450

On the one hand, this choice of representation of the parameters generalizes
the uncertain gates to the case of multivalued variables; on the other hand, it
allows the expert to express its knowledge of the phenomenon in more intuitive
terms, in the form of rules, which is entirely in the spirit of making expert
knowledge elicitation easier.455

Albeit such representation is more intuitive, it requires some additional care:
the antecedents of the rules fed into the uncertain MAX must cover all possible
combinations x ∈ X1 × . . . × Xn of the values of the parent variables of Y
in order to ensure that the resulting conditional possibility distribution π(Y |
X1, . . . , Xn) be normalized. However, we may notice that, if a leak rule of460

the form of Eq. 8 is given, that rule alone already covers all combinations of
parent variable values and is thus a sufficient condition for the normalization of
π(Y | X1, . . . , Xn); in that case, the parameters of the uncertain MAX may be
underspecified.

The algorithm constructs the table of conditional possibility in an incremen-465

tal way, starting with a table filled with zeros (Line 1), and then considering all
combinations of values for the cause variables (Line 2). For a given combination
x, which corresponds to a row of the table, a subset K of normalized possibility
distributions that apply to x is extracted from the parameters (Line 3). Lines 4–
8 compute one min expression of Eq. 5, by considering all the combinations of470

parameters in the possibility distributions of K and update the corresponding
cell (the one in the column of the maximum y of the combination) if the result
of the min exceeds its current value, so that, once this inner loop completed, the
max in Eq. 5 will have been computed for all the cells of the row corresponding
to x.475

The implementation of the uncertain MAX with thresholds follows the same
pattern as the previous algorithm.

6. Application

Probabilistic and possibilistic networks using noisy/uncertain logical gates
have been used to model the social specialization of municipalities in a metropoli-480

tan area, under a human geography perspective (alternative models have been
proposed in the economic literature like rent-gap theory models for urban gen-
trification and hedonic price models for environmental amenities for rural and
suburban developments). We will first present the models and their logical gates.
We will then compare the uncertainty content of the trend scenarios produced485

by the two models and we will finally evaluate the sensitivity of model outcomes
to probabilistic and possibilistic elicited parameters.
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Figure 1: The BN model for the valorization/devalorization of municipalities in the study area
(adapted from [24]).

6.1. Model Specification

The metropolitan area of Aix-Marseille in southern France has experienced
ongoing social polarization since the 1980s. The geography of unemployment, on490

the one hand, and the concentration of high-skilled professionals, on the other,
both considerably contribute to the structuring of a contrasted metropolitan
social morphology [9, 17]. The knowledge of factors inducing social polarization
of the municipalities in the metropolitan area is nevertheless uncertain. Social
polarization is analyzed as the opposition of valorized municipalities, hosting495

wealthier resident populations and namely high-skilled professionals, and deval-
orized municipalities, hosting lower-income populations and, more particularly,
the unemployed. Several factors contribute to the valorization or to the de-
valorization of the municipal residential space. But these factors have “soft”,
uncertain impacts on the phenomena under investigation: the same causes can500

sometimes produce different effects and observed effects can have multiple pos-
sible causes.

A probabilistic model of these socio-spatial mechanisms has already been
proposed [24] (cf. Fig. 1) in the form of a Bayesian network (BN). The BN was
built using expert knowledge elicited through noisy logical gates (OR, AND, and505

MAX) with leak parameters (taking into account the impact of factors omitted
in the model). We then developed a min-based possibilistic network (PN) using
uncertain logical gates (OR, AND and MAX-threshold) with leak parameters in
order to link the same 26 variables of the BN. The numerical parameters of the
PN were made compatible with the BN parameters using a least committing510

probability-to-possibility preference preserving transformation [14] in order to
transform probability degrees into numerical possibility degrees.

This transformation was used by lack of expert data in the form of possi-
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Figure 2: Generation of a conditional probability table through an Uncertain OR logical gate.

bility distributions. We started with a Bayesian network with already existing
probabilistic data. It was not possible to start the data collection again and515

train experts into forwarding possibility degrees instead of probability degrees.
And our intention was to compare the results of possibilistic and probabilis-
tic networks on the same data, which means keeping the ordinal information
contained in the probabilistic data. Using a least committed probability-to-
possibility preference preserving transformation at the local level was a natural520

way of generating such possibilistic counterparts of subjective probabilistic data,
even if we are aware that making local probability-to-possibility transforms is
for instance not equivalent to making probability-to-possibility transforms of
the joint probability, as studied in [7]. Note that the same issues occur when
trying to learn possibilistic networks from data [18].525

In Fig. 2 we show how an Uncertain OR logical gate can be used to generate
a conditional probability table. Only three parameters must be elicited: the
possible influence of the two parent variables on the child variable (necessity
of the consequence given that the parents are sufficient causes) and the leak
parameter, which takes into account the activation of the consequence from530

secondary causes not included in the model. This table allows possibilistic
prediction from uncertain knowledge. If, for example, in a given municipality
of the study area, we are relatively certain of the presence of natural areas
(Π = 1, N = 0.5) and if it is only partially possible that agricultural areas
are considered attractive and valorizing for residential use (Π = 0.5, this is535

for example the case for vineyards but not for industrial crops), we can infer
that it is relatively certain (N = 0.5) that the municipality in question has
environmental amenities.

Another difference between the min-based possibilistic model and the proba-
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bilistic one is the possibility, for the former, of keeping track of the κi parameters540

in the reasoning process, in order to figure out the sensitivity of results to the
parameters of uncertain causation. The advantage of uncertain logical gates can
be better appreciated in the whole model (Fig. 1).

Evolution is, for example, a ternary variable (having three values: no evolu-
tion, valorization, and devalorization) depending on 5 binary variables and one545

4-value variable. The conditional probability table is thus made of 3× 25× 4 =
384 parameters, whereas the uncertain MAX-threshold gate used in our PN
model requires at most 27 parameters (indeed only 10 κi and θj parameters
different from 0 and 1 are used in our model).

Evolution is typically a multi-valued variable with a hierarchical order of550

values. Urban geographers [24] consider that valorization is the value with
highest priority: when social groups of higher purchasing power decide to live in
a given municipality, real estate prices go up and other social groups are crowded
out. It corresponds to the highest severity effect in section 3.4. The second
priority effect is devalorization: when a given set of causes operates in order to555

specialize the municipality in retaining inhabitants of lower social status, this
effect has greater priority (severity) than no effect at all. Finally, the absence of
change in the social mix of the municipality is the default outcome (no effect),
in the absence of particular triggers for valorization and/or devalorization.

The diffusion of valorization (i.e., the spatial diffusion of suburban and rural560

gentrification within the metropolitan area through residential flows of high-
skilled professionals) and the presence of assets for rural and suburban gentrifi-
cation are triggers of valorization for a given municipality.

The attraction of residential flows of unemployed people (diffusion devalorization
variable in the model) and the presence of obstacles to rural and suburban gen-565

trification are triggers of devalorization. The long-term instability of the social
mix in the municipality over the last 20 years and its particular geographic loca-
tion with respect to the social mix of neighboring municipalities can be triggers
of either valorization or devalorization. Valorization and devalorization are nev-
ertheless uncommon outcomes in the presence of only one of these triggering570

factors, as these are normally relatively weak: in the probabilistic model, sev-
eral triggers have to be simultaneously present in order to cumulate probability
values and make the absence of change less probable. Several specifications of
the uncertain MAX connective were considered in order to replicate as much as
possible the probabilistic behavior of the BN model. A MAX-threshold connec-575

tive saturating possibility values of uncommon outcomes when three concurrent
causes are present was finally selected.

Again, as discussed in Section 4 we have two ways of understanding the
above situation. Viewed in terms of frequencies, the reinforcement effect of the
probabilities of residential moves due to several triggers, using a noisy MAX,580

is in line with the actual phenomenon of people changing their dwelling places,
while viewed in terms of subjective probabilities, this reinforcement effect is
more difficult to justify, as in this case, equal probabilities of opposite events
just represent ignorance, and not equal proportions of moves in one direction
and in another. Then the probabilistic approach surprizingly transforms ig-585
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norance into the prediction of a trend, while the possibilistic approach using
the uncertain MAX with threshold just increases the range of possibilities, and
therefore more cautiously increases the imprecision of conclusions, in case of
several weak triggering factors.

The use of the uncertain MAX with threshold gives the best results on the590

empirical values of the 439 municipalities of the study area in terms of proximity
to the probabilistic predictions (which were in turn transformed in possibilistic
values to allow comparison). Alternative variants of the uncertain max with up-
per and lower thresholds and even with two different thresholds (a first threshold
for making the uncommon effects completely possible and a second threshold595

for making the absence of change not plausible) were also considered. The two-
threshold specifications are in theory better able to replicate the behavior of the
probabilistic model, but prove not better than the simpler one-threshold model
for the empirical results, although requiring additional elicited parameters. The
bias introduced by the simpler one-threshold connective is its inability to foresee600

the necessity of change, a phenomenon that, although rare, is sometimes found
among the 439 municipalities of the study area.

Whatever the specification of the MAX connective, the Evolution variable
determines, together with the Situation T1 variable, the value of the Situa-
tion T2 variable in a ten years simulation period. Situation T1 (the reference605

year is here 2009) and Situation T2 (2019) have three possible values: Valorized
(V ), Devalorized (D) or Other (O). Values of Situation T1 are considered to be
known without uncertainty (Fig. 3-a). Values of Situation T2 are not observable
and have to be inferred by the model.

6.2. Comparative Results610

Both the BN and the PN model were thus used to produce trend scenarios for
social polarization in the 439 municipalities of the Aix-Marseille metropolitan
area through the prediction of Situation T2 values.

Both scenarios are based on uncertain knowledge of relationships among vari-
ables and produce an uncertain evaluation of the future state of the metropolitan615

area in terms of social polarization. Most plausible values (in terms of proba-
bility/possibility) inferred by the two models can be projected in space (Fig. 3).
With the probabilistic model, we display a most probable value of Situation T2
for each municipality (Fig. 3-b). This often gives a fallacious impression of cer-
tainty: differences between most probable values can be relatively small and are620

not taken into account on the figure. The possibilistic model, using a min-max
logic, produces in many cases sets of completely possible values (Π = 1, Fig. 3-
c). In Fig. 3, these are represented as circles with multiple colors (two different
outcomes equally possible) or as grey circles (three different outcomes equally
possible, which is the most uncertain model result). We thus decided to test625

the significance of the probability differences in the BN model: only probability
differences exceeding a given threshold were considered significant. For a given
probability threshold, we could thus exhibit small sets of “equally” most prob-
able values for some municipalities, even with the BN. Fig. 3-d, e and f, show
results for threshold probability differences of 0.1, 0.2 and 0.3, respectively.630
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If no threshold is considered, the most probable values inferred by the BN
and the completely possible values inferred by the PN coincide only in 54.7%
of cases. In the remaining cases, possibilistic results are more uncertain and
always include probabilistic results (most probable values are always completely
possible for the PN).635

The best agreement between the two models is obtained with thresholds
0.20 and 0.25 (lower and higher values give worse results). Respectively 72.4%
and 77.2% of the inferred values are then identical. Most probable values are
almost always compatible with PN solutions: they are included in the completely
possible values as, for example, when {V,O} are the most probable values and640

{V,O,D} is the set of completely possible values. The inverse is not always the
case: depending on the threshold value, 24% and 18% of possibilistic solutions
are not included in the most probable values.

Keeping in mind that possibilistic results tend to be slightly less restrictive
(and hence more uncertain) than the probabilistic counterparts, both models645

show that the outcome for several municipalities is not completely uncertain,
but is made of two equally probable/possible states. Complete uncertainty is
still the case for 130 spatial units for the PN and 85 for the BN; these are often
neither too peripheral nor too central within the metropolitan area. In this
respect, these uncertainty-based models could be used to better highlight areas650

of insufficient knowledge.

6.3. An Empirical Sensitivity Analysis to Elicited Parameters

A sensitivity analysis of the two models has been performed with respect to
the elicited parameters of the MAX connective governing the Evolution vari-
able. This is a particularly crucial variable for the models, directly influencing655

the Situation T2 variable and depending, directly or indirectly, from almost all
causal relations contained in the models. The sensitivity analysis was conducted
using the empirical data: by varying the values of the elicited parameters, we
did not assess how the conditional probability/possibility tables were modified.
Instead, we assessed how the parameter changes would affect the predictions660

on the most plausible outcomes of the Situation T2 variable for the 439 mu-
nicipalities of the study area. This empirical sensitivity analysis is much more
interesting for the practical use of the model in decision making on the study
area.

In the reference BN, the Noisy MAX connective for Evolution is parametrized665

as follows. Triggers of valorization or devalorization have probabilistic strength
κi equal to 0.3 only. Triggers of devalorization and devalorization have prob-
abilistic strength of 0.12 and 0.18, respectively (a slightly higher probabilistic
strength is given to the production of the devalorization effect in order to counter
the priority rule of the connective and produce an unbiased model with equal670

marginal probabilities for the two effects). The absence of effect has thus always
a conditional probability of 0.7. Under the hypothesis that these elicited values
correspond to reality, we will use the most probable values of the Situation T2
variable for the 439 municipalities as the benchmark of the analysis.
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Table 16: Empirical sensitivity analysis for the BN model

Model with overesti-
mated parameters

Model with underesti-
mated parameters

Reference model O D V Total O D V Total
O 117 30 38 185 185 185
D 100 2 102 17 85 102
V 152 152 26 126 152
Total 117 130 192 439 228 85 126 439
Overall agreement 84.1% 90.2%
Incompatibilities 15.9% 9.8%

We first consider a model where experts overestimate the probabilistic strength675

of triggering factors, by reducing the conditional probability of absence of effect
to 0.6 and by increasing to 0.4, 0.25, and 0.15 the κi parameters of the Noisy
MAX connective. Most probable values of Situation T2 are in 84.1% of cases
the same as in the reference model (Table 16, left). In the remaining 15.9% of
cases, they are different and incompatible (for these municipalities, a valorized680

or a devalorized state is now inferred, whereas the reference model would infer
the value other as most probable). We subsequently consider a model under-
estimating the probabilistic strength of factors, by increasing the conditional
probability of absence of effect to 0.8 and by decreasing to 0.2, 0.12, and 0.08
the κi parameters. The most probable values of Situation T2 are now in 90.2%685

of cases the same as in the reference model (Table 16, right). In the remain-
ing cases, the new model predicts the state other, whereas the reference model
would infer a valorized or a devalorized state as the most probable.

In the reference PN, the Uncertain MAX-threshold connective is parametrized
in accordance to a least committing transformation of the corresponding prob-690

abilistic parameters. κi for triggers of valorization or devalorization only is 0.6,
κi for triggers of both effects is 0.5 (devalorization) and 0.4 (valorization). The
behavior of this connective makes the absence of effect always completely pos-
sible, whereas a given effect is completely possible only in the presence of three
triggers. Over- and underestimation of possibilistic strength of triggers con-695

cern both the κi parameters and the θj thresholds. Over- and underestimated
parameters of the PN are thus obtained through least specific transformations
of the probabilistic parameters. θj thresholds are set to 2 and 4, respectively,
reflecting the number of triggering factors whose presence is sufficient to make
absence of effect non-plausible in the modified probabilistic models.700

Table 17 (left) shows how the most plausible predictions of the overestimated
model coincide only in 80.9% of cases with those of the reference PN. Trend sce-
nario predictions for several municipalities become completely uncertain while
previously being D or {D,O}. The under-estimated model is even more de-
viant from the reference one (Table 17, right). Only 68.1% of predictions agree705
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Table 17: Empirical sensitivity analysis for the PN model

Model with overestimated parame-
ters

Model with underestimated parame-
ters

Ref.
model

O D V VO VOD Total O D V VO VOD Total

O 82 3 85 85 85
D 41 29 70 70 70
D,O 52 52 52 52
V 85 85 85 85
V,O 17 17 17 17
V,O,D 130 130 40 48 42 130

Total 82 41 85 20 211 439 137 70 125 65 42 439

Overall
agree-
ment

80.9% 68.1%

Incom-
patibi-
lities

0.0% 0.0%

with those of the reference model: many O predictions replace {D,O} predic-
tions and V or {V,O} predictions replace completely uncertain ones of the form
{V,O,D}. Nevertheless, in the first case the new predictions include the predic-
tions of the reference model by introducing more uncertainty, and in the second
case the new predictions are included in the reference predictions by reducing710

their uncertainty.
At first glance, the BN model seems less sensitive to small disturbances in

the probabilistic parameters of the Noisy MAX connective, compared to its pos-
sibilistic counterpart. However, the advantage of the PN model lies elsewhere.
The 15.9% and 9.8% predictions of the disturbed BN that differ from those of715

the reference model are incompatible with the latter. By allowing more uncer-
tainty, the 19.1% and 31.9% of predictions of the disturbed PN models that
differ from those of the reference model are restrictions or generalizations of
them and the predictions of the three models are mutually compatible (in the
sense that they are nested sets of possible results).720

6.4. Lessons drawn

In conclusion, uncertain logical gates made the construction of the PN model
possible. The use of most probable solutions of the BN model often gives a
false impression of certainty. In order to compare results from the BN and the
PN models, we need to enlarge the notion of most probable values: solutions725

whose probabilities differ less than 0.20/0.25 must be considered as equally
probable. In this case, the solutions of the two models are identical for about
three fourths of the municipalities of the study area. Despite this consistency
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between the two approaches, the possibilistic model integrates a larger amount
of uncertainty in the solutions inferred. Indeed, in the remaining fourth of730

municipalities, completely possible values inferred by the PN are normally larger
sets than most probable values inferred by the BN. The BN model also tends to
overestimate the valorization of municipalities in the study area: the PN model
often predicts complete uncertainty ({V,O,D} all equally possible) whereas the
most plausible values are just V or {V,O} in the probabilistic model. A further735

analysis of the parametrization of the two models is nevertheless necessary in
order to understand the origin of such a bias.

The results of the sensitivity analysis of the model predictions to the param-
eters governing their key variable (through a MAX connective) are apparently
counterintuitive. The probabilistic model seems to be less affected by parameter740

disturbances than its possibilistic counterpart, but, at a closer look, BN predic-
tions, when restricted to the most probable values, are more unstable than PN
predictions: the former can be incompatible under slightly different parameter
choices, whereas the latter, by allowing more uncertainty, are always nested sets
of solutions generalizing or restricting the results obtained by different param-745

eter choices.

7. Conclusion

This is the first detailed study of the counterpart of the main probabilistic
noisy gates for possibilistic networks, together with an illustrative implemen-
tation on a human geography application. Uncertain possibilistic gates are of750

primary interest for the practical use of possibilistic networks, when uncertainty
has an epistemic flavor. The study has revealed some noticeable differences of
behavior between noisy gates and uncertain possibilistic gates, in particular
when the cumulation of causes having a rare effect may increase the plausibil-
ity of the effect. Generally speaking, possibilistic modeling appears to be more755

cautious. A detailed comparative study of the expressive power of Bayesian
nets and possibilistic networks is a topic for further investigation, as well as the
development of a complete panoply of uncertain possibilistic gates.
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la spécialisation sociale dans les espaces métropolisés. Proc. 23d Rencontres785

Francophones sur la Logique Floue et ses Applications (LFA’14), Cargèse,
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[25] W. Spohn,The Laws of Belief: Ranking Theory and its Philosophical Ap-
plications, Oxford University Press, UK, 2012.835

[26] L. A. Zadeh. Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets &
Syst., 1, 3-28, 1978.

30



Figure 3: Probabilistic and possibilistic results projected in space.

31


	Introduction
	Probabilistic Networks with Independent Causal Influences
	Uncertain logical gates in Canonical Possibilistic Networks
	Uncertain causal functions in possibilistic networks
	Uncertain OR
	Uncertain AND
	Uncertain MAX
	Uncertain MIN

	Comparison with Probabilistic Gates
	The min-based case
	The product-based case
	Should possibilistic logical gates be mended ?
	Uncertain MAX with Thresholds

	Implementation
	Application
	Model Specification
	Comparative Results
	An Empirical Sensitivity Analysis to Elicited Parameters
	Lessons drawn

	Conclusion

