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Possibilistic networks offer a qualitative approach for modeling epistemic uncertainty. Their practical implementation requires the specification of conditional possibility tables, as in the case of Bayesian networks for probabilities. The elicitation of probability tables by experts is made much easier by means of noisy logical gates that enable multidimensional tables to be constructed from the knowledge of a few parameters. This paper presents the possibilistic counterparts of usual noisy connectives (and, or, max, min, . . . ). Their interest and limitations are illustrated on an example taken from a human geography modeling problem. The difference of behavior between probabilistic and possibilistic connectives is discussed in detail. Results in this paper may be useful to bring possibilistic networks closer to applications.

Introduction

A belief network is a convenient way of representing the interaction between uncertain variables in the form of a directed graph, each node of which represents a variable. The graphical structure takes advantage of known conditional independence between these variables. Each variable is directly influenced only by its parent variables in the graph. Given such a directed graph between variables and local conditional probability tables, the joint probability distribution of these variables can be retrieved; see [START_REF] Jensen | Bayesian Networks and Decision Graphs[END_REF] for an introduction to Bayesian belief networks. In fact they can be built in two ways: they can be extracted from data or made up by a human expert. In the first case, a supposedly large dataset involving a number of variables is available, and the Bayesian network is obtained by some machine learning procedure. The probability tables thus obtained have a frequentist flavor, and the simplest network possible is searched for. On the contrary, when Bayesian networks can be specified using expert knowledge, the structure of a network relating the variables is first given, often relying on causal connections between variables and conditional independence relations the expert is aware of. Then, subjective probability tables must be filled by the expert. They consist, for each variable in the network, of conditional probabilities for that variable, conditioned on each configuration of its parent variables. Note that, even if causal relations as perceived by the expert are instrumental in building a simple and interpretable network, the joint probability distribution obtained by combining the probability tables no longer accounts for causality. Another difficulty arises for subjective expert-based Bayes networks: if variables are not binary and/or the number of parent variables is more than two, the task of eliciting numerical probability tables becomes tedious, if not impossible to fulfill. Indeed, the number of probability values to be supplied increases exponentially with the number of parent variables.

To alleviate the elicitation task, the notion of noisy logical gate (or connective) has been introduced, based on the assumption of independent causal influences that can be combined. As a result, one small conditional probability table is elicited per parent variable, and the probability table of each variable given its parents is obtained by combining these small tables via a so-called noisy connective [START_REF] Díez | Canonical Probabilistic Models for Knowledge Engineering[END_REF][START_REF] Henrion | Some practical issues in constructing belief networks[END_REF], which may include a so-called leakage factor summarizing the causal effect of variables not explicitly present in the network.

While the notion of noisy connective solves the combinatorial problem of collecting many probability values to a large extent, the issue remains that people cannot always provide precise probability assessments. Let alone the fact that the probability scale is too fine-grained for human perception of belief or frequencies, some conditional probability values may be ill-known or plainly unknown to the experts. The usual Bayesian recommendation in the latter case is to use uniform distributions, but it is well-known (see for instance [START_REF] Dubois | Representing partial ignorance[END_REF][START_REF] Ferson | Different methods are needed to propagate ignorance and variability[END_REF]) that these distributions do not properly model ignorance. Alternatively, one may use imprecise probability networks (called credal networks) [START_REF] Piatti | Building knowledge-based expert systems by credal networks: a tutorial[END_REF], qualitative Bayesian networks [START_REF] Renooij | Context-specific signpropagation in qualitative probabilistic networks[END_REF] or possibilistic networks [START_REF] Benferhat | On the transformation between possibilistic logic bases and possibilistic causal networks[END_REF]. While the two first options extend probabilistic networks to ill-known parameters (with an interval-based approach for the first extension and an ordinal approach for the second), possibilistic networks represent a more drastic departure from probabilistic networks. In their qualitative version, possibilistic networks can be defined on a finite chain of possibility values and do not refer to numerical values. This feature may make the collection of expert information on conditional tables easier than requiring precise numbers obeying the laws of probability. However, when it comes to filling conditional uncertainty tables, the dimensionality issue present in Bayesian networks remains the same in the possibilistic environment. This is why in this paper, we propose possibilistic counterparts of noisy connectives of probabilistic networks. As possibilistic uncertainty is merely epis-temic and due to a lack of information, we shall speak of uncertain connectives. The idea of possibilistic uncertain gates was first considered empirically by Parson and Bigham [START_REF] Parsons | Possibility theory and the generalized noisy OR model[END_REF] directly in the setting of possibilistic logic, at a time when possibilistic networks had not yet been introduced. It seems that the question of possibilistic uncertain gates has not been reconsidered ever since, if we except a recent study in the broader setting of imprecise probabilities [START_REF] Antonucci | The imprecise noisy-OR gate[END_REF]. The basic ideas pervading this paper first appear in a French conference paper by the authors [START_REF] Caglioni | Mise en oeuvre pratique de réseaux possibilistes pour modéliser la spécialisation sociale dans les espaces métropolisés[END_REF], then more formally in the SUM conference proceedings [START_REF] Dubois | Uncertain Logical Gates in Possibilistic Networks. An Application to Human Geography[END_REF].

This paper elaborates on these preliminary versions. In particular, we explain the construction of possibilistic gates in greater detail. Moreover, we introduce the leaky version of several such gates, as well as variants needed for describing the reinforcement of the possibility of effects due to the presence of multiple causes. A comparison between probabilistic (noisy) gates and possibilistic gates is carried out, emphasizing their difference in terms of expressive power and respective concerns. Lastly, an extensive account of the application to human geography is provided.

The paper is structured as follows. After recalling probabilistic networks with noisy gates in Section 2, we present the corresponding approach for possibilistic networks and present various uncertain gates, especially the AND, OR, MAX, and MIN functions in Section 3. In Section 4, we compare the uncertain OR-gate and the noisy OR-gate in detail, and propose a variant of the uncertain MAX that behaves more in agreement with the noisy MAX. Algorithms needed to implement this approach are discussed in Section 5. Finally, the approach, including algorithmic issues, is illustrated in Section 6 on a belief network dealing with an application to human geography.

Probabilistic Networks with Independent Causal Influences

Consider a set of independent variables X 1 , . . . , X n that influence the value of a variable Y . In the ideal case, there is a deterministic function f such that Y = f (X 1 , X 2 , . . . , X n ). In order to account for uncertainty, one may assume the existence of intermediary variables Z 1 , . . . , Z n , such that Z i expresses the fact that X i will have a causal influence on Y , and which value of Y it enforces (Z i has the same range as Y ). It is assumed that the relation between X i and Z i is probabilistic and that Z i is independent of other variables given X i . Besides, we consider the deterministic function as affected by the auxiliary variables Z i only. In other words, we get a probabilistic network such that

P (Y, Z 1 , . . . , Z n , X 1 , . . . , X n ) = P (Y, Z 1 , . . . , Z n ) • n i=1 P (Z i | X i ), (1) 
where

P (Y, Z 1 , . . . , Z n ) = 1 if Y = f (Z 1 , .
. . , Z n ) and 0 otherwise. This is called a noisy function. In particular, notice that the dependence tables between Y and X 1 , . . . , X n can now be obtained by combining simple conditional probability distributions pertaining to single factors. For any effect value y of Y , and every n-tuple (x 1 , . . . , x n ) of input values :

P (y | x 1 , . . . , x n ) =
z1,...,zn:y=f (z1,...,zn)

n i=1 P (z i | x i ). (2) 
This is the assumption of independence of causal influence (ICI) [START_REF] Díez | Canonical Probabilistic Models for Knowledge Engineering[END_REF]. In the case of Boolean variables, it is assumed that

P (Z i = 0 | X i = 0) = 1 (if no cause, then no effect), while P (Z i = 0 | X i = 1
) could be positive (the effect may or may not appear when the cause is present). Canonical ICI models are obtained by means of specific choices of functions f . For instance, if all variables are Boolean, f will be a logical connective. In this case, we speak of noisy OR (f = ∨), noisy AND (f = ∧); if the range of the Z i 's and Y is a totally ordered set, usual gates are the noisy MAX (f = max), or MIN (f = min). The approach may be further refined by allowing f to summarize the potential effect of external variables not taken into account: this is the leaky model.

Then, Y also depends on a leakage variable Z L not explicitly related to identified causes, i.e., Y = f (Z 1 , Z 2 , . . . , Z n , Z L ). The range of Z L is supposed to be the range of f , i.e., the range of Y and this variable is independent of the other ones. Hence, the leaky model may be written as:

P (Y, Z 1 , . . . , Z n , Z L , x) = P (Y, Z 1 , . . . , Z n ) • P (Z L ) • n i=1 P (Z i | X i ),
so that for any value y of Y and any configuration (x 1 , . . . , x n ) of parent variables:

P (y | x 1 , . . . , x n ) = z1,...,zn,z L :y=f (z1,...,zn,z L ) P (z L ) • n i=1 P (z i | x i ). (3) 
For instance, in the case of Boolean variables, P (Y = 1 | X 1 = 0, . . . , X n = 0) may be positive due to such external causes.

We will now turn to the question whether the same kind of ICI approach can be used to elicit possibilistic networks as well.

Uncertain logical gates in Canonical Possibilistic Networks

Possibility theory [START_REF] Dubois | Possibility Theory. An Approach to Computerized Processing of Uncertainty[END_REF][START_REF] Zadeh | Fuzzy sets as a basis for a theory of possibility[END_REF] is based on maxitive set functions associated to possibility distributions. Formally, given a universe of discourse U , a possibility distribution π : U → [0, 1] pertains to a variable X ranging on U and represents the available (incomplete) information about the more or less possible values of X, assumed to be single-valued. Thus, π(u) = 0 means that X = u is impossible. The consistency of information is expressed by the normalization of π : ∃u ∈ U, π(u) = 1, namely, at least one value is fully possible for X. Distinct values u and u may be simultaneously possible at degree 1. A state of complete ignorance is represented by the distribution π ? (u) = 1, ∀u ∈ U . The degree of possibility of an event A ⊆ U is defined by the set function

Π(A) = sup u∈A π(u)
called a possibility measure. Possibility measures are maxitive, i.e.,

∀A, ∀B, Π(A

∪ B) = max(Π(A), Π(B)).
The underlying assumption is that the agent focuses on the most plausible values compatible with event A, neglecting other ones. A dual measure of necessity N (A) = 1 -Π(U \ A) expresses the degree of certainty of event A as the degree of impossibility of non-A.

A possibilistic network [START_REF] Benferhat | On the transformation between possibilistic logic bases and possibilistic causal networks[END_REF] has the same structure as a Bayesian network. The joint possibility for n variables linked by an acyclic directed graph is defined by the chain rule:

π(x 1 , . . . , x n ) = * i=1,...,n π(x i | pa(X i )),
where x i is an instantiation of the variable X i , and pa(X i ) an instantiation of the parent variables of X i . The operation * is generally chosen as the minimum (in the qualitative case) [START_REF] Ben Amor | Anytime propagation algorithm for min-based possibilistic graphs[END_REF], or the product (in the numerical case) [START_REF] Benferhat | Product-based Causal Networks and Quantitative Possibilistic Bases[END_REF], and this is what we shall assume in the sequel. Note that the behavior of productbased possibilistic nets is very close to the one of Bayes nets, while min-based possibilistic networks have specific properties. For instance, starting from possibilistic conditional tables, and building the joint possibility distribution using the chain rule, one cannot generally retrieve the same conditional tables, due to the drowning effect of the min operation [START_REF] Benferhat | On the transformation between possibilistic logic bases and possibilistic causal networks[END_REF].

Uncertain causal functions in possibilistic networks

Deterministic models Y = f (X 1 , . . . , X n ) are defined like in the probabilistic case:

π(y | x 1 , . . . , x n ) = 1 if y = f (x 1 , . . . x n ); 0 otherwise. (4) 
Note that if y = f (x 1 , . . . x n ), then π(y | x 1 , . . . , x n ) = 1 indicates the certainty of y because other values of Y are treated as impossible since f is a function.

Let us define possibilistic models with independent causal influences (ICI). We use a deterministic function Y = f (Z 1 , . . . , Z n ) with n intermediary causal variables Z i , as for the probabilistic models, which indicate that the cause X i has produced its effect. Now, π(y | x 1 , . . . , x n ) is of the form:

π(y | z 1 , . . . , z n ) * π(z 1 , . . . , z n | x 1 , . . . , x n ),
where π(y | z 1 , . . . , z n ) obeys Equation 4. Again, each variable Z i only depends (in an uncertain way) on the variable X i . Thus, we have π(z 1 , . . . , z n | x 1 , . . . , x n ) = * i=1,...,n π(z i | x i ). This leads to the equality π(y | x 1 , . . . , x n ) = max z1,...,zn:y=f (z1,...,zn) * i=1,...,n π(

z i | x i ), (5) 
whose similarity with Eq. 2 is striking. Notice that, when * = min, Eq. 5 boils down to applying the extension principle [START_REF] Zadeh | Fuzzy sets as a basis for a theory of possibility[END_REF] to function f , assuming fuzzyvalued inputs F 1 , . . . , F n , where the membership function of F i is defined by

µ Fi (z i ) = π(z i | x i ).
In case we suppose that y also depends in an uncertain way on other causes summarized by a leakage variable Z L , giving birth to a leaky ICI model, we then get the counterpart of Eq. 3, which reads:

π(y | x 1 , . . . , x n ) = max z1,...,zn,z L :y=f (z1,...,zn,z L ) * i=1,...,n π(z i | x i ) * π(z L ). (6) 
In the following, we provide a detailed analysis of possibilistic counterparts of noisy gates.

Uncertain OR

The variables are assumed to be Boolean (i.e., Y = y or ¬y, etc.). The uncertain OR (counterpart of the probabilistic "noisy OR") assumes that X i =

x i for at least one variable X i represents a sufficient cause for getting Y = y, and

Z i = z i indicates that X i = x i has caused Y = y. This gives f (Z 1 , . . . , Z n ) = n i=1 Z i .
The uncertainty indicates that the causes may fail to produce their effects. Z i = ¬z i indicates that X i = x i did not cause Y = y due to the presence of some inhibitor that prevents the effect from taking place. We assume it is more possible that X i = x i causes Y = y than the opposite (otherwise one could not say that X i = x i is sufficient for causing Y = y). Then we must define π(z i | x i ) = 1 and π(¬z i | x i ) = κ i < 1. Besides, π(z i | ¬x i ) = 0, since when X i is absent, it does not cause y. Hence the elementary causal possibility table, where each column should contain 1, to get normal conditional possibility distributions: Note that in the case of a probabilistic network, π(

π(Z i |X i ) x i ¬x i z i 1 0 ¬z i κ i 1
z i | x i ) = 1 is replaced by P (z i | x i ) = 1 -κ i in Table 1.
Let x be a configuration of (X 1 , . . . , X n ), where x i denotes a literal (x i or ¬x i ) for X i (and the same convention for Z i ). We can then obtain the table of the conditional possibility distribution π(Y | X 1 , . . . , X n ) by means of Eq. 5.

π(y | x) = max Z1,...,Zn:Z1∨•••∨Zn=y * n i=1 π(Z i | x i ) = n max i=1 π(z i | x i ) * ( * j =i max(π(z j | x j ), π(¬z j | x j )) = n max i=1 π(z i | x i ); π(¬y | x) = max Z1,...,Zn:Z1∨•••∨Zn=¬y * n i=1 π(Z i | x i ) = π(¬z 1 | x 1 ) * • • • * π(¬z n | x n ).
Note that in the second line of the computation of π(y | x), one must enforce Z i = y for one variable Z i , while other variables take arbitrary values (we have n possible choices of Z i ). Of course max(π(z j | x j ), π(¬z j | x j )) = 1 due to normalisation. Besides, in the computation of π(¬y | x), the condition

Z 1 ∨ • • • ∨ Z n = ¬y can be obtained for sure only if pa(Y ) = (¬z 1 , . . . , ¬z n ). Let I + (x) = {i : X i = x i } and I -(x) = {i : X i = ¬x i }.
Then, if the above causal elementary possibility table is adopted, we get:

• π(¬y | x) = * i=1,...,n π(¬z i | x i ) = * i∈I+(x) κ i ; • π(y | x) = 1 when x = (¬x 1 , . . . , ¬x n ) ( since the term π(z i | x i ) = 1
appears for some i in max n i=1 π(z i | x i ));

• π(¬y | ¬x 1 , . . . , ¬x n ) = 1, π(y | ¬x 1 , . . . , ¬x n ) = 0: ¬y (no effect) can be obtained for sure only if all the causes are absent.

For n = 2, this gives the conditional tables:

π(y | X 1 X 2 ) x 1 ¬x 1 x 2 1 1 ¬x 2 1 0 π(¬y | X 1 X 2 ) x 1 ¬x 1 x 2 κ 1 * κ 2 κ 2 ¬x 2 κ 1 1 Table 2: Uncertain OR for 2 inputs
More generally, if there are n causes, we have to provide the values of n parameters κ i .

For the uncertain leaky OR, we now assume that the function

f takes the form f (Z 1 , . . . , Z n ) = n i=1 Z i ∨ Z L , where Z L is an unknown external cause.
We assign π(z L ) = κ L < 1 (hence, π(¬z L ) = 1) considering that z L is not a usual cause. We thus obtain

• π(¬y | x) = * i=1,...,n π(¬z i | x i ) * π(¬z L ) = * i∈I+(x) κ i ; • π(y | x) = 1, if x = (¬x 1 , . . . , ¬x n ); • π(¬y | ¬x 1 , . . . , ¬x n ) = 1;
• π(y | ¬x 1 , . . . , ¬x n ) = κ L (even if the causes x i are absent, there is still a possibility for having Y = y, namely if the external cause is present).

Indeed, we get (letting ¬x = (¬x 1 , . . . , ¬x n )),

π(y | ¬x 1 , . . . , ¬x n ) = max(π(y | ¬x, z L ) * π(z L ), π(y | ¬x, ¬z L ) * π(¬z L ))) = max(1 * κ L , 0 * 1) = κ L .
For n = 2, the conditional table becomes:

π(y | X 1 X 2 ) x 1 ¬x 1 x 2 1 1 ¬x 2 1 κ L π(¬y | X 1 X 2 ) x 1 ¬x 1 x 2 κ 1 * κ 2 κ 2 ¬x 2 κ 1 1
Table 3: The leaky uncertain OR for 2 inputs

The only 0 entry has been replaced by the leakage coefficient. For n causes, we have now to provide the values of n + 1 parameters κ i . 

Uncertain AND

Let us consider Boolean variables (Y = y or ¬y, etc.). The uncertain AND (counterpart of the probabilistic "noisy AND") uses the same local conditional tables but it assumes that X i = x i represents a necessary cause for Y = y. We again build the conditional possibility tables π(Y | X 1 , . . . , X n ) by means of Eq. 5 using f (Z 1 , . . . , Z n ) = n i=1 Z i instead. This is the De Morgan dual to the uncertain OR gate:

π(y | x) = max Z1,...,Zn:Z1∧•••∧Zn=y * n i=1 π(Z i | x i ) = π(z 1 | x 1 ) * • • • * π(z n | x n ); π(¬y | x) = max Z1,...,Zn:Z1∧•••∧Zn=¬y * n i=1 π(z i | x i ) = n max i=1 π(¬z i | x i ) * ( * j =i max(π(z j | x j ), π(¬z j | x j )) = n max i=1 π(¬z i | x i ).
We notice that For n = 2, Eq. 5 yields the conditional tables for the uncertain AND:

n i=1 Z i = y can be obtained only if pa(Y ) = (z 1 , . . . , z n ). Thus, we find • π(¬y | x 1 , . . . , x n ) = max n i=1 π(¬z i | x i ) = max n i=1 κ i ; • π(y | x 1 , . . . , x n ) = 1; 195 • π(¬y | x) = 1, π(y | x) = 0 if x = (x 1 , . . . , x n ) (if at least one of the causes is absent, the effect is necessarily absent). π(y | X 1 X 2 ) x 1 ¬x 1 x 2 1 0 ¬x 2 0 0 π(¬y | X 1 X 2 ) x 1 ¬x 1 x 2 max(κ 1 , κ 2 ) 1 ¬x 2 1 1
More generally, if there are n causes, we have to assess n values for the parameters κ i .

The case of the uncertain AND with leak corresponds to the possibility

π(z L ) = κ L < 1 that an external factor Z L = z L causes Y = y independently of the values of the X i . Namely f (Z 1 , . . . , Z n , Z L ) = ( n i=1 Z i ) ∨ Z L .
For n = 2, Eq. 5 then gives the combined conditional possibility in Table 5, similar to Table 3. The difference is that the leakage coefficient appears in three entries of the matrix for y, as the effect is then given a chance to appear when the two causes are not simultaneously present.

π(y | X 1 X 2 ) x 1 ¬x 1 x 2 1 κ L ¬x 2 κ L κ L π(¬y | X 1 X 2 ) x 1 ¬x 1 x 2 max(κ 1 , κ 2 ) 1 ¬x 2 1 1
Table 5: Leaky uncertain AND for 2 inputs

Uncertain MAX

The uncertain MAX is a multiple-valued extension of the uncertain OR, where the output variable Y (hence the variables Z i ) is valued on a finite, totally ordered, severity or intensity scale L = {0 < 1 < • • • < m}. We assume that Y = max(Z 1 , . . . , Z n ). The statement Z i = z i ∈ L represents the fact that X i alone has increased the value of Y at level z i . In this subsection, y, z i denote any values in L, and x i any value in the range of X i . The elementary conditional possibility distributions π(y | x i ) are supposed to be given. We can then compute the conditional tables π(y | x) where x = (x 1 , . . . , x n ), as:

π(y | x) = max (z1,...,zn)∈L n :y=max(z1,...,zn) * n i=1 π(z i | x i ) = n max i=1 π(Z i = y | x i ) * ( * j =i Π(Z j ≤ y | x j )) .
In a causal setting, we assume that y = 0 is a normal state (no effect), and y > 0 is more or less abnormal, y = m being fully abnormal (strong effect). Suppose that the range of X i is L as well. It is natural to assume that:

• if X i = j then Z i = j is completely possible, which means Π(Z i = j | X i = j) = 1; • if X i = 0 then Z i = 0, which means Π(Z i = 0 | X i = 0) = 0 (no cause, no effect); • 0 < Π(Z i < j | X i = j
) < 1 (a cause having strong intensity possibly induces an effect with weak severity, or may even have no effect at all, but this is abnormal);

• an effect with severity weaker than the intensity of a cause is all the less plausible as the effect is weaker. This leads to suppose the following inequalities:

π(Z i = 0 | X i = j) ≤ π(Z i = 1 | X i = j) ≤ • • • ≤ π(Z i = j | X i = j) = 1.
• an effect with severity higher than the intensity of a cause is all the less plausible as the effect is stronger. This leads to suppose the following inequalities:

π(Z i = m | X i = j) ≤ π(Z i = m-1 | X i = j) ≤ • • • ≤ π(Z i = j | X i = j) = 1.
This leads to state the elementary conditional table on the left-hand side of Table 6 (for 3 levels of strength 0, 1, 2). + m(m-1)

π(Z i | X i ) X i = 2 X i = 1 X i = 0 Z i = 2 1 κ 21 i 0 Z i = 1 κ 12 i 1 0 Z i = 0 κ 02 i κ 01 i 1 π(Z i | X i ) X i = 2 X i = 0 Z i = 2 1 0 Z i = 1 κ 12 i 0 Z i = 0 κ 02 i 1

2

= m 2 coefficients. There are two interesting special cases:

• κ 21 i = Π(Z i > j | X i = j) = 0:
if we assume that a cause having a weak intensity cannot induce an effect with strong severity;

• κ 21 i = κ 01 i = 1: if we remain in total ignorance of what a cause having a weak intensity can produce.

On the right-hand side is the corresponding table when the variables X i are Boolean (then the middle column is dropped).

The global conditional possibility tables are then obtained by applying Eq. 5, using the values of π(Z i | X i ), as given in the above Table 6.

π(y|x) = n max i=1 π(Z i = y|x i ) * ( * j =i Π(Z j ≤ j|x j )).
As above, in the case of the leaky uncertain max, we consider the output Y is of the form max(Z 1 , . . . , Z n , Z L ) where Z L is an unknown cause that may affect Y . The expression π(y | x) is now expressed as

π(y | x) = max (z1,...,zn,z L )∈L n+1 :y=max(z1,...,zn,z L ) * n i=1 π(z i | x i ) * π(z L ) = max max n i=1 π(Z i = y | x i ) * Π(Z L ≤ y) * ( * j =i Π(Z j ≤ y | x j )) , π(Z L = y) * ( * n i=1 Π(Z i ≤ y | x i ))
The possibility distribution for the leak variable is given by m+1 values π L (i) = κ i L , where κ 0 L = 1 (it is completely possible that the external cause has no effect on Y , and

κ i L ≥ κ i+1 L
(it is all the more unlikely that the external cause is present as the observed effect is strong). Under these assumptions the above expressions simplify since Π(Z L ≤ y) = 1.

For n = 2, m = 2, the conditional Table 7 is obtained when the X i 's are three-valued. Let us justify some expressions appearing in this table.

1 • π(2 | 11) = max      π(Z 1 = 2 | X 1 = 1) * π(Z 2 ≤ 2 | X 2 = 1), π(Z 1 ≤ 2 | X 1 = 1) * π(Z 2 = 2 | X 2 = 1), κ 2 L * π(Z 1 ≤ 2 | X 1 = 1) * π(Z 2 ≤ 2 | X 2 = 1) = max(κ 21 1 * 1, 1 * κ 21 2 , κ 2 L * 1 * 1) = max(κ 21 1 , κ 21 2 , κ 2 L ) • π(1 | 22) = max      π(Z 1 = 1 | X 1 = 2) * π(Z 2 ≤ 1 | X 2 = 2), π(Z 1 ≤ 1 | X 1 = 2) * π(Z 2 = 1 | X 2 = 2), κ 1 L * π(Z 1 ≤ 1 | X 1 = 2) * π(Z 2 ≤ 1 | X 2 = 2) = max(κ 12 1 * κ 12 2 , κ 12 2 * κ 12 1 , κ 1 L * κ 12 1 * κ 12 2 ) = κ 12 1 * κ 12 2 • π(1 | 21) = max      π(Z 1 = 1 | X 1 = 2) * π(Z 2 ≤ 1 | X 2 = 1), π(Z 1 ≤ 1 | X 1 = 2) * π(Z 2 = 1 | X 2 = 1), κ 1 L * π(Z 1 ≤ 1 | X 1 = 2) * π(Z 2 ≤ 1 | X 2 = 1) = max(κ 12 1 * 1, κ 12 1 * 1, κ 1 L * κ 12 1 * 1) = κ 12 1 • π(y | 00) = max      π(Z 1 = y | X 1 = 0) * π(Z 2 ≤ y | X 2 = 0), π(Z 1 ≤ y | X 1 = 0) * π(Z 2 = y | X 2 = 0), κ y L * π(Z 1 ≤ y | X 1 = 0) * π(Z 2 ≤ y | X 2 = 0) = max(0 * 1, 1 * 0, κ y L * 1 * 1) = κ y L if y > 0 and 1 otherwise.
Note that in general, we can expect the fact that the external cause is less likely to produce a strong effect than a regular cause, so that in column π(2 | x), we may assume κ 2 L ≤ min(κ 21 1 , κ 21 2 ) so that the leakage coefficient should only appear in the last line of Table 7. When the X i 's are Boolean, we get Table 8, where only 4 lines remain:

x π(2 | x) π(1 | x) π(0 | x) (2, 2) 1 κ 12 1 * κ 12 2 κ 02 1 * κ 02 2 (2, 1) 1 κ 12 1 κ 02 1 * κ 01 2 (2, 0) 1 κ 12 1 κ 02 1 (1, 2) 1 κ 12 2 κ 01 1 * κ 02 2 (1, 1) max(κ 21 1 , κ 21 2 , κ 2 L ) 1 κ 01 1 * κ 01 2 (1, 0) max(κ 21 1 , κ 2 L ) 1 κ 01 1 (0, 2) 1 κ 12 2 κ 02 2 (0, 1) max(κ 21 2 , κ 2 L ) 1 κ 01 2 (0, 0) κ 2 L κ 1 L 1 Table 7: Uncertain leaky MAX x π(2 | x) π(1 | x) π(0 | x) (2, 2) 1 κ 12 1 * κ 12 2 κ 02 1 * κ 02 2 (2, 0) 1 κ 12 1 κ 02 1 (0, 2) 1 κ 12 2 κ 02 2 (0, 0) κ 2 L κ 1 L 1
255 More generally, if we have m levels of strength, and n causal variables, we need nm 2 coefficients for defining the uncertain MAX. If we take into account the leak, we have to add m(m+1) 2 coefficients per variable, in order to replace the 0 by a leak coefficient in the conditional tables π(Z i | X i ) (assuming that an effect of strong severity may take place even if the causes present have a weak 260 intensity).

Uncertain MIN

As for the uncertain MAX wrt uncertain OR, the uncertain MIN is a multiplevalued extension of the uncertain AND, where variables are valued on the intensity scale

L = {0 < 1 < • • • < m}. We assume that Y = max(min(Z 1 , . . . , Z n ), Z L ),
taking into account a leak variable. We can then compute the conditional tables, under the same assumptions as before, as

π(y | x 1 ) = max (z1,...,zn,z L )∈L n+1 :y=max(min(z1,...,zn),z L ) ( * n i=1 π(z i | x i )) * π(z L ) = max max n i=1 π(Z i = y | x i ) * Π(Z L ≤ y) * ( * j =i Π(Z j ≥ y | x j )) , π(Z L = y) * (max n i=1 Π(Z i ≤ y | x i ))
The conditional possibility tables are thus obtained by applying Eq. 5, using the same values of π(Z i | X i ), and κ y L as in the case of the uncertain leaky inputs: Note that the leakage coefficients are more present in the leaky MIN than in the leaky MAX, even if the leakage coefficients are small. This is not surprizing as it is enough to miss one of the two causes to fail the regular effect, and the external cause may then emerge as the reason for some unexpected effect in these more numerous situations. For binary inputs, it reduces to the conditional Table 10. 

x π(2|x) π(1|x) π(0|x) (2, 2) 1 max(κ 12 1 , κ 12 2 ) max(κ 02 1 , κ 02 2 ) (2, 1) max(κ 21 2 , κ 2 L ) 1 max(κ 02 1 , κ 01 2 ) (2, 0) κ 2 L κ 12 1 * κ 1 L 1 (1, 2) max(κ 21 1 , κ 2 L ) 1 max(κ 01 1 , κ 02 2 ) (1, 1) max(κ 21 1 * κ 21 2 , κ 2 L ) 1 max(κ 01 1 , κ 01 2 ) (1, 0) κ 2 L κ 1 L 1 (0, 2) κ 2 L κ 12 2 * κ 1 L 1 (0, 1) κ 2 L κ 1 L 1 (0, 0) κ 2 L κ 1 L 1
x π(2|x) π(1|x) π(0|x) (2, 2) 1 max(κ 12 1 , κ 12 2 ) max(κ 02 1 , κ 02 2 ) (2, 0) 0 κ 12 1 1 (0, 2) 0 κ 12 2 1 (0, 0) 0 0 1

Comparison with Probabilistic Gates

It is interesting to compare the possibilistic and probabilistic tables as they do not behave in the same way. The elementary probabilistic causal table takes the following form, where κ i = P (¬z i | x i ): Consider the conditional table of the noisy OR [START_REF] Díez | Canonical Probabilistic Models for Knowledge Engineering[END_REF] (Table 12), to be compared with the conditional table of the uncertain OR (Table 2):

P (Z i |X i ) x i ¬x i z i 1 -κ i 0 ¬z i κ i 1
P (y | X 1 X 2 ) x 1 ¬x 1 x 2 1 -κ 1 κ 2 1 -κ 2 ¬x 2 1 -κ 1 0 P (¬y | X 1 X 2 ) x 1 ¬x 1 x 2 κ 1 κ 2 κ 2 ¬x 2 κ 1 1
Table 12: Noisy OR

We shall distinguish between min-based and product based possibilistic networks.

The min-based case

There is an important difference between the behavior of conditioning in the probabilistic and the possibilistic cases. In the qualitative possibility setting, the conditional possibility Π(Y | X) is the largest value λ such that min(λ, Π( This is a striking difference with conditional probability where this limitation of expressive power does not occur. While this property is sometimes viewed as a major impediment to considering qualitative possibility as a reasonable representation of belief ([25] p. 265), this pessimistic view can be challenged. Note that one may simultaneously have N (y) > 0 and N (y | x) = 0 (and even N (¬y | x) > 0), so that the qualitative framework allows for severe belief change. Moreover, this limitation just indicates that the qualitative setting is rougher than the quantitative one, and that qualitative necessity degrees are not proportional to intensity of belief. In some situations this rough model is sufficient for the purpose at hand, as being more expressive than classical logic (since it allows for non-monotonic reasoning [START_REF] Benferhat | Practical Handling of Exception-Tainted Rules and Independence Information in Possibilistic Logic[END_REF]).

x)) = Π(Y ∧ X), that is Π(Y | X) = 1 if Π(Y ∧ X) = Π(X); Π(Y ∧ X) if Π(Y ∧ X) < Π(X).
A similar lack of expressiveness occurs when comparing the conditional possibility and probability tables in case of the OR connective (Tables 2 and12). In the possibilistic table, we see (using the associated necessity measure N ) that

N (y | x 1 x 2 ) = max(N (y | x 1 ¬x 2 ), N (y | ¬x 1 x 2 )) = 1 -min(κ 1 , κ 2 ) while P (y | x 1 x 2 ) = 1-κ 1 •κ 2 > max(P (y | x 1 ¬x 2 ), P (y | ¬x 1 x 2 )) = max(1-κ 1 , 1-κ 2 ),
so that in qualitative possibility networks, the uncertain OR gate does not allow the reinforcement the certainty of the effect in the presence of two causes, because connectives are idempotent.

The product-based case

If possibility degrees are numerical and * = product, the conditional possibility is just defined by the usual division (Π(Y | X) = Π(X∧Y ) Π(X) ), so that we can model the graceful degradation of beliefs (Π(Y ) < Π(Y | X) < 1 may occur). The possibilistic network then behaves like a probabilistic network because

N (y | x 1 x 2 ) = 1 -κ 1 • κ 2 > max(N (y | x 1 ¬x 2 ), N (y | ¬x 1 x 2 )
) is also retrieved.

However, another major difference in behavior between uncertain and noisy OR-gates will occur in case the effects of causes are not frequent (weak causes), namely when P (¬z i | x i ) = κ i > 0.5, i = 1, 2. Then it may happen that P (y | x 1 x 2 ) = 1 -κ 1 κ 2 > 0.5, that is the simultaneous presence of two causes that individually do not frequently produce an effect may make this effect more frequent than not. Then a possibilistic rendering of this case must be such that

π(¬z i | x i ) = 1 > π(z i | x i ) = λ i .
Then the uncertain OR-gate with two weak causes behaves as follows:

π(y | X 1 X 2 ) x 1 ¬x 1 x 2 max(λ 1 , λ 2 ) λ 2 ¬x 2 λ 1 0 π(¬y | X 1 X 2 ) x 1 ¬x 1 x 2 1 1 ¬x 2 1 1
Table 13: Uncertain OR for 2 weak causes However, there is no way of observing a reversal effect, since π(y

| x 1 x 2 ) = max(λ 1 * λ 2 , λ 1 , λ 2 ) = max(λ 1 , λ 2 ) < 1. Hence π(¬y | x 1 x 2 ) = 1 and N (y | x 1 x 2 ) = 0.
In other words, using the uncertain OR, two causes that are individually insufficient to make an effect plausible are still insufficient to make it plausible if joined together, because on the one hand there is no reinforcement effect in this case, and there is no way of producing 1 from operands that are less than 1. Note that this fact reminds of the property of closure under conjunction for necessity measures in possibility theory (N (y 1 ) > N (¬y 1 ) and N (y 2 ) > N (¬y 2 ) imply N (y 1 ∧ y 2 ) > N (¬(y 1 ∧ y 2 )) which fail to hold in probability theory, where a reversal effect is possible in this case.

The case with one weak cause and one strong one is also worth studying, say cause 1 is weak (π(¬z

1 | x 1 ) = 1 > π(z 1 | x 1 ) = λ 2 ) and the other is strong (π(z 2 | x 2 ) = 1 > π(¬z 2 | x i ) = κ 2 ).
Then, one observes that the strong cause alone makes the effect somewhat certain to the same degree as in the elementary causal table, independently of the presence or not of the weak one. When the strong cause is absent, the effect is absent with a weak certainty as per the presence or not of the weak cause. Note that in the possibilistic case, we need the three tables 2, 13, 14 that represent a distinct behavior each case, while the probability table 12 is valid in the three cases, while the believed effects depend on the numerical values given in the table.

π(y | X 1 X 2 ) x 1 ¬x 1 x 2 1 1 ¬x 2 λ 1 0 π(¬y | X 1 X 2 ) x 1 ¬x 1 x 2 κ 2 κ 2 ¬x 2 1 1

Should possibilistic logical gates be mended ?

Note that insofar as the behavior of the uncertain possibilistic gates is judged counterintuitive in a given context, it would be possible to change the combination of the elementary conditional tables. For instance one may define the global conditional possibility tables π

(Y | X 1 , X 2 ) enforcing π(y | x 1 x 2 ) > π(¬y | x 1 x 2 ) even if π(y | x 1 ) < π(¬y | x 1 ) and π(y | x 2 ) < π(¬y | x 2 )
, which is perfectly compatible with possibility theory. However, one may also claim that the possibilistic OR gate behaves as expected and that the behavior of the noisy OR is questionable, depending on what we intend to model. Consider the case when P (z i | x i ) = P (¬z i | x i ) = κ i = 0.5 for i = 1, 2. Note that then P (y | x 1 x 2 ) = 0.75.

• Interpreting κ i as a frequency: Then this result can be easily explained.

As when cause x i is present irrespective of the other cause, the effect y is present 50% of the results, and causes are independent of each other, this effect is produced 25% of the time when x 1 is present and x 2 is absent, 25% of the time when x 2 is present and x 1 is absent, and 25% of the time when x 1 and x 2 are present. So no surprize that the reinforcement effect in favor of y can be observed. However, the possibilistic model has no way of representing equiprobability, hence cannot model this situation.

• Interpreting κ i as a degree of belief: then κ i = 0.5 represent the agent's ignorance whether x i causes y or not. Under this view, the probabilistic approach produces a counterintuitive result. Indeed, it is very hard to make sense of the reasoning line whereby given that the agent ignores whether x i causes y or not, for i = 1, 2, this agent should believe that the presence of both causes makes the effect y more likely than its negation. It is one more example of production of knowledge out of sheer ignorance, which is usual when uniform probability is interpreted as lack of information.

Actually, the uncertain OR gate behaves consistently with the situation of ignorance: if it is believed that each x i causes ¬y, rather than y, then there is no way of starting to believe y when observing two reasons not to believe it.

And in the case of ignorance, the uncertain OR-gate just produces ignorance. These results extend to other gates like the uncertain MAX, for instance. Again, the simultaneous presence of a number of causes, which, taken in isolation, do not normally produce an effect, may lead to a plausible effect under a noisy MAX, which can never be the case with an uncertain MAX.

However, in the following, we are interested in representing the same dataset by probabilistic and possibilistic networks for the sake of comparing both models on an application. Then we try to modify the construction of the conditional possibilistic table from elementary ones in order to get closer to the probabilistic model. Note that we can imagine various ways of completing the possibilistic conditional tables from the knowledge of local conditional tables Π(Z i | X i ) For instance we may use an aggregation operation ⊗ [START_REF] Beliakov | Aggregation Functions: A Guide for Practitioners[END_REF] on the possibility scale and define Π

(Y | X 1 X 2 ) as Π(Z 1 | X 1 ) ⊗ Π(Z 2 | X 2 ) with the constraint Y = Z 1 = Z 2 .
However, since aggregation operations are order-preserving and such that 1 ⊗ 1 = 1 and 0 ⊗ 0 = 0, we cannot address the case when weak causes join to make a strong one in the possibilistic setting using this approach.

Uncertain MAX with Thresholds

As observed in Section 4 when comparing the uncertain OR to the noisy OR, the simultaneous presence of a number of causes, which, taken in isolation, do not normally produce an effect, may lead to a plausible effect under a noisy MAX, which can never be the case with an uncertain MAX. Yet, situations of this kind do arise in applications and are fully compatible with the expression of a conditional table in possibility theory.

In order to make the construction of possibility tables in agreement with the mutual reinforcement of weak causes an appropriate uncertain gate has to be designed, by means of a suitable uncertain function f which can produce this effect. One idea we have tested in order to approximate such behavior is the proposal of uncertain MAX with thresholds. In addition to the usual parameters of an uncertain MAX, this uncertain gate requires that a threshold θ j be specified for each value y j of the effect variable Y . Such threshold is an integer expressing the minimum number of causes that have to simultaneously occur in order for effect y j to become possible. To this end, a cause X i may be considered to "occur" if the value of its corresponding intermediary causal variable Z i differs from the zero level, i.e., Z i > 0. Note that threshold gates also exist in the probabilistic setting [START_REF] Díez | Canonical Probabilistic Models for Knowledge Engineering[END_REF] More precisely, as in the case of the uncertain MAX, we assume that the output variable Y and the variables Z i are valued on a finite, totally ordered, severity or intensity scale L = {0 < 1 < • • • < m}, but the function f describing this gate is based upon may be written as

Y = max(Z 1 , . . . , Z n , m max i=1 {i • 1 [ {j:Zj >0} ≥θi] }),
using the inverson bracket notation, whereby

1 [condition ] = 1, if condition is true; 0, otherwise. For instance, suppose n = 4, m = 3, θ 1 = 1, θ 2 = 2, θ 3 = 3, θ 4 = 4. Then f (1, 1, 0, 0) = 2, f (1, 1, 1, 0) = 3, f (1, 1, 1, 1) = 4.
We can then express the conditional table of the uncertain MAX with thresholds by applying the extension principle, as in the case of the uncertain MAX, although the resulting analytical expression is much less legible:

π f (y | x 1 , . . . , x n ) = max Z1,...,Zn:y=max(Z1,...,Zn,max m i=1 {i•1 [ {j:Z j >0} ≥θ i ] }) * n i=1 π(Z i | x i ) = max 1 [ {i|xi>0} ≥θy] , n max j=1 π(Z j = y | x j ) * ( * j =i Π(Z j ≤ y | x j )) .
More intuitively, by default π(y | x 1 , . . . , x n ) has the same value as with the uncertain MAX, except when the number of occurring causes exceeds the threshold for value y, in which case π(y | x 1 , . . . , x n ) = 1.

The global conditional tables are then obtained by applying Eq. 5, using the same values of π(Z i | X i ) as in the case of the uncertain MAX. For n = 2, m = 2 (i.e., Y and the X i 's three-valued), θ 2 = 2, and θ 1 = m + 1 (i.e., no threshold set for Y = 1), the following conditional Table 15 is obtained. The only cell where possibility is raised to 1 due to the thresholds is marked by a dagger ( † ): the fact that two causes weakly present ((1, 1)) as input cause the strongest effect with full possibility.

It is easy to check that π f is less specific than π M AX , which means that the imitation of the noisy MAX is imperfect. For instance, one may wish to decrease the value π(1 | (1, 1)) in Table 15, since the value π(2 | (1, 1)) has been set to 1; this would occur in a probabilistic approach as the sum of probabilities in each line is 1. However, this is not possible using the definition of f . But we are allowed to decrease the value π(1 | (1, 1)) manually, as long as the maximum of values in each line of Table 15 for all y = (y 1 , . . . , y K ) ∈ Y K do 5:

is 1. x π(2 | x) π(1 | x) π(0 | x) (2, 2) 1 max(κ 12 1 , κ 12 2 ) κ 02 1 * κ 02 2 (2, 1) 1 1 κ 02 1 * κ 01 2 (2, 0) 1 κ 12 1 κ 02 1 (1, 2) 1 1 κ 01 1 * κ 02 2 (1, 1) 1 † 1 κ 01 1 * κ 01 2 (1, 0) κ 21 1 1 κ 01 1 (0, 2) 1 κ 12 2 κ 02 2 (0, 1) κ 21 2 1 κ 01 2 (0, 0) 0 0 1
Output: π(Y | X 1 , . . . , X n ): a conditional possibility distribution of Y given its causes X 1 , . . . , X n . 1: π(Y | X 1 , . . . , X n ) ← 0 2: for all x ∈ X 1 × . . . × X n do 3: K ← {k : cond , k ∈ prm, x |= cond } {Select
β ← min i=1,..., K {κ iyi } 6: ȳ ← max i=1,..., K {y i } 7: π(ȳ | x) ← max{β, π(ȳ | x)} 8:
end for 9: end for 10: return π(Y | X 1 , . . . , X n )

Implementation

A prototype involving the uncertain connectives defined above, allowing to execute possibilistic models such as the one described in Section 6 has been implemented in R. Here, we give some details about the practical implementation of the uncertain connectives defined in the paper. We focus in particular on the uncertain MAX (and its variant with thresholds), whose implementation is non-trivial.

The way the uncertain MAX is implemented is shown in Algorithm 1. The parameter prm taken as input by this algorithm may be thought of as representing a set of rules of the form

(X i = x i ) ⇒ Y ∼ (κ i,y0 , . . . , κ i,ym ), ( 7 
)
where X i on the left-hand side is a parent variable of Y in the possibilistic graphical model, x i are one of their values, and (κ i,y0 , . . . , κ i,ym ) is a normalized possibility distribution over the values of variable Y , i.e., for all y ∈ Y , κ i,y ∈ [0, 1], and max y∈Y κ i,y = 1. Note that the X i 's in the above rules can in fact represent vectors of more elementary interacting variables, and allow to encode multi-condition tables not representable by combining simple conditional tables involving such variables in isolation.

The left-hand side of a rule may be empty : in that case, the rule is interpreted as if it were statements of the form Y ∼ (κ L,y0 , . . . , κ L,ym ).

(

) 8 
Such rules may be used to represent leakage coefficients, which apply to all possible combinations of causes.

On the one hand, this choice of representation of the parameters generalizes the uncertain gates to the case of multivalued variables; on the other hand, it allows the expert to express its knowledge of the phenomenon in more intuitive terms, in the form of rules, which is entirely in the spirit of making expert knowledge elicitation easier.

Albeit such representation is more intuitive, it requires some additional care: the antecedents of the rules fed into the uncertain MAX must cover all possible combinations x ∈ X 1 × . . . × X n of the values of the parent variables of Y in order to ensure that the resulting conditional possibility distribution π(Y | X 1 , . . . , X n ) be normalized. However, we may notice that, if a leak rule of the form of Eq. 8 is given, that rule alone already covers all combinations of parent variable values and is thus a sufficient condition for the normalization of π(Y | X 1 , . . . , X n ); in that case, the parameters of the uncertain MAX may be underspecified.

The algorithm constructs the table of conditional possibility in an incremental way, starting with a table filled with zeros (Line 1), and then considering all combinations of values for the cause variables (Line 2). For a given combination x, which corresponds to a row of the table, a subset K of normalized possibility distributions that apply to x is extracted from the parameters (Line 3). Lines 4-8 compute one min expression of Eq. 5, by considering all the combinations of parameters in the possibility distributions of K and update the corresponding cell (the one in the column of the maximum y of the combination) if the result of the min exceeds its current value, so that, once this inner loop completed, the max in Eq. 5 will have been computed for all the cells of the row corresponding to x.

The implementation of the uncertain MAX with thresholds follows the same pattern as the previous algorithm.

Application

Probabilistic and possibilistic networks using noisy/uncertain logical gates have been used to model the social specialization of municipalities in a metropolitan area, under a human geography perspective (alternative models have been proposed in the economic literature like rent-gap theory models for urban gentrification and hedonic price models for environmental amenities for rural and suburban developments). We will first present the models and their logical gates. We will then compare the uncertainty content of the trend scenarios produced by the two models and we will finally evaluate the sensitivity of model outcomes to probabilistic and possibilistic elicited parameters. 

Model Specification

The metropolitan area of Aix-Marseille in southern France has experienced ongoing social polarization since the 1980s. The geography of unemployment, on the one hand, and the concentration of high-skilled professionals, on the other, both considerably contribute to the structuring of a contrasted metropolitan social morphology [START_REF] Centi | Le Laboratoire Marseillais: Chemins d'Intégration Métropolitaine et de Segmentation Sociale[END_REF][START_REF] Fusco | Métropolisation et ségrégation sociospatiale. Les flux des migrations résidentielles en PACA[END_REF]. The knowledge of factors inducing social polarization of the municipalities in the metropolitan area is nevertheless uncertain. Social polarization is analyzed as the opposition of valorized municipalities, hosting wealthier resident populations and namely high-skilled professionals, and devalorized municipalities, hosting lower-income populations and, more particularly, the unemployed. Several factors contribute to the valorization or to the devalorization of the municipal residential space. But these factors have "soft", uncertain impacts on the phenomena under investigation: the same causes can sometimes produce different effects and observed effects can have multiple possible causes.

A probabilistic model of these socio-spatial mechanisms has already been proposed [START_REF] Scarella | La ségrégation résidentielle dans l'espace-temps métropolitain: analyse spatiale et géo-prospective des dynamiques résidentielles de la métropole azuréenne[END_REF] (cf. Fig. 1) in the form of a Bayesian network (BN). The BN was built using expert knowledge elicited through noisy logical gates (OR, AND, and MAX) with leak parameters (taking into account the impact of factors omitted in the model). We then developed a min-based possibilistic network (PN) using uncertain logical gates (OR, AND and MAX-threshold) with leak parameters in order to link the same 26 variables of the BN. The numerical parameters of the PN were made compatible with the BN parameters using a least committing probability-to-possibility preference preserving transformation [START_REF] Dubois | On Possibility/Probability Transformations[END_REF] in order to transform probability degrees into numerical possibility degrees.

This transformation was used by lack of expert data in the form of possi- bility distributions. We started with a Bayesian network with already existing probabilistic data. It was not possible to start the data collection again and train experts into forwarding possibility degrees instead of probability degrees. And our intention was to compare the results of possibilistic and probabilistic networks on the same data, which means keeping the ordinal information contained in the probabilistic data. Using a least committed probability-topossibility preference preserving transformation at the local level was a natural way of generating such possibilistic counterparts of subjective probabilistic data, even if we are aware that making local probability-to-possibility transforms is for instance not equivalent to making probability-to-possibility transforms of the joint probability, as studied in [START_REF] Benferhat | On the Analysis of Probability-Possibility Transformations: Changing Operations and Graphical Models[END_REF]. Note that the same issues occur when trying to learn possibilistic networks from data [START_REF] Haddad | Apprentissage des rśeaux possibilistes partir de donnés[END_REF].

In Fig. 2 we show how an Uncertain OR logical gate can be used to generate a conditional probability table. Only three parameters must be elicited: the possible influence of the two parent variables on the child variable (necessity of the consequence given that the parents are sufficient causes) and the leak parameter, which takes into account the activation of the consequence from secondary causes not included in the model. This table allows possibilistic prediction from uncertain knowledge. If, for example, in a given municipality of the study area, we are relatively certain of the presence of natural areas (Π = 1, N = 0.5) and if it is only partially possible that agricultural areas are considered attractive and valorizing for residential use (Π = 0.5, this is for example the case for vineyards but not for industrial crops), we can infer that it is relatively certain (N = 0.5) that the municipality in question has environmental amenities.

Another difference between the min-based possibilistic model and the proba-bilistic one is the possibility, for the former, of keeping track of the κ i parameters in the reasoning process, in order to figure out the sensitivity of results to the parameters of uncertain causation. The advantage of uncertain logical gates can be better appreciated in the whole model (Fig. 1). Evolution is, for example, a ternary variable (having three values: no evolution, valorization, and devalorization) depending on 5 binary variables and one 4-value variable. The conditional probability table is thus made of 3 × 2 5 × 4 = 384 parameters, whereas the uncertain MAX-threshold gate used in our PN model requires at most 27 parameters (indeed only 10 κ i and θ j parameters different from 0 and 1 are used in our model).

Evolution is typically a multi-valued variable with a hierarchical order of values. Urban geographers [START_REF] Scarella | La ségrégation résidentielle dans l'espace-temps métropolitain: analyse spatiale et géo-prospective des dynamiques résidentielles de la métropole azuréenne[END_REF] consider that valorization is the value with highest priority: when social groups of higher purchasing power decide to live in a given municipality, real estate prices go up and other social groups are crowded out. It corresponds to the highest severity effect in section 3.4. The second priority effect is devalorization: when a given set of causes operates in order to specialize the municipality in retaining inhabitants of lower social status, this effect has greater priority (severity) than no effect at all. Finally, the absence of change in the social mix of the municipality is the default outcome (no effect), in the absence of particular triggers for valorization and/or devalorization. The diffusion of valorization (i.e., the spatial diffusion of suburban and rural gentrification within the metropolitan area through residential flows of highskilled professionals) and the presence of assets for rural and suburban gentrification are triggers of valorization for a given municipality. The attraction of residential flows of unemployed people (diffusion devalorization variable in the model) and the presence of obstacles to rural and suburban gentrification are triggers of devalorization. The long-term instability of the social mix in the municipality over the last 20 years and its particular geographic location with respect to the social mix of neighboring municipalities can be triggers of either valorization or devalorization. Valorization and devalorization are nevertheless uncommon outcomes in the presence of only one of these triggering factors, as these are normally relatively weak: in the probabilistic model, several triggers have to be simultaneously present in order to cumulate probability values and make the absence of change less probable. Several specifications of the uncertain MAX connective were considered in order to replicate as much as possible the probabilistic behavior of the BN model. A MAX-threshold connective saturating possibility values of uncommon outcomes when three concurrent causes are present was finally selected.

Again, as discussed in Section 4 we have two ways of understanding the above situation. Viewed in terms of frequencies, the reinforcement effect of the probabilities of residential moves due to several triggers, using a noisy MAX, is in line with the actual phenomenon of people changing their dwelling places, while viewed in terms of subjective probabilities, this reinforcement effect is more difficult to justify, as in this case, equal probabilities of opposite events just represent ignorance, and not equal proportions of moves in one direction and in another. Then the probabilistic approach surprizingly transforms ig-norance into the prediction of a trend, while the possibilistic approach using the uncertain MAX with threshold just increases the range of possibilities, and therefore more cautiously increases the imprecision of conclusions, in case of several weak triggering factors.

The use of the uncertain MAX with threshold gives the best results on the empirical values of the 439 municipalities of the study area in terms of proximity to the probabilistic predictions (which were in turn transformed in possibilistic values to allow comparison). Alternative variants of the uncertain max with upper and lower thresholds and even with two different thresholds (a first threshold for making the uncommon effects completely possible and a second threshold for making the absence of change not plausible) were also considered. The twothreshold specifications are in theory better able to replicate the behavior of the probabilistic model, but prove not better than the simpler one-threshold model for the empirical results, although requiring additional elicited parameters. The bias introduced by the simpler one-threshold connective is its inability to foresee the necessity of change, a phenomenon that, although rare, is sometimes found among the 439 municipalities of the study area. Whatever the specification of the MAX connective, the Evolution variable determines, together with the Situation T1 variable, the value of the Situation T2 variable in a ten years simulation period. Situation T1 (the reference year is here 2009) and Situation T2 (2019) have three possible values: Valorized (V ), Devalorized (D) or Other (O). Values of Situation T1 are considered to be known without uncertainty (Fig. 3-a). Values of Situation T2 are not observable and have to be inferred by the model.

Comparative Results

Both the BN and the PN model were thus used to produce trend scenarios for social polarization in the 439 municipalities of the Aix-Marseille metropolitan area through the prediction of Situation T2 values.

Both scenarios are based on uncertain knowledge of relationships among variables and produce an uncertain evaluation of the future state of the metropolitan area in terms of social polarization. Most plausible values (in terms of probability/possibility) inferred by the two models can be projected in space (Fig. 3). With the probabilistic model, we display a most probable value of Situation T2 for each municipality (Fig. 3-b). This often gives a fallacious impression of certainty: differences between most probable values can be relatively small and are not taken into account on the figure. The possibilistic model, using a min-max logic, produces in many cases sets of completely possible values (Π = 1, Fig. 3c). In Fig. 3, these are represented as circles with multiple colors (two different outcomes equally possible) or as grey circles (three different outcomes equally possible, which is the most uncertain model result). We thus decided to test the significance of the probability differences in the BN model: only probability differences exceeding a given threshold were considered significant. For a given probability threshold, we could thus exhibit small sets of "equally" most probable values for some municipalities, even with the BN. Fig. 3-d, e andf, show results for threshold probability differences of 0.1, 0.2 and 0.3, respectively.

If no threshold is considered, the most probable values inferred by the BN and the completely possible values inferred by the PN coincide only in 54.7% of cases. In the remaining cases, possibilistic results are more uncertain and always include probabilistic results (most probable values are always completely possible for the PN).

The best agreement between the two models is obtained with thresholds 0.20 and 0.25 (lower and higher values give worse results). Respectively 72.4% and 77.2% of the inferred values are then identical. Most probable values are almost always compatible with PN solutions: they are included in the completely possible values as, for example, when {V, O} are the most probable values and {V, O, D} is the set of completely possible values. The inverse is not always the case: depending on the threshold value, 24% and 18% of possibilistic solutions are not included in the most probable values.

Keeping in mind that possibilistic results tend to be slightly less restrictive (and hence more uncertain) than the probabilistic counterparts, both models show that the outcome for several municipalities is not completely uncertain, but is made of two equally probable/possible states. Complete uncertainty is still the case for 130 spatial units for the PN and 85 for the BN; these are often neither too peripheral nor too central within the metropolitan area. In this respect, these uncertainty-based models could be used to better highlight areas of insufficient knowledge.

An Empirical Sensitivity Analysis to Elicited Parameters

A sensitivity analysis of the two models has been performed with respect to the elicited parameters of the MAX connective governing the Evolution variable. This is a particularly crucial variable for the models, directly influencing the Situation T2 variable and depending, directly or indirectly, from almost all causal relations contained in the models. The sensitivity analysis was conducted using the empirical data: by varying the values of the elicited parameters, we did not assess how the conditional probability/possibility tables were modified. Instead, we assessed how the parameter changes would affect the predictions on the most plausible outcomes of the Situation T2 variable for the 439 municipalities of the study area. This empirical sensitivity analysis is much more interesting for the practical use of the model in decision making on the study area.

In the reference BN, the Noisy MAX connective for Evolution is parametrized as follows. Triggers of valorization or devalorization have probabilistic strength κ i equal to 0.3 only. Triggers of devalorization and devalorization have probabilistic strength of 0.12 and 0.18, respectively (a slightly higher probabilistic strength is given to the production of the devalorization effect in order to counter the priority rule of the connective and produce an unbiased model with equal marginal probabilities for the two effects). The absence of effect has thus always a conditional probability of 0.7. Under the hypothesis that these elicited values correspond to reality, we will use the most probable values of the Situation T2 variable for the 439 municipalities as the benchmark of the analysis. of cases the same as in the reference model (Table 16, right). In the remaining cases, the new model predicts the state other, whereas the reference model would infer a valorized or a devalorized state as the most probable.

In the reference PN, the Uncertain MAX-threshold connective is parametrized in accordance to a least committing transformation of the corresponding probabilistic parameters. κ i for triggers of valorization or devalorization only is 0.6, κ i for triggers of both effects is 0.5 (devalorization) and 0.4 (valorization). The behavior of this connective makes the absence of effect always completely possible, whereas a given effect is completely possible only in the presence of three triggers. Over-and underestimation of possibilistic strength of triggers concern both the κ i parameters and the θ j thresholds. Over-and underestimated parameters of the PN are thus obtained through least specific transformations of the probabilistic parameters. θ j thresholds are set to 2 and 4, respectively, reflecting the number of triggering factors whose presence is sufficient to make absence of effect non-plausible in the modified probabilistic models. Table 17 (left) shows how the most plausible predictions of the overestimated model coincide only in 80.9% of cases with those of the reference PN. Trend scenario predictions for several municipalities become completely uncertain while previously being D or {D, O}. The under-estimated model is even more deviant from the reference one (Table 17, right). Only 68.1% of predictions agree At first glance, the BN model seems less sensitive to small disturbances in the probabilistic parameters of the Noisy MAX connective, compared to its possibilistic counterpart. However, the advantage of the PN model lies elsewhere. The 15.9% and 9.8% predictions of the disturbed BN that differ from those of the reference model are incompatible with the latter. By allowing more uncertainty, the 19.1% and 31.9% of predictions of the disturbed PN models that differ from those of the reference model are restrictions or generalizations of them and the predictions of the three models are mutually compatible (in the sense that they are nested sets of possible results).

Lessons drawn

In conclusion, uncertain logical gates made the construction of the PN model possible. The use of most probable solutions of the BN model often gives a false impression of certainty. In order to compare results from the BN and the PN models, we need to enlarge the notion of most probable values: solutions whose probabilities differ less than 0.20/0.25 must be considered as equally probable. In this case, the solutions of the two models are identical for about three fourths of the municipalities of the study area. Despite this consistency between the two approaches, the possibilistic model integrates a larger amount of uncertainty in the solutions inferred. Indeed, in the remaining fourth of municipalities, completely possible values inferred by the PN are normally larger sets than most probable values inferred by the BN. The BN model also tends to overestimate the valorization of municipalities in the study area: the PN model often predicts complete uncertainty ({V, O, D} all equally possible) whereas the most plausible values are just V or {V, O} in the probabilistic model. A further analysis of the parametrization of the two models is nevertheless necessary in order to understand the origin of such a bias.

The results of the sensitivity analysis of the model predictions to the parameters governing their key variable (through a MAX connective) are apparently counterintuitive. The probabilistic model seems to be less affected by parameter disturbances than its possibilistic counterpart, but, at a closer look, BN predictions, when restricted to the most probable values, are more unstable than PN predictions: the former can be incompatible under slightly different parameter choices, whereas the latter, by allowing more uncertainty, are always nested sets of solutions generalizing or restricting the results obtained by different parameter choices.

Conclusion

This is the first detailed study of the counterpart of the main probabilistic noisy gates for possibilistic networks, together with an illustrative implementation on a human geography application. Uncertain possibilistic gates are of primary interest for the practical use of possibilistic networks, when uncertainty has an epistemic flavor. The study has revealed some noticeable differences of behavior between noisy gates and uncertain possibilistic gates, in particular when the cumulation of causes having a rare effect may increase the plausibility of the effect. Generally speaking, possibilistic modeling appears to be more cautious. A detailed comparative study of the expressive power of Bayesian nets and possibilistic networks is a topic for further investigation, as well as the development of a complete panoply of uncertain possibilistic gates.
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  and the conditional necessity is N (Y | X) = 1 -Π(¬Y | X). As a consequence it is impossible to have that Π(Y ) < Π(Y | X) < 1, which dually reads the impossibility that the certainty of an event can decrease while remaining somewhat certain (one cannot have the strict inequality N (Y ) > N (Y | X) > 0)[START_REF] Dubois | An overview of ordinal and numerical approaches to causal diagnostic problem solving[END_REF]. The framework thus does not capture the idea of graceful degradation of belief in the min-based case.

Figure 1 :

 1 Figure1: The BN model for the valorization/devalorization of municipalities in the study area (adapted from[START_REF] Scarella | La ségrégation résidentielle dans l'espace-temps métropolitain: analyse spatiale et géo-prospective des dynamiques résidentielles de la métropole azuréenne[END_REF]).

Figure 2 :

 2 Figure 2: Generation of a conditional probability table through an Uncertain OR logical gate.

  with those of the reference model: many O predictions replace {D, O} predictions and V or {V, O} predictions replace completely uncertain ones of the form {V, O, D}. Nevertheless, in the first case the new predictions include the predictions of the reference model by introducing more uncertainty, and in the second case the new predictions are included in the reference predictions by reducing their uncertainty.

  

Table 1 :

 1 Elementary causal possibility table

Table 4 :

 4 Uncertain AND for 2 inputs

Table 6 :

 6 

Elementary conditional tables in the many-valued case where κ 02 i ≤ κ 12 i . In case we have m levels of strength, we have to assess m(m+1) 2

Table 8 :

 8 Uncertain MAX with Boolean inputs

Table 9 :

 9 Uncertain leaky MIN

Table 10 :

 10 Uncertain MIN with Boolean inputs

Table 11 :

 11 Elementary causal probability table

Table 14 :

 14 Uncertain OR for strong and weak causes

Table 15 :

 15 Uncertain MAX with thresholdsAlgorithm 1 uncertain-MAX(Y, prm). Generate a conditional possibility table for variable Y given its causes X 1 , . . . , X n using the uncertain MAX with its given parameters prm. Input: Y : the effect variable; prm = { cond i , k i }: a set of normalized possibility distributions k i = (κ i1 , . . . , κ i Y ), max j=1,..., Y {κ ij } = 1, which apply when condition cond i holds; cond i = ( X i , x i ), a (possibly empty) pair of a cause variable X i and one of its values x i ; cond i holds if X i = x i holds; an empty condition always holds.

  the elementary possibility distributions that apply to x}

	4:

Table 16 :

 16 Empirical sensitivity analysis for the BN modelWe first consider a model where experts overestimate the probabilistic strength of triggering factors, by reducing the conditional probability of absence of effect to 0.6 and by increasing to 0.4, 0.25, and 0.15 the κ i parameters of the Noisy MAX connective. Most probable values of Situation T2 are in 84.1% of cases the same as in the reference model (Table16, left). In the remaining 15.9% of cases, they are different and incompatible (for these municipalities, a valorized or a devalorized state is now inferred, whereas the reference model would infer the value other as most probable). We subsequently consider a model underestimating the probabilistic strength of factors, by increasing the conditional probability of absence of effect to 0.8 and by decreasing to 0.2, 0.12, and 0.08 the κ i parameters. The most probable values of Situation T2 are now in 90.2%

		Model with overesti-	Model with underesti-
		mated parameters		mated parameters	
	Reference model	O	D	V	Total	O	D	V	Total
	O	117 30	38	185	185			185
	D		100	2	102	17 85		102
	V			152	152	26		126	152
	Total	117 130 192	439	228 85 126	439
	Overall agreement				84.1%			90.2%
	Incompatibilities				15.9%				9.8%

Table 17 :

 17 Empirical sensitivity analysis for the PN model

		Model with overestimated parame-	Model with underestimated parame-
		ters						ters		
	Ref.	O	D	V VO VOD	Total	O	D	V	VO VOD	Total
	model									
	O	82			3		85	85			85
	D		41			29	70		70		70
	D,O					52	52	52			52
	V			85			85			85	85
	V,O				17		17				17	17
	V,O,D					130	130			40	48	42	130
	Total	82 41 85	20	211	439	137 70 125	65	42	439
	Overall						80.9%				68.1%
	agree-									
	ment									
	Incom-						0.0%				0.0%
	patibi-									
	lities									

The expressions of π(1 |

[START_REF] Piatti | Building knowledge-based expert systems by credal networks: a tutorial[END_REF] and π(1 | 22) were erroneous in[START_REF] Caglioni | Mise en oeuvre pratique de réseaux possibilistes pour modéliser la spécialisation sociale dans les espaces métropolisés[END_REF][START_REF] Dubois | Uncertain Logical Gates in Possibilistic Networks. An Application to Human Geography[END_REF] for the uncertain MAX, and are corrected here.
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