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MATHEMATICAL ANALYSIS OF A PARABOLIC-ELLIPTIC MODEL
FOR BRAIN LACTATE KINETICS

ALAIN MIRANVILLE

Abstract. Our aim in this paper is to study properties of a parabolic-elliptic system
related with brain lactate kinetics. These equations are obtained from a reaction-diffusion
system, when a small parameter vanishes. In particular, we prove the existence and
uniqueness of nonnegative solutions and obtain error estimates on the difference of the
solutions to the initial reaction-diffusion system and those to the limit one, on bounded
time intervals. We also study the linear stability of the unique spatially homogeneous
equilibrium.

1. Introduction

The following system of ODE’s:

(1.1)
du

dt
+ κ(

u

k + u
− v

k′ + v
) = J, κ, k, k′, J > 0,

(1.2) ε
dv

dt
+ Fv + κ(

v

k′ + v
− u

k + u
) = FL, ε, F, L > 0,

where ε is a small parameter, was proposed and studied as a model for brain lactate
kinetics (see [5], [8], [9] and [10]; see also [4]). In this context, u = u(t) and v = v(t)
correspond to the lactate concentrations in an interstitial (i.e., extra-cellular) domain and
in a capillary domain, respectively. Furthermore, the nonlinear term κ( u

k+u
− v

k′+v
) stands

for a co-transport through the brain-blood boundary (see [11]). Finally, J and F are
forcing and input terms, respectively, assumed frozen (more generally, J depends on t and
u and accounts for the interactions with a third intracellular compartment (which includes
both neurons and astrocytes), while F = F (t) (an applied electrical stimulus; see [7]) is
piecewise linear and periodic). This model has essential applications to the therapeutic
management of glioma (also called glial tumors); see [8] for thorough discussions on this
issue.

Let us assume that u(0) and v(0) are nonnegative (recall that u and v are concentrations
and are thus expected to be nonnegative). Then, noting that, if u(0) = 0, then du

dt
(0) > 0

and, if v(0) = 0, then dv
dt

(0) > 0, it follows from Cauchy–Lipschitz theorem that, for t > 0
small, u and v exist and are nonnegative. This also yields that the solutions are defined
and remain nonnegative on the whole interval R+; indeed, it is not difficult to prove that
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2 A. MIRANVILLE

they are bounded on finite time intervals. Furthermore, in [5], [8], [9] and [10], questions
related to the stability of the unique equilibrium were addressed. This constitutes an
essential point in the modeling, since, as discussed in [8], a therapeutic perspective of
such a result is to have the steady state outside the viability domain, where cell necrosis
occurs. Finally, in [9], justifications for the dip and buffering which are observed in
experiments (see [7]) were given, based on geometrical arguments and averaging theory
on a slow manifold.

We can note that the above ODE’s model does not account for spatial diffusion. Taking
this into account would be relevant and desirable from a biological point of view. The
simplest possible corresponding PDE’s (reaction-diffusion) system, accounting for spatial
diffusion, reads

(1.3)
∂u

∂t
− α∆u+ κ(

u

k + u
− v

k′ + v
) = J, α > 0,

(1.4) ε
∂v

∂t
− β∆v + Fv + κ(

v

k′ + v
− u

k + u
) = FL, β > 0,

where u = u(x, t) and v = v(x, t), which we consider in a bounded and regular domain Ω
of RN , N = 1, 2 or 3, together with Neumann boundary conditions,

∂u

∂ν
=
∂v

∂ν
= 0 on Γ,

where Γ = ∂Ω and ν is the unit outer normal vector. Note that the terms −α∆u and
−β∆v correspond to random motions. Note however that more precise models should
account for the geometry, i.e., the different compartments (interstitial, capillary), so that
(1.3)-(1.4) should be viewed as a very first step towards PDE’s models for brain lactate
kinetics. We will consider more realistic models elsewhere.

We studied in [6] the existence, uniqueness and regularity of nonnegative solutions to
(1.3)-(1.4) (note that the mathematical analysis of (1.3)-(1.4) (and, in particular, the well-
posedness) appears to be challenging, due to the coupling terms, especially for negative
initial data (though biologically irrelevant, this makes sense from a mathematical point of
view); this is also the case for the ODE’s model (1.1)-(1.2)). We further established the
linear (exponential) stability of the unique spatially homogeneous equilibrium. We also
mention [12] in which we proved the existence, uniqueness and regularity of the solutions
to the following singular reaction-diffusion equation:

(1.5)
∂u

∂t
−∆u+ Fu+ κ

u

k + u
= f(x, t), F ≥ 0,

corresponding to the case where either u or v is known in (1.3) and (1.4); we can also think
of (1.5) as an equation in each compartment, assuming that the lactate concentration is
known in the other one.

Our aim in this paper is to study the limit system
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(1.6)
∂u

∂t
− α∆u+ κ(

u

k + u
− v

k′ + v
) = J,

(1.7) −β∆v + Fv + κ(
v

k′ + v
− u

k + u
) = FL,

corresponding to ε = 0 in (1.4). We prove the existence and uniqueness of nonnegative
solutions to (1.6)-(1.7). We then prove that the solutions to the initial reaction-diffusion
system converge to those to the limit parabolic-elliptic one, on finite time intervals, and
provide an error estimate in terms of ε. We finally study the linear stability of the unique
spatially homogeneous equilibrium. We can note that a similar analysis would also be
relevant in the context of the ODE’s model (1.1)-(1.2). Though some of the results
obtained here could apply (in a simpler way) to this system, this will be considered in
more details elsewhere.

Notation: We denote by ((·, ·)) the usual L2-scalar product, with associated norm ‖ · ‖.
More generally, ‖ · ‖X denotes the norm on the Banach space X and, if X is a Hilbert
space, ((·, ·))X denotes the associated scalar product.

Throughout the paper, the same letters c, c′ and c′′ denote positive constants which
may vary from line to line. Similarly, the same letter Q denotes continuous and monotone
increasing (with respect to each argument) functions which may vary from line to line.

2. The case ε > 0

We consider the following initial and boundary value problem:

(2.1)
∂u

∂t
− α∆u+ κ(

u

k + u
− v

k′ + v
) = J,

(2.2) ε
∂v

∂t
− β∆v + Fv + κ(

v

k′ + v
− u

k + u
) = FL, ε > 0,

(2.3)
∂u

∂ν
=
∂v

∂ν
= 0 on Γ,

(2.4) u|t=0 = u0, v|t=0 = v0.

Note that (2.1)-(2.2) are equivalent to

(2.5)
∂u

∂t
− α∆u+ κ(

k′

k′ + v
− k

k + u
) = J,

(2.6) ε
∂v

∂t
− β∆v + Fv + κ(

k

k + u
− k′

k′ + v
) = FL.

We assume that
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(2.7) (u0, v0) ∈ H2
N(Ω)2, u0 ≥ 0, v0 ≥ 0 a.e. x,

where

H2
N(Ω) = {w ∈ H2(Ω),

∂w

∂ν
= 0 on Γ}.

We proved in [6] the

Theorem 2.1. We assume that (2.7) holds. Then, (2.1)-(2.4) possesses a unique strong
solution (u, v) such that

(2.8) u ≥ 0, v ≥ 0 a.e. (x, t)

and, ∀T > 0,

(u, v) ∈ L∞(0, T ;H2
N(Ω)2) ∩ L2(0, T ;H3(Ω)2),

(
∂u

∂t
,
∂v

∂t
) ∈ L∞(0, T ;L2(Ω)2) ∩ L2(0, T ;H1(Ω)2).

Furthermore,

‖u(t)‖L∞(Ω) ≤ ‖u0‖L∞(Ω) + (J + κ)t, t ≥ 0,

and

‖v(t)‖L∞(Ω) ≤ e−
F
ε
t‖v0‖L∞(Ω) +

FL+ κ

F
, t ≥ 0.

Finally, if M ≥ FL+κ
F

and 0 ≤ v0 ≤M a.e. x, then 0 ≤ v ≤M a.e. (x, t).

Remark 2.2. As far as the above regularity is concerned, the corresponding constants
in [6] depend on ε, i.e., they are not bounded uniformly with respect to ε as this quantity
goes to 0. However, it is not difficult, reading the details, to see that most constants
can be made independent of ε, yielding regularity estimates on u, ∂u

∂t
and v which are

uniform with respect to ε as ε → 0. Now, we have not been able to derive, at least in a
straightforward way, such uniform estimates on ∂v

∂t
which would allow us to pass to the

limit in (2.2) (say, in a weak (variational) form) to deduce the existence of a solution to
the limit problem corresponding to ε = 0 (see however Section 4). We will thus give a
direct proof of existence for the limit problem which also has an interest on its own.

Remark 2.3. (i) It follows from the above that the capillary lactate concentration is
uniformly (with respect to time) bounded. However, we have not been able to derive
a similar upper bound on the interstitial lactate concentration u. We can note that, in
the biological model, outside a bounded viability domain, cell necrosis occurs (see [8]),
meaning that one expects viable trajectories to be uniformly bounded.

(ii) Multiplying (2.1) by u+ k, integrating over Ω and by parts, we obtain
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dE

dt
+ α‖∇u‖2 + κ‖u‖L1(Ω) ≤ ((J +

κv

k′ + v
, u+ k)),

where

E =
1

2
u2 + ku.

Noting that v is uniformly bounded (we assume that, say, 0 ≤ v0 ≤ FL+κ
F

), we take, for
κ, J , F and L given, J small enough and k′ large enough such that

J +
κv

k′ + v
< κ.

We thus deduce that

dE

dt
+ α‖∇u‖2 + c‖u‖L1(Ω) ≤ c′, c > 0,

which yields, noting that

α‖∇u‖2 + c‖u‖L1(Ω) ≥ c′(‖∇u‖+ ‖u‖L1(Ω))− c′′

≥ c′‖u‖ − c′′,
the differential inequality

(2.9)
dE

dt
+ c
√
E ≤ c′, c > 0.

Set E∗ = ( c
′

c
)2, where c and c′ are the same constants as in (2.9), so that

dE∗

dt
+ c
√
E∗ = c′.

It then follows from comparison arguments that

(2.10) E(t) ≤ max(E(0), E∗), t ≥ 0,

and we finally deduce that the L2-norm of u is uniformly bounded.

3. The case ε = 0

We consider in this section the following initial and boundary value problem:

(3.1)
∂u

∂t
− α∆u+ κ(

k′

k′ + v
− k

k + u
) = J,

(3.2) −β∆v + Fv + κ(
k

k + u
− k′

k′ + v
) = FL,

(3.3)
∂u

∂ν
=
∂v

∂ν
= 0 on Γ,
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(3.4) u|t=0 = u0.

We assume that

(3.5) u0 ∈ H2
N(Ω), u0 ≥ 0 a.e. x.

Remark 3.1. It follows from (3.2) that

−β∆v(0) + Fv(0)− k′

k′ + v(0)
= FL− k

k + u0

.

We will see below that this allows to define in a unique way v(0) such that v(0) ≥ 0 a.e.
x.

3.1. Existence and uniqueness of solutions to an auxiliary problem. We consider
the following modified initial and boundary value problem:

(3.6)
∂u

∂t
− α∆u+ κ(

u

k + |u|
− v

k′ + |v|
) = J,

(3.7) −β∆v + Fv + κ(
v

k′ + |v|
− u

k + |u|
) = FL,

(3.8)
∂u

∂ν
=
∂v

∂ν
= 0 on Γ,

(3.9) u|t=0 = u0.

We associate with (3.6)-(3.9) the following weak/variational formulation, for T > 0
given:

Find (u, v) : [0, T ]→ H1(Ω)2 such that

(3.10)
d

dt
((u, φ)) + α((∇u,∇φ)) + ((ϕk(u), φ))− ((ϕk′(v), φ)) = ((J, φ)), ∀φ ∈ H1(Ω),

(3.11) β((∇v,∇ψ)) +F ((v, ψ)) + ((ϕk′(v), ψ))− ((ϕk(u), ψ)) = ((FL, ψ)), ∀ψ ∈ H1(Ω),

in the sense of distributions, and

(3.12) u(0) = u0 in L2(Ω),

where we have set, for c > 0 given,

ϕc(s) =
κs

c+ |s|
, s ∈ R.

We can note that ϕc is bounded (with |ϕc| ≤ κ) and of class C1, with ϕ′c(s) = κc
(c+|s|)2 , so

that ϕc is also Lipschitz continuous, with Lipschitz constant κ
c
.
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Let then 0 = λ1 < λ2 ≤ · · · be the eigenvalues of the minus Laplace operator associated
with Neumann boundary conditions and w1, w2, · · · be associated eigenvectors such that
the wj’s form an orthonormal in L2(Ω) and orthogonal in H1(Ω) basis. Setting

Vm = Span(w1, · · ·, wm), m ∈ N,
we consider the following approximated problem, for T > 0 given:

Find (um, vm) : [0, T ]→ Vm × Vm such that

(3.13)
d

dt
((um, φ)) +α((∇um,∇φ)) + ((ϕk(um), φ))− ((ϕk′(vm), φ)) = ((J, φ)), ∀φ ∈ Vm,

(3.14) β((∇vm,∇ψ))+F ((vm, ψ))+((ϕk′(vm), ψ))−((ϕk(um), ψ)) = ((FL, ψ)), ∀ψ ∈ Vm,
in the sense of distributions, and

(3.15) um(0) = u0m,

where u0m = Pmu0, Pm being the orthogonal projector (for the L2-norm) from L2(Ω) onto
Vm.

For w ∈ Vm given, we consider the following elliptic problem:
Find z ∈ Vm such that

(3.16) a(z, φ) + ((ϕk′(z), φ)) = ((FL+ ϕk(w), φ)), ∀φ ∈ Vm,
where

a(·, ·) = β((∇·,∇·)) + F ((·, ·))
is bilinear, symmetric, continuous and coercive on Vm (and also on H1(Ω)). Let then
R = Rm be the operator defined by

R : Vm → Vm, z 7→ R(z),

where

((R(z), φ))H1(Ω) = a(z, φ) + ((ϕk′(z), φ))− ((FL+ ϕk(w), φ)), ∀φ ∈ Vm.
It is clear that this operator is well defined and continuous (since ϕk′ is Lipschitz contin-
uous). Furthermore, there holds, for z ∈ Vm,

((R(z), z))H1(Ω) = a(z, z) + ((ϕk′(z), z))− ((FL+ ϕk(w), z))

≥ c‖z‖2
H1(Ω) − c′‖z‖, c > 0

(note indeed that w is given and recall that ϕk and ϕk′ are bounded). Therefore,

((R(z), z))H1(Ω) ≥ c‖z‖2
H1(Ω) − c′,

so that
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((R(z), z))H1(Ω) ≥ 0 whenever ‖z‖H1(Ω) ≥
√
c′

c
.

It thus follows from the Brouwer fixed point theorem that there exists z ∈ Vm, ‖z‖H1(Ω) ≤√
c′

c
, such that

R(z) = 0 in Vm
(see, e.g., [14]), which is equivalent to (3.16). Note that all constants here (and also below)
are independent of m. This thus defines a mapping F = Fm,

F : Vm → Vm, w 7→ z = F(w).

Let then (w1, w2) ∈ Vm × Vm and set zi = F(wi), i = 1, 2. We have, setting z = z1 − z2

and w = w1 − w2,

(3.17) a(z, φ) + ((ϕk′(z1)− ϕk′(z2), φ)) = ((ϕk(w1)− ϕk(w2), φ)), ∀φ ∈ Vm.
Taking φ = z and noting that ϕk′ is monotone increasing and ϕk is Lipschitz continuous,
we obtain

‖z‖2
H1(Ω) ≤ c‖w‖‖z‖,

whence

(3.18) ‖F(w1)−F(w2)‖H1(Ω) ≤ c‖w1 − w2‖,
which yields that F is Lipschitz continuous on Vm (both for the L2 and H1-norms); this
also yields that F is indeed a mapping, since w1 = w2 implies z1 = z2.

It follows from the above that (3.13)-(3.15) is equivalent to
Find um : [0, T ]→ Vm such that

(3.19)
d

dt
((um, φ)) + α((∇um,∇φ)) + ((ϕk(um), φ))− ((ϕk′ ◦ F(um), φ))

= ((J, φ)), ∀φ ∈ Vm,
in the sense of distributions,

(3.20) um(0) = u0m

and then set vm = F(um).
Since ϕk and ϕk′ are Lipschitz continuous on R and F is Lipschitz continuous on Vm with

respect to the L2-norm, it is easy to prove that (3.19)-(3.20) possesses a (unique) solution
um ∈ L∞(0, T ;L2(Ω))∩L2(0, T ;H1(Ω)) (see, e.g., [13]), whence, setting vm = F(um), the
existence of a solution (um, vm) to (3.13)-(3.15) such that vm ∈ L∞(0, T ;H1(Ω)). We also
note that ∂um

∂t
∈ L2(0, T ;H−1(Ω)), so that um ∈ C([0, T ];L2(Ω)).

Writing um(t) =
∑m

i=1 di,m(t)wi, taking φ = λiwi in (3.19), multiplying the resulting
equality by di,m and summing over i, we obtain
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1

2

d

dt
‖∇um‖2 + α‖∆um‖2 − ((ϕk(um),∆um)) + ((ϕk′ ◦ F(um),∆um)) = 0,

which yields, recalling that ϕk and ϕk′ are bounded,

d

dt
‖∇um‖2 + α‖∆um‖2 ≤ c,

whence estimates on um in L∞(0, T ;H1(Ω)) and L2(0, T ;H2(Ω)). It thus follows that
∂um
∂t
∈ L∞(0, T ;H−1(Ω)) ∩ L2(0, T ;L2(Ω)).

Since the above regularity estimates are uniform with respect to m, we deduce from
classical Aubin–Lions compactness theorems that, at least for a subsequence which we do
not relabel,

um → u in L∞(0, T ;H1(Ω)) weak star, in L2(0, T ;H2(Ω)) weak,

in C([0, T ];L2(Ω)) and a.e. (x, t) ∈ Ω× (0, T ),

vm → v in L∞(0, T ;H1(Ω)) weak star,

for some functions u and v. Actually, since vm = F(um) and F is Lipschitz continuous with
respect to the L2-norm, we can see that (vm) is a Cauchy sequence in C([0, T ];L2(Ω)) (note
indeed that, if m′ ≥ m, then Vm ⊂ Vm′ and that the constant c in (3.18) is independent
of m), so that

vm → v in C([0, T ];L2(Ω)).

Recalling finally that ϕk and ϕk′ are Lipschitz continuous, this is sufficient to pass to the
limit in (3.13)-(3.15) and deduce the existence of a solution (u, v) to (3.10)-(3.12) (note
that the initial condition u0 = u(0) makes sense; actually, v(0) also makes sense). Indeed,
we need to pass to the limit in relations of the form∫ T

0

[−((um, φ))θ′(t) + α((∇um,∇φ))θ(t) + (ϕk(um), φ))θ(t)

−((ϕk′(vm), φ))θ(t)− ((J, φ))θ(t)] dt = 0

and∫ T

0

[β((∇vm,∇ψ)) + F ((vm, ψ)) + ((ϕk′(vm), ψ))− ((ϕk(um), ψ))− ((FL, ψ))]θ(t) dt = 0,

for (φ, ψ) ∈ H1(Ω)2 and θ ∈ D(0, T ). More precisely, we have the

Theorem 3.2. We assume that u0 ∈ H1(Ω). Then, (3.10)-(3.12) possesses a unique
solution (u, v) such that, ∀T > 0,

u ∈ L∞(0, T ;H1(Ω)) ∩ L2(0, T ;H2(Ω)) ∩ C([0, T ];L2(Ω)),

v ∈ L∞(0, T ;H1(Ω)) ∩ C([0, T ];L2(Ω))

and



10 A. MIRANVILLE

∂u

∂t
∈ L∞(0, T ;H−1(Ω)) ∩ L2(0, T ;L2(Ω)).

Proof. There remains to prove the uniqueness.
Let thus (u1, v1) and (u2, v2) be two such solutions, with initial data u0,1 and u0,2,

respectively. We have, setting (u, v) = (u1 − u2, v1 − v2) and u0 = u0,1 − u0,2,

(3.21)
d

dt
((u, φ)) + α((∇u,∇φ)) + ((ϕk(u1)− ϕk(u2), φ))− ((ϕk′(v1)− ϕk′(v2), φ))

= 0, ∀φ ∈ H1(Ω),

(3.22) β((∇v,∇ψ)) + F ((v, ψ)) + ((ϕk′(v1)− ϕk′(v2), ψ))− ((ϕk(u1)− ϕk(u2), ψ))

= 0, ∀ψ ∈ H1(Ω),

(3.23) u(0) = u0.

Taking φ = u and ψ = v, we obtain, recalling that ϕk and ϕk′ are monotone increasing
and Lipschitz continuous,

(3.24)
1

2

d

dt
‖u‖2 + α‖∇u‖2 ≤ c‖u‖‖v‖

and

(3.25) β‖∇v‖2 + F‖v‖2 ≤ c‖u‖‖v‖,

respectively. In particular, it follows from (3.25) that

(3.26) ‖v‖ ≤ c‖u‖,

which, injected into (3.24), yields

(3.27)
d

dt
‖u‖2 ≤ c‖u‖2,

whence, owing to Gronwall’s lemma,

(3.28) ‖u(t)‖ ≤ ect‖u0‖, t ≥ 0.

We deduce from (3.26) and (3.28) the uniqueness, as well as the continuous dependence
with respect to the initial data in the L2-norm.

�
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3.2. Existence and uniqueness of nonnegative solutions. We first prove additional
regularity results on the solutions to (3.10)-(3.11), assuming that (3.5) holds. This can
be fully justified within the Galerkin scheme considered above.

Taking ψ = −∆v in (3.11), we have

β‖∆v‖2 + F‖∇v‖2 = ((ϕk′(v),∆v))− ((ϕk(u),∆v)),

which yields, recalling that ϕk and ϕk′ are bounded,

β

2
‖∆v‖2 + F‖∇v‖2 ≤ c,

whence estimates on v in L∞(0, T ;H2(Ω)), ∀T > 0.
Taking then φ = ∆2u in (3.10) and ψ = ∆2v in (3.11), we obtain

1

2

d

dt
‖∆u‖2 + α‖∇∆u‖2 = −((ϕk(u),∆2u)) + ((ϕk′(v),∆2u))

and

β‖∇∆v‖2 + F‖∆v‖2 = −((ϕk′(v),∆2v)) + ((ϕk(u),∆2v)),

respectively. Noting that

|((ϕk(u),∆2u))| = |((ϕ′k(u)∇u,∇∆u))| ≤ c‖∇u‖‖∇∆u‖,
we find, proceeding in a similar way for the other terms,

d

dt
‖∆u‖2 + α‖∇∆u‖2 ≤ c(‖∇u‖2 + ‖∇v‖2)

and

β

2
‖∇∆v‖2 + F‖∆v‖2 ≤ c(‖∇u‖2 + ‖∇v‖2),

whence estimates on u and v in L∞(0, T ;H2(Ω))∩L2(0, T ;H3(Ω)) and L∞(0, T ;H3(Ω)),
respectively, ∀T > 0.

Remark 3.3. This yields that ∂u
∂t
∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)), ∀T > 0. We

further note that the solution to (3.10)-(3.12) is strong, i.e., (3.6)-(3.9) are satisfied almost
everywhere.

We can now prove the

Theorem 3.4. We assume that (3.5) holds. Then, (3.1)-(3.4) possesses a unique strong
solution (u, v) such that u ≥ 0, v ≥ 0 a.e. (x, t) and, ∀T > 0,

u ∈ L∞(0, T ;H2
N(Ω)) ∩ L2(0, T ;H3(Ω)),

v ∈ L∞(0, T ;H3(Ω) ∩H2
N(Ω)) ∩ C([0, T ];L2(Ω))

and
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∂u

∂t
∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)).

Proof. Let (u, v) be the unique strong solution to (3.6)-(3.9). Multiplying (3.6) by −u−
and (3.7) by −v−, where x− = max(0,−x), we have

(3.29)
1

2

d

dt
‖u−‖2 + α‖∇u−‖2 + κ

∫
Ω

|u−|2

k + |u|
dx+ κ

∫
Ω

vu−

k′ + |v|
dx ≤ 0

and

(3.30) β‖∇u−‖2 + F‖u−‖2 + κ

∫
Ω

|v−|2

k′ + |v|
dx+ κ

∫
Ω

uv−

k + |u|
dx ≤ 0,

respectively. Writing v = v+ − v−, where x+ = max(0, x), we deduce from (3.29) that

1

2

d

dt
‖u−‖2 ≤ κ

∫
Ω

u−v−

k′ + |v|
dx,

whence

(3.31)
d

dt
‖u−‖2 ≤ c‖u−‖‖v−‖.

Proceeding in a similar way for (3.30), we find

F‖v−‖2 ≤ c‖u−‖‖v−‖,
whence

(3.32) ‖v−‖ ≤ c‖u−‖.
Injecting this into (3.31), we deduce that

d

dt
‖u−‖2 ≤ c‖u−‖2,

which yields, owing to Gronwall’s lemma,

(3.33) ‖u−(t)‖ ≤ ect‖u−(0)‖, t ≥ 0,

whence, since u−(0) = 0, u ≥ 0 a.e. (x, t). This, together with (3.32), yields that v ≥ 0
a.e. (x, t). Consequently, (u, v) is a strong solution to (3.1)-(3.4), which finishes the proof.

�

Remark 3.5. Proceeding exactly as in [6], we can prove that

‖u(t)‖L∞(Ω) ≤ ‖u0‖L∞(Ω) + (J + κ)t, t ≥ 0.

Furthermore, it follows from (3.2) that
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(3.34) −β∆v + Fv ≤ FL+ κ.

Multiplying (3.34) by vm+1, m ∈ N, we have

β(m+ 1)

∫
Ω

vm|∇v|2 dx+ F‖v‖m+2
Lm+2(Ω) ≤ (FL+ κ)

∫
Ω

vm+1 dx,

which yields

F‖v‖m+2
Lm+2(Ω) ≤ (FL+ κ)Vol(Ω)

1
m+2‖v‖m+1

Lm+2(Ω),

whence

(3.35) ‖v‖Lm+2(Ω) ≤
FL+ κ

F
Vol(Ω)

1
m+2 .

Passing to the limit m→ +∞ in (3.35), we finally obtain (see, e.g., [3])

‖v(t)‖L∞(Ω) ≤
FL+ κ

F
, t ≥ 0,

meaning that the capillary lactate concentration is again uniformly (with respect to time)
bounded. Also note that (2.10) still holds.

Remark 3.6. (i) As mentioned in the introduction (for the case ε > 0, but the situation
is the same here), the existence of solutions for negative initial data is a challenging issue.
However, we can prove the following partial result (see also [6] for the case ε > 0). Let
δ1 and δ2 be two positive constants such that k − δ1 > 0 and k′ − δ2 > 0 and assume
that u0 ≥ −δ1 a.e. x. We then consider the following modified initial and boundary value
problem:

(3.36)
∂u

∂t
− α∆u+ κ(

u

k − δ1 + |u+ δ1|
− v

k′ − δ2 + |v + δ2|
) = J,

(3.37) −β∆v + Fv + κ(
v

k′ − δ2 + |v + δ2|
− u

k − δ1 + |u+ δ1|
) = FL,

(3.38)
∂u

∂ν
=
∂v

∂ν
= 0 on Γ,

(3.39) u|t=0 = u0.

The existence and uniqueness of the solution to (3.36)-(3.39) can be proved by arguing
as above. Next, we set ũ = u+ δ1 and ṽ = v + δ2. These functions are solutions to

(3.40)
∂ũ

∂t
− α∆ũ+ κ(

ũ

k − δ1 + |ũ|
− ṽ

k′ − δ2 + |ṽ|
) = J̃ ,
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(3.41) −β∆ṽ + F ṽ + κ(
ṽ

k′ − δ2 + |ṽ|
− ũ

k − δ1 + |ũ|
) = F̃ ,

(3.42)
∂ũ

∂ν
=
∂ṽ

∂ν
= 0 on Γ,

(3.43) ũ|t=0 = u0 + δ1,

where

J̃ = J + κ(
δ1

k − δ1 + |ũ|
− δ2

k′ − δ2 + |ṽ|
)

and

F̃ = F (L+ δ2)− κ(
δ1

k − δ1 + |ũ|
− δ2

k′ − δ2 + |ṽ|
).

Choosing δ1 and δ2 such that J̃ ≥ 0 and F̃ ≥ 0 (in particular, these hold when δ1 and
δ2 are small enough) and noting that ũ(0) ≥ 0 a.e. x, we can prove, as in the proof of
Theorem 3.4, that ũ(x, t) ≥ 0 and ṽ(x, t) ≥ 0 a.e. (x, t), so that (u, v) is solution to
(3.1)-(3.4), with

u(x, t) ≥ −δ1 and v(x, t) ≥ −δ2 a.e. (x, t).

(ii) Similarly, we can prove that, if δ1 and δ2 are positive and small enough, with u0 ≥ δ1

a.e. x, then

u(x, t) ≥ δ1 and v(x, t) ≥ δ2 a.e. (x, t).

It follows from the above that we can actually define the Lipschitz continuous (for the
L2 and H1-norms) mapping

F : H1(Ω)→ H1(Ω), w 7→ z = F(w),

where z is the unique solution to the following elliptic problem:

(3.44) a(z, φ) + ((ϕk′(z), φ)) = ((FL+ ϕk(w), φ)), ∀φ ∈ H1(Ω).

We then have the

Proposition 3.7. The mapping F is differentiable with respect to the L2 and H1-norms.

Proof. Let w0 and w belong to H1(Ω) and set z0 = F(w0) and z = F(w). We then have

(3.45) a(z − z0, φ) + ((ϕk′(z)− ϕk′(z0), φ)) = ((ϕk(w)− ϕk(w0), φ)), ∀φ ∈ H1(Ω).

Taking φ = z − z0 and reacalling tht ϕk′ is monotone increasing, this yields

‖z − z0‖H1(Ω) ≤ c‖ϕk(w)− ϕk(w0)‖,
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whence

(3.46) ‖z − z0‖H1(Ω) ≤ c‖w − w0‖.

Let then Z ∈ H1(Ω) be the solution to the linear elliptic problem (recall that ϕ′k is
nonnegative)

(3.47) a(Z, φ) + ((ϕ′k′(z0)Z, φ)) = ((ϕ′k(w0)(w − w0), φ)), ∀φ ∈ H1(Ω).

Setting h = w − w0, we can see that

(3.48) a(z − z0 − Z, φ) + ((ϕk′(z)− ϕk′(z0)− ϕ′k′(z0)Z, φ))

= ((ϕk(w)− ϕk(w0)− ϕ′k(w0)h, φ)), ∀φ ∈ H1(Ω).

Writing

ϕk′(z)− ϕk′(z0)− ϕ′k′(z0)Z = ϕ′k′(z0)(z − z0 − Z) + o(‖z − z0‖)
and

ϕk(w)− ϕk(w0)− ϕ′k(w0)h = o(‖h‖),
we obtain, taking φ = z − z0 − Z and employing (3.46) (also recall that ϕ′k′ ≥ 0),

a(z − z0 − Z, z − z0 − Z) ≤ |((o(‖h‖), z − z0 − Z))|,
whence

‖z − z0 − Z‖H1(Ω) = o(‖h‖).
This yields that F is differentiable at w0, with F ′(w0) ·h = Z, F ′ denoting the differential
of F .

�

We deduce from Proposition 3.7 the

Corollary 3.8. Let (u, v) be the solution to (3.1)-(3.4) given in Theorem 3.4. Then,
∀T > 0,

∂v

∂t
∈ L∞(0, T ;H1(Ω))

and

(3.49) ‖∂v
∂t
‖H1(Ω) ≤ c‖∂u

∂t
‖ a.e. t ≥ 0.
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Proof. It suffices to note that v = F(u), whence, owing to Proposition 3.7,

(3.50)
∂v

∂t
= F ′(u) · ∂u

∂t
.

Indeed, we can note that u ∈ H1(0, T ;H1(Ω)), ∀T > 0. Furthermore, we have

(3.51) a(
∂v

∂t
, φ) + ((ϕ′k′(v)

∂v

∂t
, φ)) = ((ϕ′k(u)

∂u

∂t
, φ)), ∀φ ∈ H1(Ω),

and (3.49) follows, taking φ = ∂v
∂t

(also recall that ∂u
∂t
∈ L∞(0, T ;L2(Ω)), ∀T > 0).

�

Remark 3.9. It follows from standard elliptic regularity results applied to (3.51) (see,
e.g., [1] and [2]) that, ∀T > 0, ∂v

∂t
∈ L∞(0, T ;H2(Ω)) ∩ L2(0, T ;H3(Ω)), with

‖∂v
∂t
‖H2(Ω) ≤ c‖∂u

∂t
‖ a.e. t ≥ 0

and

‖∂v
∂t
‖L2(0,T ;H3(Ω)) ≤ Q(T, ‖u0‖H1(Ω))‖

∂u

∂t
‖L2(0,T ;H1(Ω)).

4. Convergence to the limit problem

All constants c and c′ and functions Q in this section are independent of ε.
Let (uε, vε) and (u0, v0) be the unique strong solutions to the initial and limit problems,

respectively, as given in Theorems 2.1 and 3.4, where v0 = v0(0), i.e.,

(4.1)
∂uε

∂t
− α∆uε + κ(

k′

k′ + vε
− k

k + uε
) = J,

(4.2) ε
∂vε

∂t
− β∆vε + Fvε + κ(

k

k + uε
− k′

k′ + vε
) = FL,

(4.3)
∂uε

∂ν
=
∂vε

∂ν
= 0 on Γ,

(4.4) uε|t=0 = u0, v
ε|t=0 = v0(0),

and

(4.5)
∂u0

∂t
− α∆u0 + κ(

k′

k′ + v0
− k

k + u0
) = J,

(4.6) −β∆v0 + Fv0 + κ(
k

k + u0
− k′

k′ + v0
) = FL,
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(4.7)
∂u0

∂ν
=
∂v0

∂ν
= 0 on Γ,

(4.8) u0|t=0 = u0.

We have the

Theorem 4.1. The following error estimates hold, ∀T > 0:

‖uε(t)− u0(t)‖H1(Ω) ≤ Q(T, ‖u0‖H1(Ω))ε, ‖vε(t)− v0(t)‖H1(Ω) ≤ Q(T, ‖u0‖H1(Ω))
√
ε,

t ∈ [0, T ], and

‖uε − u0‖L2(0,T ;H2(Ω)) ≤ Q(T, ‖u0‖H1(Ω))ε, ‖vε − v0‖L2(0,T ;H2(Ω)) ≤ Q(T, ‖u0‖H1(Ω))ε.

Proof. We have, setting u = uε − u0 and v = vε − v0,

(4.9)
∂u

∂t
− α∆u+ ϕk(u

ε)− ϕk(u0)− ϕk′(vε) + ϕk′(v
0) = 0,

(4.10) ε
∂v

∂t
− β∆v + Fv + ϕk′(v

ε)− ϕk′(v0)− ϕk(uε) + ϕk(u
0) = −ε∂v

0

∂t
, ε > 0,

(4.11)
∂u

∂ν
=
∂v

∂ν
= 0 on Γ,

(4.12) u|t=0 = 0, v|t=0 = 0.

Multiplying (4.9) by u, we obtain, recalling that ϕk is monotone increasing,

(4.13)
d

dt
‖u‖2 + α‖∇u‖2 ≤ c‖u‖‖v‖.

Multiplying then (4.10) by v, we find, similarly,

(4.14) ε
d

dt
‖v‖2 + c‖v‖2

H1(Ω) ≤ c′(‖u‖‖v‖+ ε2‖∂v
0

∂t
‖2), c > 0.

Combining (4.13) and (4.14), we have, owing to (3.49),

(4.15)
d

dt
(‖u‖2 + ε‖v‖2) + c(‖u‖2

H1(Ω) + ‖v‖2
H1(Ω)) ≤ c′(‖u‖2 + ε‖v‖2 + ε2‖∂u

ε

∂t
‖2), c > 0,

from which it follows, owing to Gronwall’s lemma,

(4.16) ‖u(t)‖2 + ε‖v(t)‖2 + c

∫ T

0

(‖u(s)‖2
H1(Ω) + ‖v(s)‖2

H1(Ω)) ds
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≤ Q(T )ε2‖∂u
ε

∂t
‖2
L2(0,T ;L2(Ω)), c > 0, t ∈ [0, T ].

Multiplying now (4.1) by ∂uε

∂t
, we obtain

d

dt
‖∇uε‖2 + c‖∂u

ε

∂t
‖2 ≤ c′, c > 0,

whence

(4.17) ‖∂u
ε

∂t
‖2
L2(0,T ;L2(Ω)) ≤ Q(T, ‖u0‖H1(Ω)).

We finally deduce from (4.16)-(4.17) that

‖u(t)‖2 + ε‖v(t)‖2 + c

∫ T

0

(‖u(s)‖2
H1(Ω) + ‖v(s)‖2

H1(Ω)) ds

(4.18) ≤ Q(T, ‖u0‖H1(Ω))ε
2, c > 0, t ∈ [0, T ].

Multiplying next (4.9) by −∆u and (4.10) by −∆v, we find, recalling that ϕk and ϕk′
are Lipschitz continuous,

d

dt
‖∇u‖2 + c‖∆u‖2 ≤ c′(‖u‖2 + ‖v‖2), c > 0,

and

ε
d

dt
‖∇v‖2 + c‖∆v‖2 ≤ c′(‖u‖2 + ‖v‖2 + ε2‖∂v

0

∂t
‖2), c > 0,

respectively.
Summing these two inequalities, integrating over [0, T ] and proceeding as above, we

have, adding the resulting inequality to (4.18),

‖u(t)‖2
H1(Ω) + ε‖v(t)‖2

H1(Ω) + c

∫ T

0

(‖u(s)‖2
H2(Ω) + ‖v(s)‖2

H2(Ω)) ds

≤ c′(

∫ T

0

(‖u(s)‖2 + ‖v(s)‖2) ds+Q(T, ‖u0‖H1(Ω))ε
2), c > 0.

This yields, employing (4.18) to estimate the right-hand side,

‖u(t)‖2
H1(Ω) + ε‖v(t)‖2

H1(Ω) + c

∫ T

0

(‖u(s)‖2
H2(Ω) + ‖v(s)‖2

H2(Ω)) ds

≤ Q(T, ‖u0‖H1(Ω))ε
2, c > 0, t ∈ [0, T ],

which finishes the proof.
�

Remark 4.2. We have similar error estimates if we assume that ‖uε(0)−u0(0)‖H1(Ω) ≤ cε
and ‖vε(0)− v0(0)‖H1(Ω) ≤ c

√
ε.
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5. A stability result

As in [6], (3.1)-(3.2) possesses a unique spatially homogeneous equilibrium (u, v) given
by

v = L+
J

F
> 0

and

u =
k(J

κ
+ v

k′+v
)

1− (J
κ

+ v
k′+v

)
.

Note that u is not necessarily positive. We thus assume in what follows that

u > 0.

The linearized (around (u, v)) system reads

(5.1)
∂U

∂t
− α∆U + κ(

k

(k + u)2
U − k′

(k′ + v)2
V ) = 0,

(5.2) −β∆V + FV + κ(
k′

(k′ + v)2
V − k

(k + u)2
U) = 0,

(5.3)
∂U

∂ν
=
∂V

∂ν
= 0 on Γ,

(5.4) U |t=0 = U0.

It is not difficult here to prove the existence, uniqueness and regularity of the solution to
(5.1)-(5.4), assuming that U0 is regular enough. Furthermore, proceeding as above, we
can prove that, if U0 ≥ 0 a.e. x, then U(x, t) ≥ 0 and V (x, t) ≥ 0 a.e. (x, t).

Multiplying now (5.1) by k
(k+u)2

U and (5.2) by k′

(k′+v)2
V , we obtain, summing the two

resulting equalities,

(5.5)
1

2

k

(k + u)2

d

dt
‖U‖2 +

αk

(k + u)2
‖∇U‖2 +

βk′

(k′ + v)2
‖∇V ‖2 +

Fk′

(k′ + v)2
‖V ‖2

+

∫
Ω

(
k

(k + u)2
U − k′

(k′ + v)2
V )2 dx = 0.

It follows from (5.5) that

d

dt
‖U‖2 ≤ 0,

whence

(5.6) ‖U(t)‖ ≤ ‖U0‖, t ≥ 0.
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Multiplying next (5.2) by V , we easily find

‖V ‖ ≤ c‖U‖,
so that

(5.7) ‖V (t)‖ ≤ c‖U0‖, t ≥ 0.

We deduce from (5.6)-(5.7) that (u, v) is linearly stable with respect to the L2-norm. We
can also prove the linear stability with respect to the H1-norm, proceeding in a similar
way.

Now, an important question is whether we also have a linear exponential stability as
in [6] for the case ε > 0 (see also [5], [8], [9] and [10] for the ODE’s model (1.1)-(1.2)).
Indeed, as mentioned in the introduction, a therapeutic perspective of such a result is to
have the (spatially homogeneous) steady state outside the viability domain, where cell
necrosis occurs (see [8]).

We have, in this direction, the

Theorem 5.1. The stationary solution (u, v) is linearly exponentially stable, in the sense
that all eigenvalues s ∈ C associated with the linear system (5.1)-(5.2) satisfy Re(s) ≤ −ξ,
for a given ξ > 0, Re denoting the real part.

Proof. We first note that it follows from (5.2) that

(5.8) V = k1(−β∆ + (F + k2)I)−1U,

where k1 = κk
(k+u)2

and k2 = κk′

(k′+v)2
. Injecting this into (5.1), we obtain

(5.9)
∂U

∂t
− α∆U + k1U − k1k2(−β∆ + (F + k2)I)−1U = 0.

We then look for solutions of the form

U(x, t) = Û(x)est,

for s ∈ C, s = ζ + iη. Injecting this into (5.9), we find

(5.10) −α∆Û + (s+ k1)Û − k1k2(−β∆ + (F + k2)I)−1Û = 0,

where

(5.11)
∂Û

∂ν
= 0 on Γ.

This yields

(5.12) αβ∆2Û − (βs+ αF + βk1 + αk2)∆Û + ((F + k2)s+ k1F )Û = 0,

where, owing to (5.10) and (5.11),
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(5.13)
∂Û

∂ν
=
∂∆Û

∂ν
= 0 on Γ.

Multiplying (5.12) by the conjugate of Û , integrating over Ω and by parts and taking
the real part, we have

(5.14) αβ‖|∆Û |‖2 + (βζ + αF + βk1 + αk2)‖|∇Û |‖2 + ((F + k2)ζ + k1F )‖|Û |‖2 = 0.

Therefore, when ζ ≥ 0, then, necessarily, Û ≡ 0. Furthermore, (5.14) can have nontrivial
solutions only when

βζ + αF + βk1 + αk2 ≤ 0

or

(F + k2)ζ + k1F ≤ 0.

Therefore, necessarily,

(5.15) ζ ≤ max(−αF + βk1 + αk2

β
,− k1F

F + k2

) < 0,

which finishes the proof.
�
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