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Our aim in this paper is to study properties of a parabolic-elliptic system related with brain lactate kinetics. These equations are obtained from a reaction-diffusion system, when a small parameter vanishes. In particular, we prove the existence and uniqueness of nonnegative solutions and obtain error estimates on the difference of the solutions to the initial reaction-diffusion system and those to the limit one, on bounded time intervals. We also study the linear stability of the unique spatially homogeneous equilibrium.

Introduction

The following system of ODE's:

(1.1)

du dt + κ( u k + u - v k + v ) = J, κ, k, k , J > 0, (1.2) ε dv dt + F v + κ( v k + v - u k + u ) = F L, ε, F, L > 0,
where ε is a small parameter, was proposed and studied as a model for brain lactate kinetics (see [START_REF] Costalat | Mathematical modeling of metabolism and hemodynamics[END_REF], [START_REF] Lahutte-Auboin | Modélisation biomathématique du métabolisme énergétique cérébral : réduction de modèle et approche multi-échelle, application à l'aide à la décision pour la pathologie des gliomes[END_REF], [START_REF] Lahutte-Auboin | Dip and buffering in a fast-slow system associated to brain lactate kinetics[END_REF] and [START_REF] Lahutte-Auboin | On a minimal model for hemodynamics and metabolism of lactate: application to low grade glioma and therapeutic strategies[END_REF]; see also [START_REF] Aubert | Interaction between astrocytes and neurons studied using a mathematical model of compartmentalized energy metabolism[END_REF]). In this context, u = u(t) and v = v(t) correspond to the lactate concentrations in an interstitial (i.e., extra-cellular) domain and in a capillary domain, respectively. Furthermore, the nonlinear term κ( u k+u -v k +v ) stands for a co-transport through the brain-blood boundary (see [START_REF] Keener | Mathematical physiology[END_REF]). Finally, J and F are forcing and input terms, respectively, assumed frozen (more generally, J depends on t and u and accounts for the interactions with a third intracellular compartment (which includes both neurons and astrocytes), while F = F (t) (an applied electrical stimulus; see [START_REF] Hu | A temporary local energy pool coupled to neuronal activity: fluctuations of extracellular lactate levels in rat brain monitored with rapid-response enzyme-based sensor[END_REF]) is piecewise linear and periodic). This model has essential applications to the therapeutic management of glioma (also called glial tumors); see [START_REF] Lahutte-Auboin | Modélisation biomathématique du métabolisme énergétique cérébral : réduction de modèle et approche multi-échelle, application à l'aide à la décision pour la pathologie des gliomes[END_REF] for thorough discussions on this issue.

Let us assume that u(0) and v(0) are nonnegative (recall that u and v are concentrations and are thus expected to be nonnegative). Then, noting that, if u(0) = 0, then du dt (0) > 0 and, if v(0) = 0, then dv dt (0) > 0, it follows from Cauchy-Lipschitz theorem that, for t > 0 small, u and v exist and are nonnegative. This also yields that the solutions are defined and remain nonnegative on the whole interval R + ; indeed, it is not difficult to prove that they are bounded on finite time intervals. Furthermore, in [START_REF] Costalat | Mathematical modeling of metabolism and hemodynamics[END_REF], [START_REF] Lahutte-Auboin | Modélisation biomathématique du métabolisme énergétique cérébral : réduction de modèle et approche multi-échelle, application à l'aide à la décision pour la pathologie des gliomes[END_REF], [START_REF] Lahutte-Auboin | Dip and buffering in a fast-slow system associated to brain lactate kinetics[END_REF] and [START_REF] Lahutte-Auboin | On a minimal model for hemodynamics and metabolism of lactate: application to low grade glioma and therapeutic strategies[END_REF], questions related to the stability of the unique equilibrium were addressed. This constitutes an essential point in the modeling, since, as discussed in [START_REF] Lahutte-Auboin | Modélisation biomathématique du métabolisme énergétique cérébral : réduction de modèle et approche multi-échelle, application à l'aide à la décision pour la pathologie des gliomes[END_REF], a therapeutic perspective of such a result is to have the steady state outside the viability domain, where cell necrosis occurs. Finally, in [START_REF] Lahutte-Auboin | Dip and buffering in a fast-slow system associated to brain lactate kinetics[END_REF], justifications for the dip and buffering which are observed in experiments (see [START_REF] Hu | A temporary local energy pool coupled to neuronal activity: fluctuations of extracellular lactate levels in rat brain monitored with rapid-response enzyme-based sensor[END_REF]) were given, based on geometrical arguments and averaging theory on a slow manifold.

We can note that the above ODE's model does not account for spatial diffusion. Taking this into account would be relevant and desirable from a biological point of view. The simplest possible corresponding PDE's (reaction-diffusion) system, accounting for spatial diffusion, reads

(1.3) ∂u ∂t -α∆u + κ( u k + u - v k + v ) = J, α > 0, (1.4) ε ∂v ∂t -β∆v + F v + κ( v k + v - u k + u ) = F L, β > 0,
where u = u(x, t) and v = v(x, t), which we consider in a bounded and regular domain Ω of R N , N = 1, 2 or 3, together with Neumann boundary conditions,

∂u ∂ν = ∂v ∂ν = 0 on Γ,
where Γ = ∂Ω and ν is the unit outer normal vector. Note that the terms -α∆u and -β∆v correspond to random motions. Note however that more precise models should account for the geometry, i.e., the different compartments (interstitial, capillary), so that (1.3)-(1.4) should be viewed as a very first step towards PDE's models for brain lactate kinetics. We will consider more realistic models elsewhere. We studied in [START_REF] Guillevin | On a reaction-diffusion system associated with brain lactate kinetics[END_REF] the existence, uniqueness and regularity of nonnegative solutions to (1.3)-(1.4) (note that the mathematical analysis of (1.3)-(1.4) (and, in particular, the wellposedness) appears to be challenging, due to the coupling terms, especially for negative initial data (though biologically irrelevant, this makes sense from a mathematical point of view); this is also the case for the ODE's model (1.1)-(1.2)). We further established the linear (exponential) stability of the unique spatially homogeneous equilibrium. We also mention [START_REF] Miranville | A singular reaction-diffusion equation associated with brain lactate kinetics[END_REF] in which we proved the existence, uniqueness and regularity of the solutions to the following singular reaction-diffusion equation:

(1.5) ∂u ∂t -∆u + F u + κ u k + u = f (x, t), F ≥ 0,
corresponding to the case where either u or v is known in (1.3) and (1.4); we can also think of (1.5) as an equation in each compartment, assuming that the lactate concentration is known in the other one. Our aim in this paper is to study the limit system

(1.6) ∂u ∂t -α∆u + κ( u k + u - v k + v ) = J, (1.7) -β∆v + F v + κ( v k + v - u k + u ) = F L,
corresponding to ε = 0 in (1.4). We prove the existence and uniqueness of nonnegative solutions to (1.6)-(1.7). We then prove that the solutions to the initial reaction-diffusion system converge to those to the limit parabolic-elliptic one, on finite time intervals, and provide an error estimate in terms of ε. We finally study the linear stability of the unique spatially homogeneous equilibrium. We can note that a similar analysis would also be relevant in the context of the ODE's model (1.1)-(1.2). Though some of the results obtained here could apply (in a simpler way) to this system, this will be considered in more details elsewhere.

Notation: We denote by ((•, •)) the usual L 2 -scalar product, with associated norm • . More generally, • X denotes the norm on the Banach space X and, if X is a Hilbert space, ((•, •)) X denotes the associated scalar product. Throughout the paper, the same letters c, c and c denote positive constants which may vary from line to line. Similarly, the same letter Q denotes continuous and monotone increasing (with respect to each argument) functions which may vary from line to line.

The case ε > 0

We consider the following initial and boundary value problem:

(2.1) ∂u ∂t -α∆u + κ( u k + u - v k + v ) = J, (2.2) 
ε ∂v ∂t -β∆v + F v + κ( v k + v - u k + u ) = F L, ε > 0, (2.3) ∂u ∂ν = ∂v ∂ν = 0 on Γ, (2.4) u| t=0 = u 0 , v| t=0 = v 0 .
Note that (2.1)-(2.2) are equivalent to

(2.5) ∂u ∂t -α∆u + κ( k k + v - k k + u ) = J, (2.6) ε ∂v ∂t -β∆v + F v + κ( k k + u - k k + v ) = F L.
We assume that

(2.7) (u 0 , v 0 ) ∈ H 2 N (Ω) 2 , u 0 ≥ 0, v 0 ≥ 0 a.e.
x, where

H 2 N (Ω) = {w ∈ H 2 (Ω), ∂w ∂ν = 0 on Γ}.
We proved in [START_REF] Guillevin | On a reaction-diffusion system associated with brain lactate kinetics[END_REF] the Theorem 2.1. We assume that (2.7) holds. Then, (2.1)-(2.4) possesses a unique strong solution (u, v) such that

(2.8) u ≥ 0, v ≥ 0 a.e. (x, t)
and, ∀T > 0,

(u, v) ∈ L ∞ (0, T ; H 2 N (Ω) 2 ) ∩ L 2 (0, T ; H 3 (Ω) 2 ), ( ∂u ∂t , ∂v ∂t ) ∈ L ∞ (0, T ; L 2 (Ω) 2 ) ∩ L 2 (0, T ; H 1 (Ω) 2 ).
Furthermore,

u(t) L ∞ (Ω) ≤ u 0 L ∞ (Ω) + (J + κ)t, t ≥ 0, and 
v(t) L ∞ (Ω) ≤ e -F ε t v 0 L ∞ (Ω) + F L + κ F , t ≥ 0.
Finally, if M ≥ F L+κ F and 0 ≤ v 0 ≤ M a.e. x, then 0 ≤ v ≤ M a.e. (x, t).

Remark 2.2. As far as the above regularity is concerned, the corresponding constants in [START_REF] Guillevin | On a reaction-diffusion system associated with brain lactate kinetics[END_REF] depend on ε, i.e., they are not bounded uniformly with respect to ε as this quantity goes to 0. However, it is not difficult, reading the details, to see that most constants can be made independent of ε, yielding regularity estimates on u, ∂u ∂t and v which are uniform with respect to ε as ε → 0. Now, we have not been able to derive, at least in a straightforward way, such uniform estimates on ∂v ∂t which would allow us to pass to the limit in (2.2) (say, in a weak (variational) form) to deduce the existence of a solution to the limit problem corresponding to ε = 0 (see however Section 4). We will thus give a direct proof of existence for the limit problem which also has an interest on its own. Remark 2.3. (i) It follows from the above that the capillary lactate concentration is uniformly (with respect to time) bounded. However, we have not been able to derive a similar upper bound on the interstitial lactate concentration u. We can note that, in the biological model, outside a bounded viability domain, cell necrosis occurs (see [START_REF] Lahutte-Auboin | Modélisation biomathématique du métabolisme énergétique cérébral : réduction de modèle et approche multi-échelle, application à l'aide à la décision pour la pathologie des gliomes[END_REF]), meaning that one expects viable trajectories to be uniformly bounded. (ii) Multiplying (2.1) by u + k, integrating over Ω and by parts, we obtain

dE dt + α ∇u 2 + κ u L 1 (Ω) ≤ ((J + κv k + v , u + k)),
where

E = 1 2 u 2 + ku.
Noting that v is uniformly bounded (we assume that, say, 0 ≤ v 0 ≤ F L+κ F ), we take, for κ, J, F and L given, J small enough and k large enough such that

J + κv k + v < κ.
We thus deduce that

dE dt + α ∇u 2 + c u L 1 (Ω) ≤ c , c > 0,
which yields, noting that

α ∇u 2 + c u L 1 (Ω) ≥ c ( ∇u + u L 1 (Ω) ) -c ≥ c u -c , the differential inequality (2.9) dE dt + c √ E ≤ c , c > 0. Set E * = ( c c ) 2
, where c and c are the same constants as in (2.9), so that

dE * dt + c √ E * = c .

It then follows from comparison arguments that

(2.10)

E(t) ≤ max(E(0), E * ), t ≥ 0,
and we finally deduce that the L 2 -norm of u is uniformly bounded.

The case ε = 0

We consider in this section the following initial and boundary value problem:

(3.1) ∂u ∂t -α∆u + κ( k k + v - k k + u ) = J, (3.2) -β∆v + F v + κ( k k + u - k k + v ) = F L, (3.3) ∂u ∂ν = ∂v ∂ν = 0 on Γ, A. MIRANVILLE (3.4) u| t=0 = u 0 .
We assume that

(3.5) u 0 ∈ H 2 N (Ω), u 0 ≥ 0 a.e. x. Remark 3.1. It follows from (3.2) that -β∆v(0) + F v(0) - k k + v(0) = F L - k k + u 0 .
We will see below that this allows to define in a unique way v(0) such that v(0) ≥ 0 a.e.

x.

3.1.

Existence and uniqueness of solutions to an auxiliary problem. We consider the following modified initial and boundary value problem:

(3.6) ∂u ∂t -α∆u + κ( u k + |u| - v k + |v| ) = J, (3.7) 
-β∆v + F v + κ( v k + |v| - u k + |u| ) = F L, (3.8 
) ∂u ∂ν = ∂v ∂ν = 0 on Γ, (3.9) u| t=0 = u 0 .
We associate with (3.6)-(3.9) the following weak/variational formulation, for T > 0 given:

Find (u, v) : [0, T ] → H 1 (Ω) 2 such that (3.10) d dt ((u, φ)) + α((∇u, ∇φ)) + ((ϕ k (u), φ)) -((ϕ k (v), φ)) = ((J, φ)), ∀φ ∈ H 1 (Ω), (3.11) β((∇v, ∇ψ)) + F ((v, ψ)) + ((ϕ k (v), ψ)) -((ϕ k (u), ψ)) = ((F L, ψ)), ∀ψ ∈ H 1 (Ω),
in the sense of distributions, and

(3.12) u(0) = u 0 in L 2 (Ω),
where we have set, for c > 0 given,

ϕ c (s) = κs c + |s| , s ∈ R.
We can note that ϕ c is bounded (with |ϕ c | ≤ κ) and of class C 1 , with ϕ c (s) = κc (c+|s|) 2 , so that ϕ c is also Lipschitz continuous, with Lipschitz constant κ c .

Let then 0 = λ 1 < λ 2 ≤ • • • be the eigenvalues of the minus Laplace operator associated with Neumann boundary conditions and w 1 , w 2 , • • • be associated eigenvectors such that the w j 's form an orthonormal in L 2 (Ω) and orthogonal in H 1 (Ω) basis. Setting

V m = Span(w 1 , • • •, w m ), m ∈ N,
we consider the following approximated problem, for T > 0 given:

Find (u m , v m ) : [0, T ] → V m × V m such that (3.13) d dt ((u m , φ)) + α((∇u m , ∇φ)) + ((ϕ k (u m ), φ)) -((ϕ k (v m ), φ)) = ((J, φ)), ∀φ ∈ V m , (3.14) β((∇v m , ∇ψ))+F ((v m , ψ))+((ϕ k (v m ), ψ))-((ϕ k (u m ), ψ)) = ((F L, ψ)), ∀ψ ∈ V m ,
in the sense of distributions, and

(3.15) u m (0) = u 0m ,
where u 0m = P m u 0 , P m being the orthogonal projector (for the

L 2 -norm) from L 2 (Ω) onto V m .
For w ∈ V m given, we consider the following elliptic problem:

Find z ∈ V m such that (3.16) a(z, φ) + ((ϕ k (z), φ)) = ((F L + ϕ k (w), φ)), ∀φ ∈ V m ,
where

a(•, •) = β((∇•, ∇•)) + F ((•, •)
) is bilinear, symmetric, continuous and coercive on V m (and also on H 1 (Ω)). Let then R = R m be the operator defined by

R : V m → V m , z → R(z), where ((R(z), φ)) H 1 (Ω) = a(z, φ) + ((ϕ k (z), φ)) -((F L + ϕ k (w), φ)), ∀φ ∈ V m .
It is clear that this operator is well defined and continuous (since ϕ k is Lipschitz continuous). Furthermore, there holds, for z ∈ V m ,

((R(z), z)) H 1 (Ω) = a(z, z) + ((ϕ k (z), z)) -((F L + ϕ k (w), z)) ≥ c z 2
H 1 (Ω) -c z , c > 0 (note indeed that w is given and recall that ϕ k and ϕ k are bounded). Therefore,

((R(z), z)) H 1 (Ω) ≥ c z 2 H 1 (Ω) -c , so that ((R(z), z)) H 1 (Ω) ≥ 0 whenever z H 1 (Ω) ≥ c c .
It thus follows from the Brouwer fixed point theorem that there exists [START_REF] Temam | Navier-Stokes equations: theory and numerical analysis[END_REF]), which is equivalent to (3.16). Note that all constants here (and also below) are independent of m. This thus defines a mapping F = F m ,

z ∈ V m , z H 1 (Ω) ≤ c c , such that R(z) = 0 in V m (see, e.g.,
F : V m → V m , w → z = F(w). Let then (w 1 , w 2 ) ∈ V m × V m and set z i = F(w i ), i = 1, 2. We have, setting z = z 1 -z 2 and w = w 1 -w 2 , (3.17) a(z, φ) + ((ϕ k (z 1 ) -ϕ k (z 2 ), φ)) = ((ϕ k (w 1 ) -ϕ k (w 2 ), φ)), ∀φ ∈ V m .
Taking φ = z and noting that ϕ k is monotone increasing and ϕ k is Lipschitz continuous, we obtain

z 2 H 1 (Ω) ≤ c w z , whence (3.18) F(w 1 ) -F(w 2 ) H 1 (Ω) ≤ c w 1 -w 2 ,
which yields that F is Lipschitz continuous on V m (both for the L 2 and H 1 -norms); this also yields that F is indeed a mapping, since

w 1 = w 2 implies z 1 = z 2 .
It follows from the above that (3.13)-(3.15) is equivalent to Find u m : [0, T ] → V m such that

(3.19) d dt ((u m , φ)) + α((∇u m , ∇φ)) + ((ϕ k (u m ), φ)) -((ϕ k • F(u m ), φ)) = ((J, φ)), ∀φ ∈ V m , in the sense of distributions, (3.20) u m (0) = u 0m
and then set v m = F(u m ). Since ϕ k and ϕ k are Lipschitz continuous on R and F is Lipschitz continuous on V m with respect to the L 2 -norm, it is easy to prove that (3.19)-(3.20) possesses a (unique) solution u m ∈ L ∞ (0, T ; L 2 (Ω)) ∩ L 2 (0, T ; H 1 (Ω)) (see, e.g., [START_REF] Temam | Infinite-dimensional dynamical systems in mechanics and physics[END_REF]), whence, setting v m = F(u m ), the existence of a solution (u m , v m ) to (3.13)-(3.15) such that v m ∈ L ∞ (0, T ; H 1 (Ω)). We also note that ∂um ∂t ∈ L 2 (0, T ;

H -1 (Ω)), so that u m ∈ C([0, T ]; L 2 (Ω)). Writing u m (t) = m i=1 d i,m (t)w i , taking φ = λ i w i in (3.19
), multiplying the resulting equality by d i,m and summing over i, we obtain 1 2

d dt ∇u m 2 + α ∆u m 2 -((ϕ k (u m ), ∆u m )) + ((ϕ k • F(u m ), ∆u m )) = 0,
which yields, recalling that ϕ k and ϕ k are bounded,

d dt ∇u m 2 + α ∆u m 2 ≤ c,
whence estimates on u m in L ∞ (0, T ; H 1 (Ω)) and L 2 (0, T ; H 2 (Ω)). It thus follows that

∂um ∂t ∈ L ∞ (0, T ; H -1 (Ω)) ∩ L 2 (0, T ; L 2 (Ω)).
Since the above regularity estimates are uniform with respect to m, we deduce from classical Aubin-Lions compactness theorems that, at least for a subsequence which we do not relabel,

u m → u in L ∞ (0, T ; H 1 (Ω)) weak star, in L 2 (0, T ; H 2 (Ω)) weak, in C([0, T ]; L 2 (Ω)) and a.e. (x, t) ∈ Ω × (0, T ), v m → v in L ∞ (0, T ; H 1 (Ω)
) weak star, for some functions u and v. Actually, since v m = F(u m ) and F is Lipschitz continuous with respect to the L 2 -norm, we can see that

(v m ) is a Cauchy sequence in C([0, T ]; L 2 (Ω)) (note indeed that, if m ≥ m, then V m ⊂ V m and that the constant c in (3.18) is independent of m), so that v m → v in C([0, T ]; L 2 (Ω)).
Recalling finally that ϕ k and ϕ k are Lipschitz continuous, this is sufficient to pass to the limit in (3.13)-(3.15) and deduce the existence of a solution (u, v) to (3.10)-(3.12) (note that the initial condition u 0 = u(0) makes sense; actually, v(0) also makes sense). Indeed, we need to pass to the limit in relations of the form 2 and θ ∈ D(0, T ). More precisely, we have the Theorem 3.2. We assume that u 0 ∈ H 1 (Ω). Then, (3.10)-(3.12) possesses a unique solution (u, v) such that, ∀T > 0,

T 0 [-((u m , φ))θ (t) + α((∇u m , ∇φ))θ(t) + (ϕ k (u m ), φ))θ(t) -((ϕ k (v m ), φ))θ(t) -((J, φ))θ(t)] dt = 0 and T 0 [β((∇v m , ∇ψ)) + F ((v m , ψ)) + ((ϕ k (v m ), ψ)) -((ϕ k (u m ), ψ)) -((F L, ψ))]θ(t) dt = 0, for (φ, ψ) ∈ H 1 (Ω)
u ∈ L ∞ (0, T ; H 1 (Ω)) ∩ L 2 (0, T ; H 2 (Ω)) ∩ C([0, T ]; L 2 (Ω)), v ∈ L ∞ (0, T ; H 1 (Ω)) ∩ C([0, T ]; L 2 (Ω)) and ∂u ∂t ∈ L ∞ (0, T ; H -1 (Ω)) ∩ L 2 (0, T ; L 2 (Ω)).
Proof. There remains to prove the uniqueness. Let thus (u 1 , v 1 ) and (u 2 , v 2 ) be two such solutions, with initial data u 0,1 and u 0,2 , respectively. We have, setting (u, v)

= (u 1 -u 2 , v 1 -v 2 ) and u 0 = u 0,1 -u 0,2 , (3.21) d dt ((u, φ)) + α((∇u, ∇φ)) + ((ϕ k (u 1 ) -ϕ k (u 2 ), φ)) -((ϕ k (v 1 ) -ϕ k (v 2 ), φ)) = 0, ∀φ ∈ H 1 (Ω), (3.22) β((∇v, ∇ψ)) + F ((v, ψ)) + ((ϕ k (v 1 ) -ϕ k (v 2 ), ψ)) -((ϕ k (u 1 ) -ϕ k (u 2 ), ψ)) = 0, ∀ψ ∈ H 1 (Ω), (3.23) u(0) = u 0 .
Taking φ = u and ψ = v, we obtain, recalling that ϕ k and ϕ k are monotone increasing and Lipschitz continuous, We deduce from (3.26) and (3.28) the uniqueness, as well as the continuous dependence with respect to the initial data in the L 2 -norm.

3.2.

Existence and uniqueness of nonnegative solutions. We first prove additional regularity results on the solutions to (3.10)-(3.11), assuming that (3.5) holds. This can be fully justified within the Galerkin scheme considered above. Taking ψ = -∆v in (3.11), we have

β ∆v 2 + F ∇v 2 = ((ϕ k (v), ∆v)) -((ϕ k (u), ∆v
)), which yields, recalling that ϕ k and ϕ k are bounded,

β 2 ∆v 2 + F ∇v 2 ≤ c, whence estimates on v in L ∞ (0, T ; H 2 (Ω)), ∀T > 0.
Taking then φ = ∆ 2 u in (3.10) and ψ = ∆ 2 v in (3.11), we obtain 1 2

d dt ∆u 2 + α ∇∆u 2 = -((ϕ k (u), ∆ 2 u)) + ((ϕ k (v), ∆ 2 u))
and

β ∇∆v 2 + F ∆v 2 = -((ϕ k (v), ∆ 2 v)) + ((ϕ k (u), ∆ 2 v)), respectively. Noting that |((ϕ k (u), ∆ 2 u))| = |((ϕ k (u)∇u, ∇∆u))| ≤ c ∇u ∇∆u ,
we find, proceeding in a similar way for the other terms,

d dt ∆u 2 + α ∇∆u 2 ≤ c( ∇u 2 + ∇v 2 )
and

β 2 ∇∆v 2 + F ∆v 2 ≤ c( ∇u 2 + ∇v 2 ),
whence estimates on u and v in L ∞ (0, T ; H 2 (Ω)) ∩ L 2 (0, T ; H 3 (Ω)) and L ∞ (0, T ; H 3 (Ω)), respectively, ∀T > 0.

Remark 3.3. This yields that ∂u ∂t ∈ L ∞ (0, T ; L 2 (Ω)) ∩ L 2 (0, T ; H 1 (Ω)), ∀T > 0. We further note that the solution to (3.10)-(3.12) is strong, i.e., (3.6)-(3.9) are satisfied almost everywhere.

We can now prove the Theorem 3.4. We assume that (3.5) holds. Then, (3.1)-(3.4) possesses a unique strong solution (u, v) such that u ≥ 0, v ≥ 0 a.e. (x, t) and, ∀T > 0,

u ∈ L ∞ (0, T ; H 2 N (Ω)) ∩ L 2 (0, T ; H 3 (Ω)), v ∈ L ∞ (0, T ; H 3 (Ω) ∩ H 2 N (Ω)) ∩ C([0, T ]; L 2 (Ω)) and ∂u ∂t ∈ L ∞ (0, T ; L 2 (Ω)) ∩ L 2 (0, T ; H 1 (Ω)).
Proof. Let (u, v) be the unique strong solution to (3.6)-(3.9). Multiplying (3.6) by -u - and (3.7) by -v -, where x -= max(0, -x), we have

(3.29) 1 2 d dt u -2 + α ∇u -2 + κ Ω |u -| 2 k + |u| dx + κ Ω vu - k + |v| dx ≤ 0 and (3.30) β ∇u -2 + F u -2 + κ Ω |v -| 2 k + |v| dx + κ Ω uv - k + |u| dx ≤ 0,
respectively. Writing v = v + -v -, where x + = max(0, x), we deduce from (3.29) that 1 2

d dt u -2 ≤ κ Ω u -v - k + |v| dx, whence (3.31) d dt u -2 ≤ c u -v -.
Proceeding in a similar way for (3.30), we find

F v -2 ≤ c u -v -, whence (3.32) v -≤ c u -.
Injecting this into (3.31), we deduce that

d dt u -2 ≤ c u -2 ,
which yields, owing to Gronwall's lemma,

(3.33) u -(t) ≤ e ct u -(0) , t ≥ 0,
whence, since u -(0) = 0, u ≥ 0 a.e. (x, t). This, together with (3.32), yields that v ≥ 0 a.e. (x, t). Consequently, (u, v) is a strong solution to (3.1)-(3.4), which finishes the proof.

Remark 3.5. Proceeding exactly as in [START_REF] Guillevin | On a reaction-diffusion system associated with brain lactate kinetics[END_REF], we can prove that

u(t) L ∞ (Ω) ≤ u 0 L ∞ (Ω) + (J + κ)t, t ≥ 0. Furthermore, it follows from (3.2) that (3.34) -β∆v + F v ≤ F L + κ.
Multiplying (3.34) by v m+1 , m ∈ N, we have

β(m + 1) Ω v m |∇v| 2 dx + F v m+2 L m+2 (Ω) ≤ (F L + κ) Ω v m+1 dx, which yields F v m+2 L m+2 (Ω) ≤ (F L + κ)Vol(Ω) 1 m+2 v m+1 L m+2 (Ω) , whence (3.35) v L m+2 (Ω) ≤ F L + κ F Vol(Ω) 1 m+2 .
Passing to the limit m → +∞ in (3.35), we finally obtain (see, e.g., [START_REF] Alikakos | L p bounds of solutions to reaction-diffusion equations[END_REF])

v(t) L ∞ (Ω) ≤ F L + κ F , t ≥ 0,
meaning that the capillary lactate concentration is again uniformly (with respect to time) bounded. Also note that (2.10) still holds.

Remark 3.6. (i) As mentioned in the introduction (for the case ε > 0, but the situation is the same here), the existence of solutions for negative initial data is a challenging issue. However, we can prove the following partial result (see also [START_REF] Guillevin | On a reaction-diffusion system associated with brain lactate kinetics[END_REF] for the case ε > 0). Let δ 1 and δ 2 be two positive constants such that k -δ 1 > 0 and k -δ 2 > 0 and assume that u 0 ≥ -δ 1 a.e. x. We then consider the following modified initial and boundary value problem:

(3.36) ∂u ∂t -α∆u + κ( u k -δ 1 + |u + δ 1 | - v k -δ 2 + |v + δ 2 | ) = J, (3.37) 
-β∆v + F v + κ( v k -δ 2 + |v + δ 2 | - u k -δ 1 + |u + δ 1 | ) = F L, (3.38) ∂u ∂ν = ∂v ∂ν = 0 on Γ, (3.39) u| t=0 = u 0 .
The existence and uniqueness of the solution to (3.36)-(3.39) can be proved by arguing as above. Next, we set ũ = u + δ 1 and ṽ = v + δ 2 . These functions are solutions to

(3.40) ∂ ũ ∂t -α∆ũ + κ( ũ k -δ 1 + |ũ| - ṽ k -δ 2 + |ṽ| ) = J, (3.41) -β∆ṽ + F ṽ + κ( ṽ k -δ 2 + |ṽ| - ũ k -δ 1 + |ũ| ) = F , (3.42) ∂ ũ ∂ν = ∂ṽ ∂ν = 0 on Γ, (3.43) ũ| t=0 = u 0 + δ 1 ,
where

J = J + κ( δ 1 k -δ 1 + |ũ| - δ 2 k -δ 2 + |ṽ| ) and F = F (L + δ 2 ) -κ( δ 1 k -δ 1 + |ũ| - δ 2 k -δ 2 + |ṽ| ).
Choosing δ 1 and δ 2 such that J ≥ 0 and F ≥ 0 (in particular, these hold when δ 1 and δ 2 are small enough) and noting that ũ(0) ≥ 0 a.e. x, we can prove, as in the proof of Theorem 3.4, that ũ(x, t) ≥ 0 and ṽ(x, t) ≥ 0 a.e. (x, t), so that (u, v) is solution to (

, t) ≥ -δ 1 and v(x, t) ≥ -δ 2 a.e. (x, t).

(ii) Similarly, we can prove that, if δ 1 and δ 2 are positive and small enough, with u 0 ≥ δ 1 a.e. x, then u(x, t) ≥ δ 1 and v(x, t) ≥ δ 2 a.e. (x, t).

It follows from the above that we can actually define the Lipschitz continuous (for the L 2 and H 1 -norms) mapping

F : H 1 (Ω) → H 1 (Ω), w → z = F(w),
where z is the unique solution to the following elliptic problem:

(3.44) a(z, φ) + ((ϕ k (z), φ)) = ((F L + ϕ k (w), φ)), ∀φ ∈ H 1 (Ω).
We then have the Proposition 3.7. The mapping F is differentiable with respect to the L 2 and H 1 -norms.

Proof. Let w 0 and w belong to H 1 (Ω) and set z 0 = F(w 0 ) and z = F(w). We then have

(3.45) a(z -z 0 , φ) + ((ϕ k (z) -ϕ k (z 0 ), φ)) = ((ϕ k (w) -ϕ k (w 0 ), φ)), ∀φ ∈ H 1 (Ω).
Taking φ = z -z 0 and reacalling tht ϕ k is monotone increasing, this yields

z -z 0 H 1 (Ω) ≤ c ϕ k (w) -ϕ k (w 0 ) , whence (3.46) z -z 0 H 1 (Ω) ≤ c w -w 0 .
Let then Z ∈ H 1 (Ω) be the solution to the linear elliptic problem (recall that ϕ k is nonnegative)

(3.47) a(Z, φ) + ((ϕ k (z 0 )Z, φ)) = ((ϕ k (w 0 )(w -w 0 ), φ)), ∀φ ∈ H 1 (Ω).
Setting h = w -w 0 , we can see that

(3.48) a(z -z 0 -Z, φ) + ((ϕ k (z) -ϕ k (z 0 ) -ϕ k (z 0 )Z, φ)) = ((ϕ k (w) -ϕ k (w 0 ) -ϕ k (w 0 )h, φ)), ∀φ ∈ H 1 (Ω).
Writing

ϕ k (z) -ϕ k (z 0 ) -ϕ k (z 0 )Z = ϕ k (z 0 )(z -z 0 -Z) + o( z -z 0 )
and

ϕ k (w) -ϕ k (w 0 ) -ϕ k (w 0 )h = o( h ),
we obtain, taking φ = z -z 0 -Z and employing (3.46) (also recall that ϕ k ≥ 0),

a(z -z 0 -Z, z -z 0 -Z) ≤ |((o( h ), z -z 0 -Z))|, whence z -z 0 -Z H 1 (Ω) = o( h ).
This yields that F is differentiable at w 0 , with F (w 0 ) • h = Z, F denoting the differential of F.

We deduce from Proposition 3. 

(Ω)) ≤ Q(T, u 0 H 1 (Ω) ) ∂u ∂t L 2 (0,T ;H 1 (Ω)) .

Convergence to the limit problem

All constants c and c and functions Q in this section are independent of ε. Let (u ε , v ε ) and (u 0 , v 0 ) be the unique strong solutions to the initial and limit problems, respectively, as given in Theorems 2.1 and 3.4, where v 0 = v 0 (0), i.e., (4.1) We have the Theorem 4.1. The following error estimates hold, ∀T > 0:

∂u ε ∂t -α∆u ε + κ( k k + v ε - k k + u ε ) = J, (4.2) ε ∂v ε ∂t -β∆v ε + F v ε + κ( k k + u ε - k k + v ε ) = F L, (4.3) ∂u ε ∂ν = ∂v ε ∂ν = 0 on Γ, (4.4) u ε | t=0 = u 0 , v ε | t=0 = v 0 (0), and 
(4.5) ∂u 0 ∂t -α∆u 0 + κ( k k + v 0 - k k + u 0 ) = J, (4.6) -β∆v 0 + F v 0 + κ( k k + u 0 - k k + v 0 ) = F L,
u ε (t) -u 0 (t) H 1 (Ω) ≤ Q(T, u 0 H 1 (Ω) )ε, v ε (t) -v 0 (t) H 1 (Ω) ≤ Q(T, u 0 H 1 (Ω) ) √ ε, t ∈ [0, T ],
and 

u ε -u 0 L 2 (0,T ;H 2 (Ω)) ≤ Q(T, u 0 H 1 (Ω) )ε, v ε -v 0 L 2 (0,T ;H 2 (Ω)) ≤ Q(T, u 0 H 1 (Ω) )ε. Proof. We have, setting u = u ε -u 0 and v = v ε -v 0 , (4.9) ∂u ∂t -α∆u + ϕ k (u ε ) -ϕ k (u 0 ) -ϕ k (v ε ) + ϕ k (v 0 ) = 0, (4.10) ε ∂v ∂t -β∆v + F v + ϕ k (v ε ) -ϕ k (v 0 ) -ϕ k (u ε ) + ϕ k (u 0 ) = -ε ∂v 0 ∂t , ε > 0, ( 4 
ε d dt v 2 + c v 2 H 1 (Ω) ≤ c ( u v + ε 2 ∂v 0 ∂t 2 ), c > 0.
Combining (4.13) and (4.14), we have, owing to (3.49), (4.15)

d dt ( u 2 + ε v 2 ) + c( u 2 H 1 (Ω) + v 2 H 1 (Ω) ) ≤ c ( u 2 + ε v 2 + ε 2 ∂u ε ∂t 2 ), c > 0,
from which it follows, owing to Gronwall's lemma, (4.16)

u(t) 2 + ε v(t) 2 + c T 0 ( u(s) 2 H 1 (Ω) + v(s) 2 H 1 (Ω) ) ds ≤ Q(T )ε 2 ∂u ε ∂t 2 L 2 (0,T ;L 2 (Ω)) , c > 0, t ∈ [0, T ]. Multiplying now (4.1) by ∂u ε ∂t , we obtain d dt ∇u ε 2 + c ∂u ε ∂t 2 ≤ c , c > 0, whence (4.17) ∂u ε ∂t 2 L 2 (0,T ;L 2 (Ω)) ≤ Q(T, u 0 H 1 (Ω) ).
We finally deduce from (4.16)-(4.17) that

u(t) 2 + ε v(t) 2 + c T 0 ( u(s) 2 H 1 (Ω) + v(s) 2 H 1 (Ω) ) ds (4.18) ≤ Q(T, u 0 H 1 (Ω) )ε 2 , c > 0, t ∈ [0, T ].
Multiplying next (4.9) by -∆u and (4.10) by -∆v, we find, recalling that ϕ k and ϕ k are Lipschitz continuous,

d dt ∇u 2 + c ∆u 2 ≤ c ( u 2 + v 2 ), c > 0, and 
ε d dt ∇v 2 + c ∆v 2 ≤ c ( u 2 + v 2 + ε 2 ∂v 0 ∂t 2 ), c > 0,
respectively. Summing these two inequalities, integrating over [0, T ] and proceeding as above, we have, adding the resulting inequality to (4.18),

u(t) 2 H 1 (Ω) + ε v(t) 2 H 1 (Ω) + c T 0 ( u(s) 2 H 2 (Ω) + v(s) 2 H 2 (Ω) ) ds ≤ c ( T 0 ( u(s) 2 + v(s) 2 ) ds + Q(T, u 0 H 1 (Ω) )ε 2 ), c > 0.
This yields, employing (4.18) to estimate the right-hand side,

u(t) 2 H 1 (Ω) + ε v(t) 2 H 1 (Ω) + c T 0 ( u(s) 2 H 2 (Ω) + v(s) 2 H 2 (Ω) ) ds ≤ Q(T, u 0 H 1 (Ω) )ε 2 , c > 0, t ∈ [0, T ],
which finishes the proof.

Remark 4.2. We have similar error estimates if we assume that u ε (0)-u 0 (0

) H 1 (Ω) ≤ cε and v ε (0) -v 0 (0) H 1 (Ω) ≤ c √ ε.

A stability result

As in [START_REF] Guillevin | On a reaction-diffusion system associated with brain lactate kinetics[END_REF], (3.1)-(3.2) possesses a unique spatially homogeneous equilibrium (u, v) given by

v = L + J F > 0 and u = k( J κ + v k +v ) 1 -( J κ + v k +v )
.

Note that u is not necessarily positive. We thus assume in what follows that u > 0. The linearized (around (u, v)) system reads (5.1)

∂U ∂t -α∆U + κ( k (k + u) 2 U - k (k + v) 2 V ) = 0, (5.2) -β∆V + F V + κ( k (k + v) 2 V - k (k + u) 2 U ) = 0, (5.3) ∂U ∂ν = ∂V ∂ν = 0 on Γ, (5.4) U | t=0 = U 0 .
It is not difficult here to prove the existence, uniqueness and regularity of the solution to (5.1)-(5.4), assuming that U 0 is regular enough. Furthermore, proceeding as above, we can prove that, if U 0 ≥ 0 a.e. x, then U (x, t) ≥ 0 and V (x, t) ≥ 0 a.e. (x, t).

Multiplying now (5.1) by k (k+u) 2 U and (5.2) by k (k +v) 2 V , we obtain, summing the two resulting equalities, (5.5) 1 2 Multiplying next (5.2) by V , we easily find V ≤ c U , so that (5.7)

k (k + u) 2 d dt U 2 + αk (k + u) 2 ∇U 2 + βk (k + v) 2 ∇V 2 + F k (k + v) 2 V 2 + Ω ( k (k + u) 2 U - k (k + v) 2 V )
V (t) ≤ c U 0 , t ≥ 0.

We deduce from (5.6)-(5.7) that (u, v) is linearly stable with respect to the L 2 -norm. We can also prove the linear stability with respect to the H 1 -norm, proceeding in a similar way. Now, an important question is whether we also have a linear exponential stability as in [START_REF] Guillevin | On a reaction-diffusion system associated with brain lactate kinetics[END_REF] for the case ε > 0 (see also [START_REF] Costalat | Mathematical modeling of metabolism and hemodynamics[END_REF], [START_REF] Lahutte-Auboin | Modélisation biomathématique du métabolisme énergétique cérébral : réduction de modèle et approche multi-échelle, application à l'aide à la décision pour la pathologie des gliomes[END_REF], [START_REF] Lahutte-Auboin | Dip and buffering in a fast-slow system associated to brain lactate kinetics[END_REF] and [START_REF] Lahutte-Auboin | On a minimal model for hemodynamics and metabolism of lactate: application to low grade glioma and therapeutic strategies[END_REF] for the ODE's model (1.1)-(1.2)). Indeed, as mentioned in the introduction, a therapeutic perspective of such a result is to have the (spatially homogeneous) steady state outside the viability domain, where cell necrosis occurs (see [START_REF] Lahutte-Auboin | Modélisation biomathématique du métabolisme énergétique cérébral : réduction de modèle et approche multi-échelle, application à l'aide à la décision pour la pathologie des gliomes[END_REF]).

We have, in this direction, the Theorem 5.1. The stationary solution (u, v) is linearly exponentially stable, in the sense that all eigenvalues s ∈ C associated with the linear system (5.1)-(5.2) satisfy Re(s) ≤ -ξ, for a given ξ > 0, Re denoting the real part.

Proof. We first note that it follows from (5.2) that (5.8)

V = k 1 (-β∆ + (F + k 2 )I) -1 U,
where k 1 = κk (k+u) 2 and k 2 = κk (k +v) 2 . Injecting this into (5.1), we obtain (5.9) ∂U ∂t -α∆U + k 1 U -k 1 k 2 (-β∆ + (F + k 2 )I) -1 U = 0.

We then look for solutions of the form U (x, t) = Û (x)e st , for s ∈ C, s = ζ + iη. Injecting this into (5.9), we find 

β ∇v 2 +d dt u 2 ≤ c u 2 ,

 222 F v 2 ≤ c u v , respectively. In particular, it follows from (3.25) that (3.26) v ≤ c u , which, injected into (3.24), yields (3.27) whence, owing to Gronwall's lemma, (3.28) u(t) ≤ e ct u 0 , t ≥ 0.

  u 0 | t=0 = u 0 .

  U (t) ≤ U 0 , t ≥ 0.

(5. 10 ) 1 Ûαβ∆ 2 Û- k 1 F F + k 2 )

 101212 -α∆ Û + (s + k 1 ) Û -k 1 k 2 (-β∆ + (F + k 2 )I) --(βs + αF + βk 1 + αk 2 )∆ Û + ((F + k 2 )s + k 1 F ) Û = 0,where, owing to (5.10) and (5.11), 12) by the conjugate of Û , integrating over Ω and by parts and taking the real part, we have(5.14) αβ |∆ Û | 2 + (βζ + αF + βk 1 + αk 2 ) |∇ Û | 2 + ((F + k 2 )ζ + k 1 F ) | Û | 2 = 0.Therefore, when ζ ≥ 0, then, necessarily, Û ≡ 0. Furthermore, (5.14) can have nontrivial solutions only whenβζ + αF + βk 1 + αk 2 ≤ 0 or (F + k 2 )ζ + k 1 F ≤ 0.Therefore, necessarily,(5.15) ζ ≤ max(-αF + βk 1 + αk 2 β , < 0, which finishes the proof.